Print quality setup using banks in parallel

Information

  • Patent Grant
  • 10654287
  • Patent Number
    10,654,287
  • Date Filed
    Thursday, October 19, 2017
    7 years ago
  • Date Issued
    Tuesday, May 19, 2020
    4 years ago
Abstract
The present invention embraces a method and apparatus for an efficient and economical print quality setup for thermal printers. A thermal printhead of a thermal printer constitutes multiple printhead banks. The printhead banks may be controlled by strobe signals. While configuring print quality, each of the strobe signals may operate separately with different power causing the printhead banks to operate in different configurations while printing an identical pattern. As each the banks are operating in different configuration, they each print the identical pattern with a different print quality. One print quality may be selected from the different quality patterns printed by each printhead bank on a single printed label or media. The selected quality pattern corresponds to a quality factor. The method may reduce the time to select a configuration and may reduce the amount of usage of media or labels.
Description
FIELD OF THE INVENTION

The present invention relates to improvements in printers, and more particularly, to improvements in the print quality setup of a thermal printer.


BACKGROUND

Generally speaking the print quality setup of a thermal printer may be difficult, time consuming and may waste expensive labels. One typical approach of determining the print quality setup includes printing labels with different settings and allowing the user to manually select the best label. This procedure may waste many labels and is very undesirable especially if the labels are expensive. Another approach entails analyzing the media (paper and ribbon) and determining the composition of the printed label. This approach adds the expense of an analyzer and associated software to the system. In yet another approach, an electronic or visual ID is positioned on the media and the print quality setup is based predetermined settings. This approach may require validation of all possible media to be used on the printer and would not support unknown media.


Therefore, a need exists for an efficient and inexpensive solution for the print quality setup of thermal printers.


SUMMARY

Accordingly, in one aspect, the present invention embraces a method and apparatus for an efficient and economical print quality setup for thermal printers. A thermal printhead of a thermal printer constitutes multiple printhead banks. The printhead banks are controlled by strobe signals.


In an exemplary embodiment, a printer may comprise a set of printhead banks, wherein each of the set of printhead banks is operable to independently print an identical pattern with a different print quality on a media; a processor capable of generating a strobe signal for each of the set of printhead banks based on a quality factor, wherein the quality factor determines the print quality for each of the identical patterns on the media, wherein the processor selects the quality factor based on a user selection of a preferred pattern; and the media comprising a set of the identical patterns, each with different print quality, each printed by a different printhead bank. The processor sends a corresponding strobe signal and data signal to a corresponding printhead bank of the set of printhead banks. The placement of the printer in a normal print mode of operation causes the set of printhead banks to print media based on the quality factor corresponding to the preferred pattern selection.


An algorithm of the processor may analyze the selected preferred pattern and determines whether to tune” the quality factor associated with the preferred pattern. If the algorithm of the processor decides to tune the quality factor associated with the preferred pattern, the processor generates another set of quality factors based on the preferred pattern selection as a seed. The processor then proceeds to select same or another preferred pattern based on the another set of quality factors. The preferred pattern selection is aided or automated by a scanner and processor software. The processor may independently control the quality factor associated with each strobe signal.


In another exemplary embodiment, a method for printing may comprise the steps of: receiving, by a processor of a printer, a prompt from a user to start a print quality factor setup including a generation of a set of N quality factors, wherein a quality factor determines a print quality of a pattern of a media; generating, by the processor of the printer, a set of N strobe signals corresponding to the set of N quality factors; and transmitting, by the processor of the printer, each of the set of the N strobe signals and each of an associated set of N data signals to each of a corresponding set of N printhead banks. Each of the N printhead banks print a specific pattern and collectively print N patterns on the media. The user reviews the N patterns on the media and selects a preferred pattern based on the print quality.


