Although printers typically are used to print on media of various media sizes, most printers have a maximum media width capacity, and correspondingly, a minimum media width on which effective printing can be accomplished. Some printers, such as high speed laser printers, provide dedicated input media trays for each media size. Lower cost printers, such as mass-market inkjet printers, generally have only one tray, typically accommodating letter-size media (8.5″×11″), with some adaptability to accommodate printing on media of different sizes.
In order to accommodate printing on media of different width media, printers often employ adjustable media edge stops that slide to constrain the side edges of narrower media sheets. Printing on media shorter than standard letter-size length normally is accommodated by feeding a stack of the shorter media into an input tray until its leading edge abuts a stop. While this has proven workable in some instances to accommodate envelopes and smaller index cards, there have been disadvantages to this approach.
Some printers, for example, have input trays that are not removable, and which extend well into the body of the printer. This leaves a significant distance between the media insertion aperture and the leading edge stop. It thus may be difficult to load or extract media which is shorter than this distance. Furthermore, it may be difficult to adjust the media edge stop in a manner necessary to maintain the media in its proper lateral position.
A further difficulty in accommodating smaller media sizes is that many printers rely on a common media registration scheme, such as using one edge of a media tray as a fixed side edge reference for all media sizes. Any measures to accommodate smaller media that do not provide contact with this reference surface will require printer firmware changes, generating cost and complexity disadvantages.
Additionally, even printers which do overcome problems with loading smaller media may not be adequately adjustable in width, leading to problems of unacceptable media skew. For example, media edge stops typically are adapted to engage a central region of standard size media sheets, laterally biasing the media in order to maintain proper input stack orientation. It will be appreciated, however, that smaller media typically is engaged nearer a trailing end of the media, potentially skewing the media as it enters the insertion aperture. This may be exacerbated as the input tray floor pivots upward, making it difficult to maintain a lateral biasing force on the input media stack.
Referring to
As indicated in
Upon placement of the media loader insert in input tray 110, the input tray's side edge stop 130 is adjusted to engage a side edge of the media loader insert in a manner similar to the manner in which the side stop would engage the side edge of a letter-size media stack. This typically means that the side edge stop will engage a central region of the media loader insert's side edge. This is in contrast to the rearward region of the small-size media stack which would be engaged by the input tray's side edge stop if the media was placed directly in the input tray. Side edge stop 130 may be spring-biased toward engagement with media loader insert 10, thus urging the media loader insert into engagement with the opposite side edge of the input tray, and into a desired, non-skewed orientation. Alternatively, the side edge stop may be manually adjusted, and held in position adjacent the media loader insert via another suitable journaling mechanism.
Similarly, the input tray's rear edge stop 140 may be configurable to engage a rear edge of the media loader input in a manner similar to the manner in which the rear edge stop would engage a letter-size media stack. Typically, the rear edge stop will be manually adjusted, and held in position adjacent the media loader insert via a suitable journaling mechanism.
The media loader insert is placed in the input tray using a recessed handle 16, which also typically is formed in body 12. As will be appreciated upon reading further, the media loader insert is intended to receive media after placement of the media loader insert in the input tray, the input tray serving to define the remaining retention boundaries for the small-size media stack. The media stack thus is closely held in a predetermined feed orientation, which orientation is selected to prevent media skew.
For the purpose of simplifying this disclosure,
Referring now to
Media-engaging surface 32 is contoured to accommodate contact between the media-engaging surface and the side edge of the small-size media stack. Preferably, media-engaging surface 32 will engage a central region of the side edge of small-size media stack 20, thus reducing the potential for undesirable media skew. The small-size media stack is further supported in the aforementioned central region by an adjustable floor 34, which extends somewhat normally from media-engaging surface 32 to support the small-size media stack from below. It will be appreciated that adjustable floor 34 need not extend entirely across the media, but rather may support only a portion thereof.
As indicated, width adjuster 30 is pivotal about a vertical axis A which extends parallel to the Z axis depicted in FIG. 1. Media-engaging surface 32 thus is pivotally adjustable along the Y axis to ensure contact between media-engaging surface 32 and the side edge of small-size media stack 20. In the depicted embodiment, media-engaging surface 32 adjusts approximately 5-mm in the area which contacts the small-size media stack. Typically, media-engaging surface 32 is spring-biased in the negative Y direction, toward engagement with the small-size media stack via hinge assembly 36. Such spring bias assists in maintaining proper media orientation, and thus in reducing media skew.
