This invention relates generally to the field of digitally controlled printing systems, and in particular to the media transport portion of these systems.
In high speed inkjet printing systems, print media typically moves through the printing system as a continuous web of print media rather than individual sheets of print media. As the web of media passes through the print system, the print media is held under tension. Variations in the tension of the print media across the width of the print media cause the print media to drift laterally. Precision alignment of the rollers which support and guide the print media reduces the tendency of the print media to drift laterally, but achieving precision alignment of the rollers is, typically, a costly process. As precision alignment of the rollers can reduce or even eliminate drifting of the print media, conventional printing systems typically include servo-controlled web guides to steer the print media to the desired lateral position. While such web guides can be effective, they add significant cost to the printing system.
As such, there is an ongoing need to provide, at a relatively low cost, an apparatus that equalizes the tension of the print media across the width of the print media to reduce or even eliminate the tendency of the print media to drift laterally.
According to an aspect of the present invention, an apparatus for maintaining uniform tension across a width of a web is provided. The apparatus includes a roller, a first arm and a second arm, a plurality of devices, and a plurality of links. The roller includes a shaft about which the roller rotates. The shaft defines an axis of rotation. The first ami and second arm each include a first end. The first end of the first arm is rigidly coupled to an end of the shaft of the roller and extends away from the axis of rotation of the roller in a first direction. The shaft of the roller and the first arm lie in a plane. The first end of the second arm is rigidly coupled to an opposite end of the shaft of the roller. The shaft of the roller and the second arm lie in the plane. The second arm extends away from the axis of rotation of the roller in a second direction that is substantially opposite to the first direction. The first arm and the second arm each include a second end. The second end of each of the first arm and the second arm is coupled to a corresponding one of the plurality of devices. The location of coupling is at the same distance from the axis of rotation of the roller such that each device is allowed two degrees of rotational freedom about the arm to which it is coupled. The two degrees of rotational freedom lie within the plane. Each of the devices is pivotably coupled to a corresponding one of the plurality of links. Each link includes a first link and a second link. Each of the first link and the second link is pivotably coupled to the shaft of the roller at a first end through the device such that the roller is allowed to pivot about a first axis. Each of the first link and the second link is pivotably coupled to a stationary frame at a second end such that the roller is allowed to pivot about a second axis. The first axis and the second axis of the first link and the second link are substantially parallel to each other.
According to another aspect of the present invention, an apparatus for maintaining uniform tension across a width of a web is provided. The apparatus includes a roller, a first arm and a second arm, a plurality of devices, and a plurality of links. The roller includes a shaft, about which the roller rotates, that defines an axis of rotation. The first arm and the second arm are coupled to opposite sides of the shaft of the roller. The first arm and the second arm are coupled to a corresponding one of the plurality of devices. The location of the coupling is at the same distance from the axis of rotation of the roller such that each device is allowed two degrees of rotational freedom about the arm to which it is coupled. Each of the devices is pivotably coupled to a corresponding one of the plurality of links. Each link is pivotably coupled to the shaft of the roller through the device to which it is coupled such that the roller is allowed to pivot about a first axis. Each link is pivotably coupled to a stationary frame such that the roller is allowed to pivot about a second axis.
Additionally, the shaft of the roller, the first arm, and the second arm can be located relative to each other such that they lie in a plane. The first arm can also extend away from the axis of rotation of the roller in a first direction and the second arm can also extend away from the axis of rotation of the roller in a second direction that is substantially opposite to the first direction. The two degrees of rotational freedom about the arm to which each device is coupled can lie within the plane. The first axis and the second axis about which the roller is allowed to pivot can also be substantially parallel to each other.
In the detailed description of the example embodiments of the invention presented below, reference is made to the accompanying drawings, in which:
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
Although the term “paper” is used in this application to refer to print media that is printed on by a printing system, the term “print media” should not be restricted to paper or paper based media. Instead, print media includes any media type that is printed on by the printing system, for example, those that include polymeric or metallic films or foils. Additionally, print media includes media types that include woven or non-woven structures.
In
Allowing roller 14 to pivot about a caster axis 28 enables the tension to be balanced across the web in span 20. If roller 14 is also allowed to pivot around a gimbal axis 30, then the tension in the print media becomes balanced across the width of the web in the span 26. In this way, a castered and gimbaled roller balances the tension across the print media as it enters the roller and as it leaves the roller. The present invention provides a cost effective means to caster and gimbal a roller for use in a high speed printing system.
In
As there can be times when the print media can move in the reverse direction, and castered rollers are unstable when the print media motion is reversed, it is useful to limit the rotation of a castered roller about the caster axis.