In another aspect, the present invention embraces a strobe signal that may comprise sequence of variable length pulses that controls an amount of energy applied to resistive elements of printhead of the printer. Also, the processor of the printer may determine whether to tune the quality factor based on an analysis of the quality factor of the selected preferred pattern.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary embodiment of a system that provides an efficient print quality setup.



FIG. 2 illustrates an exemplary flowchart for a method that provides an efficient print quality setup.



FIG. 3 illustrates an exemplary image of label comprising four separate patterns.





DETAILED DESCRIPTION

The present invention embraces a method and apparatus for an efficient and economical print quality setup for thermal printers. A thermal printhead of a thermal printer constitutes multiple printhead banks. The printhead banks are controlled by strobe signals. In a print quality setup operation, the strobe lines from all the banks may be combined and applied with one power signal resulting in a constant print quality throughout all of the printhead banks. This means that all of the printhead banks may be printing with the same print quality. During print quality setup, excessive labels must be printed to select the preferred print quality. As used herein, “strobe signals” are transmitted on the “strobe line”. As used herein, a “label” is a type of “media”.


For the present invention, while configuring print quality, all the strobe lines may operate separately with different power signals causing the printhead banks to operate in different configurations. As all the banks are operating in different configurations, one print quality may be selected from the given options or patterns printed by each printhead bank on a single printed label. The selected pattern corresponds to a quality factor. The method may reduce the time to select a configuration and may reduce the amount of usage of labels.


Further, the selected configuration, based on a specific quality factor, may be loaded to the connected strobe lines for normal printing operation. In other words, the method and apparatus for print quality setup may be based on independently controlling the strobe signals for the printhead banks to produce the printing of a different print quality from each bank. Then, selecting a preferred print quality pattern and loading the corresponding quality factor to a connected strobe line for normal print operation. In the present invention, the print quality setup is based on quality factors and may be referred to as a print quality factor setup.



FIG. 1 illustrates an exemplary embodiment of a system 100 for providing an efficient print quality setup that results in achieving a high print quality without printing excessive labels. System 100 may comprise printer 102 and scanner 104 (optional). System 100 is operated by user 101. Printer 102 comprises processor 106, printhead banks 108 and label 110. Printhead banks 108 may comprise N banks including bank1 121, bank2 122, bank3 123, bank4 124, . . . bankN 125. Label 110 may comprise N data patterns including pattern_A 141, pattern_B 142, pattern_C 143, pattern_D 144, . . . pattern_Nth 145. In operation, processor 106 may receive a prompt from user 101 to start a setup of quality factors. The quality factors represent a print quality specification.


In response to receiving the prompt, processor 106 may generate and transmit N data patterns and N strobe signals to the printhead banks 108. The N strobe signals may comprise strobe1 111, strobe2 112, strobe3 113, strobe4 114, . . . strobeN 115. The N data patterns may comprise data1 116, data2 117, data3 118, data4 119, . . . dataN 120. Each of the N data patterns and N strobe signals may be coupled to a corresponding one of the printhead banks 108. That is, strobe1 111 may be coupled to bank1 121, strobe2 may be coupled to bank2 122, etc.


Each of the N strobe signals define a quality factor corresponding to a pattern that may be printed on label 110. The strobe signal may comprise a sequence of variable length pulses, typically a sequence from 1 to 6 pulses per single dot line. The duration of pulses may be from 10's of microseconds to 100's of microseconds. This pulse specification may control the amount of energy going into resistive elements (dots) of the printhead, thus variably heating up the elements causing thermal paper to react or ribbon to melt.


Dot line is a single line of dots produced by the printhead on the paper. Printing involves producing multiple dot lines sequentially to create an image as the paper moves forward.