In the present embodiment, width adjuster 30 also is pivotally adjustable about a horizontal axis B which extends parallel to the Y axis. Axis B, it will be noted, extends generally along a rearward end of the width adjuster to provide for pivotal adjustment of adjustable floor 34. Floor 34 adjusts approximately 15-mm vertically adjacent the forward end thereof. By providing for such pivotal adjustment, it is possible to keep the width adjuster engaged with the side edge of the media stack while the elevation of the media stack is changed. It also is possible to engage the small-size media stack nearer to the forward edge of the media without affecting support of the media by the input tray, and thus without compromising normal media feed as demonstrated in FIG. 3. Floor 34 also may be spring-biased in the positive Z direction, toward engagement with the small-size media stack via hinge assembly 36.
Referring still to
As will be appreciated from review of the drawings, length adjuster 40 is linearly adjustable along the X axis to accommodate variations in the size of media used. The length adjuster thus includes a glide element 46 which travels along a track defined by tabs 46a. The length adjuster is configured to travel a distance L, which typically is on the order of approximately 5-mm.
In the depicted embodiment, the length adjuster is manually adjusted using a hand grip 48 which is located near the rearward end of the media loader, thus providing ready access to the user. The length adjuster maintains its selected position due to frictional forces between glide element 46 and track 46a. Alternatively, media-engaging surface 42 may be biased in the positive X direction, toward engagement with the small-size media stack to assist in maintaining proper media alignment. A recess 49 provides the user with access to the media stack when inserting/removing media from the modified input tray.
Accordingly, it will be appreciated that media loader insert 10 fits within input tray 110 to define a modified media receptacle space which is specially configured to receive small-size media. Media-engaging surface 32 is adjustable relative to the input tray's left side to define the width of the modified media receptacle space. Media-engaging surface 42 is adjustable relative to the input tray's front edge to define the length of the modified media receptacle space. The left and forward walls of input tray 110 respectively define fixed left and forward limits of the modified media receptacle space. Media within the modified media receptacle space is supported from below by width adjuster floor 34 and length adjuster floor 44. A media elevator 120, in turn, supports width adjuster floor 34 and provides supplemental support for the media stack (FIG. 3).
Referring now to
As indicated in
As will be noted, media 20 extends beyond the forward end of length adjuster floor 44, typically onto width adjuster floor 34, which is supported by a media elevator 120. Elevator 120, it will be understood, is formed within input tray 110 to selectively raise the leading edge of a media stack within the input tray into contact with a pick roller 215. The media loader insert is adapted to utilize the media elevator by placing the leading edge of the small-size media onto the media elevator as shown. Pick roller 215 thus may be used to pull the media into the printer's input port 220 for printing.
In the depicted embodiment, media elevator 120 is pivotally hinged to the input tray floor, the media elevator thus being capable of pivot about an axis C, which is generally parallel to the Y axis. Preferably, the media elevator will pivot cooperatively with width adjuster floor 34, which rests on the media elevator and pivots about an axis B, also generally parallel to the Y axis. Typically, the media elevator is spring-biased to pivot upward (clockwise in
Therefore, a user may employ the depicted media loader insert to reduce skew when printing on small-size media such as A6 media, Hagaki media, or the like. The user simply pulls out the input tray, removes any media from the input tray and places media loader insert 10 within the input tray. Media loader 10 then is secured in place using the input tray's adjustable side edge stop and adjustable rear edge stop as described above. The media loader insert may be positioned using matching rear contours of the media loader and the input tray. Upon securing the media holder insert in place, small-size media may be placed in recessed media support region 14. The media is maintained in its proper orientation using width adjuster 30 and length adjuster 40. Finally, the input tray may be re-inserted into the registration channel of the printer such that media may be picked from the media loader insert within the input tray.
While the present embodiment has been shown and described with reference to the foregoing operational principles, it will be apparent to those skilled in the art that other changes in form and detail may be made without departing from the spirit and scope defined in the appended claims.
This is a continuation of application Ser. No. 09/666,252 filed on Sep. 21, 2000, now U.S. Pat. No. 6,666,601 which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4017181 | Komaba et al. | Apr 1977 | A |
5000596 | Naruki | Mar 1991 | A |
5091754 | Abe et al. | Feb 1992 | A |
5116034 | Trask et al. | May 1992 | A |
5177544 | Kimura et al. | Jan 1993 | A |
5287164 | Watanabe | Feb 1994 | A |
5346197 | Takano et al. | Sep 1994 | A |
5599120 | Conrad et al. | Feb 1997 | A |
5746528 | Mayer et al. | May 1998 | A |
5957447 | Sekine | Sep 1999 | A |
6179499 | Beretta et al. | Jan 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040131412 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09666252 | Sep 2000 | US |
Child | 10702959 | US |