As mentioned above, the roller shaft 34 is attached to the base 36 by means of the linkage arms 38 and 40. The shaft 34, however, is not directly attached to the linkage arms, but rather each end of the shaft is connected to the linkage arms by means of couplings 64 and 66. It is by means of these couplings that the gimbal action of the roller is accomplished. These two couplings 64 and 66 are asymmetrically placed about the shaft 34 of the roller 32 as shown in
Linkage arm 56, which limits the amount of rotation of the roller about the caster axis, is also shown in
The location of the roller rotation limiting mechanism described above is suitable positioned relative to roller 32 depending on the specific application contemplated. For example, linkage arm 56 of the roller rotation limiting mechanism can be located on the left side of roller 32 (as shown in
The construction at the second end of the roller shaft 34 is shown in
The mounting of the roller 32 by means of the asymmetrically placed blocks 68 and 69 enables the roller to pivot about a rotation axis that is approximately perpendicular to the roller shaft and perpendicular to the caster axis 42. This rotation axis passes through the midpoint of the roller and serves as a gimbal axis for the roller. This is in addition to the pivoting of the roller 32 about the caster axis 42 discussed previously. It has been found however that this design is effective in balancing the tension across the width of the print media both as the print media approaches the roller and leaves the roller.
Ball joint unit 90 includes an arm 91 and a stem 93. A first end of the arm 91 of ball joint 90 is secured to the end of the shaft 34. A first end of the stem 93 is secured to a block 92. The second end of the arm 91 and the second end of the stem 93 are coupled to each other by a ball and socket joint 95. The block 92 is pivotably connected to a linkage arm 38 at pivot 50. If this were the only joint between the block 92 and shaft 34, all degrees of rotational freedom would be allowed by the ball joint. Improved performance is seen once these two joints are limited to two degrees of rotational freedom.
The desired reduction in rotational degree of freedom is provided by two additional ball joints 94 and 96 that also couple the block 92 to the shaft 34. The stem of ball joint 94 is rigidly connected to the end of the shaft 34 and the arm is rigidly connected to the stem of ball joint 96. The arm of ball joint 96 is rigidly connected to the block 92. This combination of three ball joints, with two ball joints having one portion rigidly coupled to the roller shaft 34 and two ball joints having one portion rigidly coupled to the block 92, has the effect of limiting the rotation of each of the ball joints to rotation with two degrees of freedom. For each ball joint those two axes of rotation correspond to the axes that pass from that ball joint to the other two ball joints. The effect of this three ball joint combination is that the shaft 34 is coupled to the block 92 by a single two degree of freedom joint located at ball joint 94, with one axis of rotation passing through ball joints 94 and 95 and the second axis of rotation passing through ball joints 94 and 96.
In this three ball joint system, there are two degree of rotational freedom coupling between the block 92 and the shaft, with this two degree of freedom coupling being offset from the shaft by the length of the stem of the ball joint 94. The stem of ball joint 94 therefore corresponds to the arm 70 of the embodiment shown in
The mount for the shaft 34, for either design, includes a first arm and a second arm, a first end of the first arm is rigidly coupled to an end of the shaft of the roller. The first arm extends away from the axis of rotation of the roller in a first direction. The shaft of the roller and the first arm lie in or define a plane. The first end of the second arm is also rigidly coupled to the opposite end of the shaft of the roller. The shaft of the roller and the second arm lie in the same plane that was defined by the shaft of the roller and the first arm. The second arm extends away from the axis of rotation of the roller in a second direction that is substantially opposite to the first direction. The second end of the first arm is coupled to a device. The coupling between the shaft and the device allows two degrees of rotational freedom about the second end of the arm, the two degrees of rotational freedom lie in the plane defined by the shaft and the first arm. In the embodiment shown in
Similarly, the second end of the second arm is coupled to another device. The coupling between the shaft and the second device allows two degrees of rotational freedom about the second end of the arm. The coupling between the second device and the shaft allows two degrees of rotational freedom about the second end of the arm, the two degrees of rotational freedom lie in the plane defined by the shaft and the first arm. The lengths of the first and second arm are substantially the same so that the location of the two couplings between the shaft and the first and second devices are at the same distance from the axis of rotation of the roller.
The devices, one located at the first end and one located at the second end of the roller shaft, are each being pivotably coupled to a link. The axis of rotation of this pivotal coupling between the device and the first end of the associated link is substantially perpendicular to the plane defined by the shaft and the first arm that is attached to the shaft. Each of the first link arm and the second link arm are pivotably coupled to a stationary frame at their second ends. The axes of rotation of the pivotable coupling between the link arms and the stationary frame are substantially parallel to the axes of rotation of the coupling between the link arms and the devices at each end of the roller shaft. By means of the linkage arms, the roller is allowed to pivot about an axis, that is substantially parallel to the pivot axes at the first and second ends of the link arms. This roller pivot axis is offset from the roller and it serves as the caster axis of the roller. By means of the two axis coupling between the shaft and the asymmetrically placed devices at the two ends of the shaft, the roller is free to pivot around an axis that is substantially perpendicular to the caster axis and to the shaft of the roller. This pivot axis passes through the midpoint of the roller and it serves as a gimbal axis for the roller.
When compared to a traditional caster and gimbal roller design that could be employed in a high speed printing system with print media widths in excess of 10 centimeters, the design of the present invention allows many components to be selected from an assortment of standard parts that are readily available. Additionally, the size of the non-standard components helps to reduce machining costs associated with their manufacture. Accordingly, the design of the present invention offers significant cost reduction when compared to conventional designs.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Reference is made to commonly-assigned copending U.S. patent application Ser. No. ______ (Docket No. 95526) filed ______ entitled “MEDIA TRANSPORT SYSTEM FOR NON-CONTACT PRINTING”, by Muir et al.