Returning the FIG. 1, each bank in the printhead banks 108 receives a quality factor via a strobe signal that results in a corresponding pattern to be printed on a label. For example, bank1 121 receives a quality factor via strobe1 111. Based on this quality factor, bank1 121 generates a heat profile print_A 131 that results in pattern_A 141 being printed as a part of label 110. Likewise, bank2 122 receives another quality factor from strobe2 112. Based on this another quality factor, bank2 122 generates a heat profile print_B 132 that results in pattern_B 142 being printed as a part of label 110. BankN 125 receives yet another quality factor from strobeN 115. Based on this yet another quality factor, bankN 125 generates a heat profile print_Nth 135 that results in pattern_N 145 being printed as a part of label 110. The remaining banks, illustrated in FIG. 1, have corresponding heat profiles Print_C 133 and Print_D 134. Label 110 comprises N patterns, each reflecting a different quality factor as specified by each of the N strobe signals. Each of the set of printhead banks 108 independently prints an identical pattern on a label.


Once label 110 is printed, a user 101 may review the patterns on label 110 and select a preferred pattern. The preferred pattern corresponds to a specific quality factor. For example, the preferred pattern may be pattern_B 142. After making this selection, user 101 may proceed with conventional printing based on the preferred pattern, pattern_B 142. Or, in a second cycle, a printer processor algorithm may determine if further tuning of the quality factors is necessary. Processor 106 may tune the selection and proceed to generate another set patterns based on the quality factor of the preferred pattern as a seed, e.g., pattern_B 142. This another set of patterns that are printed on label 110 would result in the printing the following set of patterns: pattern_B1, pattern_B2, pattern_B3, etc. (these patterns are not shown on FIG. 1). User 101 may select a preferred pattern from the second cycle set of patterns, e.g., pattern_B3, and proceed with conventional printing. Or, the user may proceed with a third cycle of tuning, and generate yet another label 110 based on pattern_B3. The action may result in a set of patterns, pattern_B31, pattern-B32, pattern_B34, etc. (These patterns are not shown on FIG. 1). As in prior cycles, once label 110 is printed, a user 101 may review the patterns on label 110 and select same or another preferred pattern. After making this selection, user 101 may proceed with conventional printing based on the preferred pattern, or the user may proceed with yet another cycle of tuning or “fine tuning”. For each cycle of “fine tuning”, the user repeats the steps of executing print quality setup and prints another multi-pattern label for review and re-selection of a preferred pattern. This procedure can further improve the print quality of the label 110.


In summary, processor 106 independently controls the bank strobe signals (transmitted on the strobe lines) to allow the printhead banks 108 to print a different print quality at each bank. FIG. 3 illustrates an exemplary image of a label comprising four separate patterns, i.e., a multi-pattern label.


N is a number having a value of at least 2. The previous describe procedure may have M cycles of tuning or “fine tuning”. Without the utilization of independent strobe control for each bank, the print quality factor setup may require up to N times as many labels and N times as much time to achieve the same result. So, for j patterns of “fine turning”, the procedure may save j*(N−1) labels.


As an alternative to user 101 independently selecting the preferred pattern, a scanner may scan label 110 and provide the scan of label 110 to processor 106. With printer processor algorithms, processor 106 may analyze the scan of label 110 and aids or automates the user in the selection of a preferred pattern. Based on either a decision from user 101 or a decision by processor 106, processor 106 proceeds to conventional printing of the preferred pattern, or proceeds to a cycle of “fine tuning” based on the preferred pattern as the seed.



FIG. 2 illustrates an exemplary flowchart 200 for a method that provides an efficient print quality setup to achieve a high print quality without printing excessive media or labels. The method may comprise the following steps:


User prompts printer to start a print quality factor setup and generate a set of N quality factors. (step 202)


Based on the set of N quality factors, a processor of the printer generates a set of N strobe signals corresponding to the set of N quality factors. (step 204)


Based on the set of N strobe signals, the processor transmits each of the N strobe signals to a corresponding set of N printhead banks together with data corresponding to a pattern for each portion of a media or label. (step 206)


Each of the N printhead banks prints a portion of a media or label controlled by one of the N quality factors. (step 208)


Does the user independently review N printed patterns on the media or label and select a preferred pattern? If yes, the user selects a preferred pattern. (step 210)


If no, a scanner and processor software analyze N printed patterns and aids or automates the user in the selection of a preferred pattern. (step 212)


With the preferred pattern selection, does an algorithm in printer processor determine if further fine tuning of the quality factors is necessary? (step 214)


If no, the printer is setup for a quality factor corresponding to the preferred pattern selection. (step 218)


If yes, the processor of the printer generates another set of N quality factors based on the preferred pattern selection as a seed. (step 216)


The method then repeats step 206 and cycles to select another preferred pattern.



FIG. 3 illustrates an exemplary image of label 300 comprising four separate patterns, i.e., a multi-pattern label. Label 300 is printed based on step 208 of FIG. 2. Label 300 comprises Pattern_A—141 which was printed by Bank1—121, Pattern_B—142 which was printed by Bank2—122, Pattern_C—143 which was printed by Bank3—123, and Pattern_D—144 which was printed by Bank4—124.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;
  • U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;
  • U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;
  • U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;
  • U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;
  • U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;
  • U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;
  • U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;
  • U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;
  • U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;
  • U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;
  • U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;
  • U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;
  • U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;
  • U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;
  • U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;
  • U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;
  • U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;
  • U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;
  • U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;
  • U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;
  • U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;
  • U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;
  • U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;
  • U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;
  • U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;
  • U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;
  • U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;
  • U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;
  • U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;
  • U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;
  • U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;
  • U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;
  • U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;
  • U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;
  • U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;
  • U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;
  • U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;
  • U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;
  • U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;
  • U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;
  • U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;
  • U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;
  • U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;
  • U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;
  • U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;
  • U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;
  • U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. 8,740,082;
  • U.S. Pat. No. 8,740,085; U.S. Pat. No. 8,746,563;
  • U.S. Pat. No. 8,750,445; U.S. Pat. No. 8,752,766;
  • U.S. Pat. No. 8,756,059; U.S. Pat. No. 8,757,495;
  • U.S. Pat. No. 8,760,563; U.S. Pat. No. 8,763,909;
  • U.S. Pat. No. 8,777,108; U.S. Pat. No. 8,777,109;
  • U.S. Pat. No. 8,779,898; U.S. Pat. No. 8,781,520;
  • U.S. Pat. No. 8,783,573; U.S. Pat. No. 8,789,757;
  • U.S. Pat. No. 8,789,758; U.S. Pat. No. 8,789,759;
  • U.S. Pat. No. 8,794,520; U.S. Pat. No. 8,794,522;
  • U.S. Pat. No. 8,794,525; U.S. Pat. No. 8,794,526;
  • U.S. Pat. No. 8,798,367; U.S. Pat. No. 8,807,431;
  • U.S. Pat. No. 8,807,432; U.S. Pat. No. 8,820,630;
  • U.S. Pat. No. 8,822,848; U.S. Pat. No. 8,824,692;
  • U.S. Pat. No. 8,824,696; U.S. Pat. No. 8,842,849;
  • U.S. Pat. No. 8,844,822; U.S. Pat. No. 8,844,823;
  • U.S. Pat. No. 8,849,019; U.S. Pat. No. 8,851,383;
  • U.S. Pat. No. 8,854,633; U.S. Pat. No. 8,866,963;
  • U.S. Pat. No. 8,868,421; U.S. Pat. No. 8,868,519;
  • U.S. Pat. No. 8,868,802; U.S. Pat. No. 8,868,803;
  • U.S. Pat. No. 8,870,074; U.S. Pat. No. 8,879,639;
  • U.S. Pat. No. 8,880,426; U.S. Pat. No. 8,881,983;
  • U.S. Pat. No. 8,881,987; U.S. Pat. No. 8,903,172;
  • U.S. Pat. No. 8,908,995; U.S. Pat. No. 8,910,870;
  • U.S. Pat. No. 8,910,875; U.S. Pat. No. 8,914,290;
  • U.S. Pat. No. 8,914,788; U.S. Pat. No. 8,915,439;
  • U.S. Pat. No. 8,915,444; U.S. Pat. No. 8,916,789;
  • U.S. Pat. No. 8,918,250; U.S. Pat. No. 8,918,564;
  • U.S. Pat. No. 8,925,818; U.S. Pat. No. 8,939,374;
  • U.S. Pat. No. 8,942,480; U.S. Pat. No. 8,944,313;
  • U.S. Pat. No. 8,944,327; U.S. Pat. No. 8,944,332;
  • U.S. Pat. No. 8,950,678; U.S. Pat. No. 8,967,468;
  • U.S. Pat. No. 8,971,346; U.S. Pat. No. 8,976,030;
  • U.S. Pat. No. 8,976,368; U.S. Pat. No. 8,978,981;
  • U.S. Pat. No. 8,978,983; U.S. Pat. No. 8,978,984;
  • U.S. Pat. No. 8,985,456; U.S. Pat. No. 8,985,457;
  • U.S. Pat. No. 8,985,459; U.S. Pat. No. 8,985,461;
  • U.S. Pat. No. 8,988,578; U.S. Pat. No. 8,988,590;
  • U.S. Pat. No. 8,991,704; U.S. Pat. No. 8,996,194;
  • U.S. Pat. No. 8,996,384; U.S. Pat. No. 9,002,641;
  • U.S. Pat. No. 9,007,368; U.S. Pat. No. 9,010,641;
  • U.S. Pat. No. 9,015,513; U.S. Pat. No. 9,016,576;
  • U.S. Pat. No. 9,022,288; U.S. Pat. No. 9,030,964;
  • U.S. Pat. No. 9,033,240; U.S. Pat. No. 9,033,242;
  • U.S. Pat. No. 9,036,054; U.S. Pat. No. 9,037,344;
  • U.S. Pat. No. 9,038,911; U.S. Pat. No. 9,038,915;
  • U.S. Pat. No. 9,047,098; U.S. Pat. No. 9,047,359;
  • U.S. Pat. No. 9,047,420; U.S. Pat. No. 9,047,525;
  • U.S. Pat. No. 9,047,531; U.S. Pat. No. 9,053,055;
  • U.S. Pat. No. 9,053,378; U.S. Pat. No. 9,053,380;
  • U.S. Pat. No. 9,058,526; U.S. Pat. No. 9,064,165;
  • U.S. Pat. No. 9,064,165; U.S. Pat. No. 9,064,167;
  • U.S. Pat. No. 9,064,168; U.S. Pat. No. 9,064,254;
  • U.S. Pat. No. 9,066,032; U.S. Pat. No. 9,070,032;
  • U.S. Pat. No. 9,076,459; U.S. Pat. No. 9,079,423;
  • U.S. Pat. No. 9,080,856; U.S. Pat. No. 9,082,023;
  • U.S. Pat. No. 9,082,031; U.S. Pat. No. 9,084,032;
  • U.S. Pat. No. 9,087,250; U.S. Pat. No. 9,092,681;
  • U.S. Pat. No. 9,092,682; U.S. Pat. No. 9,092,683;
  • U.S. Pat. No. 9,093,141; U.S. Pat. No. 9,098,763;
  • U.S. Pat. No. 9,104,929; U.S. Pat. No. 9,104,934;
  • U.S. Pat. No. 9,107,484; U.S. Pat. No. 9,111,159;
  • U.S. Pat. No. 9,111,166; U.S. Pat. No. 9,135,483;
  • U.S. Pat. No. 9,137,009; U.S. Pat. No. 9,141,839;
  • U.S. Pat. No. 9,147,096; U.S. Pat. No. 9,148,474;
  • U.S. Pat. No. 9,158,000; U.S. Pat. No. 9,158,340;
  • U.S. Pat. No. 9,158,953; U.S. Pat. No. 9,159,059;
  • U.S. Pat. No. 9,165,174; U.S. Pat. No. 9,171,543;
  • U.S. Pat. No. 9,183,425; U.S. Pat. No. 9,189,669;
  • U.S. Pat. No. 9,195,844; U.S. Pat. No. 9,202,458;
  • U.S. Pat. No. 9,208,366; U.S. Pat. No. 9,208,367;
  • U.S. Pat. No. 9,219,836; U.S. Pat. No. 9,224,024;
  • U.S. Pat. No. 9,224,027; U.S. Pat. No. 9,230,140;
  • U.S. Pat. No. 9,235,553; U.S. Pat. No. 9,239,950;
  • U.S. Pat. No. 9,245,492; U.S. Pat. No. 9,248,640;
  • U.S. Pat. No. 9,250,652; U.S. Pat. No. 9,250,712;
  • U.S. Pat. No. 9,251,411; U.S. Pat. No. 9,258,033;
  • U.S. Pat. No. 9,262,633; U.S. Pat. No. 9,262,660;
  • U.S. Pat. No. 9,262,662; U.S. Pat. No. 9,269,036;
  • U.S. Pat. No. 9,270,782; U.S. Pat. No. 9,274,812;
  • U.S. Pat. No. 9,275,388; U.S. Pat. No. 9,277,668;
  • U.S. Pat. No. 9,280,693; U.S. Pat. No. 9,286,496;
  • U.S. Pat. No. 9,298,964; U.S. Pat. No. 9,301,427;
  • U.S. Pat. No. 9,313,377; U.S. Pat. No. 9,317,037;
  • U.S. Pat. No. 9,319,548; U.S. Pat. No. 9,342,723;
  • U.S. Pat. No. 9,361,882; U.S. Pat. No. 9,365,381;
  • U.S. Pat. No. 9,373,018; U.S. Pat. No. 9,375,945;
  • U.S. Pat. No. 9,378,403; U.S. Pat. No. 9,383,848;
  • U.S. Pat. No. 9,384,374; U.S. Pat. No. 9,390,304;
  • U.S. Pat. No. 9,390,596; U.S. Pat. No. 9,411,386;
  • U.S. Pat. No. 9,412,242; U.S. Pat. No. 9,418,269;
  • U.S. Pat. No. 9,418,270; U.S. Pat. No. 9,465,967;
  • U.S. Pat. No. 9,423,318; U.S. Pat. No. 9,424,454;
  • U.S. Pat. No. 9,436,860; U.S. Pat. No. 9,443,123;
  • U.S. Pat. No. 9,443,222; U.S. Pat. No. 9,454,689;
  • U.S. Pat. No. 9,464,885; U.S. Pat. No. 9,465,967;
  • U.S. Pat. No. 9,478,983; U.S. Pat. No. 9,481,186;
  • U.S. Pat. No. 9,487,113; U.S. Pat. No. 9,488,986;
  • U.S. Pat. No. 9,489,782; U.S. Pat. No. 9,490,540;
  • U.S. Pat. No. 9,491,729; U.S. Pat. No. 9,497,092;
  • U.S. Pat. No. 9,507,974; U.S. Pat. No. 9,519,814;
  • U.S. Pat. No. 9,521,331; U.S. Pat. No. 9,530,038;
  • U.S. Pat. No. 9,572,901; U.S. Pat. No. 9,558,386;
  • U.S. Pat. No. 9,606,581; U.S. Pat. No. 9,646,189;
  • U.S. Pat. No. 9,646,191; U.S. Pat. No. 9,652,648;
  • U.S. Pat. No. 9,652,653; U.S. Pat. No. 9,656,487;
  • U.S. Pat. No. 9,659,198; U.S. Pat. No. 9,680,282;
  • U.S. Pat. No. 9,697,401; U.S. Pat. No. 9,701,140;
  • U.S. Design Pat. No. D702,237;
  • U.S. Design Pat. No. D716,285;
  • U.S. Design Pat. No. D723,560;
  • U.S. Design Pat. No. D730,357;
  • U.S. Design Pat. No. D730,901;
  • U.S. Design Pat. No. D730,902;
  • U.S. Design Pat. No. D734,339;
  • U.S. Design Pat. No. D737,321;
  • U.S. Design Pat. No. D754,205;
  • U.S. Design Pat. No. D754,206;
  • U.S. Design Pat. No. D757,009;
  • U.S. Design Pat. No. D760,719;
  • U.S. Design Pat. No. D762,604;
  • U.S. Design Pat. No. D766,244;
  • U.S. Design Pat. No. D777,166;
  • U.S. Design Pat. No. D771,631;
  • U.S. Design Pat. No. D783,601;
  • U.S. Design Pat. No. D785,617;
  • U.S. Design Pat. No. D785,636;
  • U.S. Design Pat. No. D790,505;
  • U.S. Design Pat. No. D790,546;
  • International Publication No. 2013/163789;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2010/0265880;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0194692;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0332996;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0191684;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0231500;
  • U.S. Patent Application Publication No. 2014/0247315;
  • U.S. Patent Application Publication No. 2014/0263493;
  • U.S. Patent Application Publication No. 2014/0263645;
  • U.S. Patent Application Publication No. 2014/0270196;
  • U.S. Patent Application Publication No. 2014/0270229;
  • U.S. Patent Application Publication No. 2014/0278387;
  • U.S. Patent Application Publication No. 2014/0288933;
  • U.S. Patent Application Publication No. 2014/0297058;
  • U.S. Patent Application Publication No. 2014/0299665;
  • U.S. Patent Application Publication No. 2014/0332590;
  • U.S. Patent Application Publication No. 2014/0351317;
  • U.S. Patent Application Publication No. 2014/0362184;
  • U.S. Patent Application Publication No. 2014/0363015;
  • U.S. Patent Application Publication No. 2014/0369511;
  • U.S. Patent Application Publication No. 2014/0374483;
  • U.S. Patent Application Publication No. 2014/0374485;
  • U.S. Patent Application Publication No. 2015/0001301;
  • U.S. Patent Application Publication No. 2015/0001304;
  • U.S. Patent Application Publication No. 2015/0009338;
  • U.S. Patent Application Publication No. 2015/0014416;
  • U.S. Patent Application Publication No. 2015/0021397;
  • U.S. Patent Application Publication No. 2015/0028104;
  • U.S. Patent Application Publication No. 2015/0029002;
  • U.S. Patent Application Publication No. 2015/0032709;
  • U.S. Patent Application Publication No. 2015/0039309;
  • U.S. Patent Application Publication No. 2015/0039878;
  • U.S. Patent Application Publication No. 2015/0040378;
  • U.S. Patent Application Publication No. 2015/0049347;
  • U.S. Patent Application Publication No. 2015/0051992;
  • U.S. Patent Application Publication No. 2015/0053769;
  • U.S. Patent Application Publication No. 2015/0062366;
  • U.S. Patent Application Publication No. 2015/0063215;
  • U.S. Patent Application Publication No. 2015/0088522;
  • U.S. Patent Application Publication No. 2015/0096872;
  • U.S. Patent Application Publication No. 2015/0100196;
  • U.S. Patent Application Publication No. 2015/0102109;
  • U.S. Patent Application Publication No. 2015/0115035;
  • U.S. Patent Application Publication No. 2015/0127791;
  • U.S. Patent Application Publication No. 2015/0128116;
  • U.S. Patent Application Publication No. 2015/0133047;
  • U.S. Patent Application Publication No. 2015/0134470;
  • U.S. Patent Application Publication No. 2015/0136851;
  • U.S. Patent Application Publication No. 2015/0142492;
  • U.S. Patent Application Publication No. 2015/0144692;
  • U.S. Patent Application Publication No. 2015/0144698;
  • U.S. Patent Application Publication No. 2015/0149946;
  • U.S. Patent Application Publication No. 2015/0161429;
  • U.S. Patent Application Publication No. 2015/0178523;
  • U.S. Patent Application Publication No. 2015/0178537;
  • U.S. Patent Application Publication No. 2015/0178685;
  • U.S. Patent Application Publication No. 2015/0181109;
  • U.S. Patent Application Publication No. 2015/0199957;
  • U.S. Patent Application Publication No. 2015/0210199;
  • U.S. Patent Application Publication No. 2015/0212565;
  • U.S. Patent Application Publication No. 2015/0213647;
  • U.S. Patent Application Publication No. 2015/0220753;
  • U.S. Patent Application Publication No. 2015/0220901;
  • U.S. Patent Application Publication No. 2015/0227189;
  • U.S. Patent Application Publication No. 2015/0236984;
  • U.S. Patent Application Publication No. 2015/0239348;
  • U.S. Patent Application Publication No. 2015/0242658;
  • U.S. Patent Application Publication No. 2015/0248572;
  • U.S. Patent Application Publication No. 2015/0254485;
  • U.S. Patent Application Publication No. 2015/0261643;
  • U.S. Patent Application Publication No. 2015/0264624;
  • U.S. Patent Application Publication No. 2015/0268971;
  • U.S. Patent Application Publication No. 2015/0269402;
  • U.S. Patent Application Publication No. 2015/0288689;
  • U.S. Patent Application Publication No. 2015/0288896;
  • U.S. Patent Application Publication No. 2015/0310243;
  • U.S. Patent Application Publication No. 2015/0310244;
  • U.S. Patent Application Publication No. 2015/0310389;
  • U.S. Patent Application Publication No. 2015/0312780;
  • U.S. Patent Application Publication No. 2015/0327012;
  • U.S. Patent Application Publication No. 2016/0014251;
  • U.S. Patent Application Publication No. 2016/0025697;
  • U.S. Patent Application Publication No. 2016/0026838;
  • U.S. Patent Application Publication No. 2016/0026839;
  • U.S. Patent Application Publication No. 2016/0040982;
  • U.S. Patent Application Publication No. 2016/0042241;
  • U.S. Patent Application Publication No. 2016/0057230;
  • U.S. Patent Application Publication No. 2016/0062473;
  • U.S. Patent Application Publication No. 2016/0070944;
  • U.S. Patent Application Publication No. 2016/0092805;
  • U.S. Patent Application Publication No. 2016/0101936;
  • U.S. Patent Application Publication No. 2016/0104019;
  • U.S. Patent Application Publication No. 2016/0104274;
  • U.S. Patent Application Publication No. 2016/0109219;
  • U.S. Patent Application Publication No. 2016/0109220;
  • U.S. Patent Application Publication No. 2016/0109224;
  • U.S. Patent Application Publication No. 2016/0112631;
  • U.S. Patent Application Publication No. 2016/0112643;
  • U.S. Patent Application Publication No. 2016/0117627;
  • U.S. Patent Application Publication No. 2016/0124516;
  • U.S. Patent Application Publication No. 2016/0125217;
  • U.S. Patent Application Publication No. 2016/0125342;
  • U.S. Patent Application Publication No. 2016/0125873;
  • U.S. Patent Application Publication No. 2016/0133253;
  • U.S. Patent Application Publication No. 2016/0171597;
  • U.S. Patent Application Publication No. 2016/0171666;
  • U.S. Patent Application Publication No. 2016/0171720;
  • U.S. Patent Application Publication No. 2016/0171775;
  • U.S. Patent Application Publication No. 2016/0171777;
  • U.S. Patent Application Publication No. 2016/0174674;
  • U.S. Patent Application Publication No. 2016/0178479;
  • U.S. Patent Application Publication No. 2016/0178685;
  • U.S. Patent Application Publication No. 2016/0178707;
  • U.S. Patent Application Publication No. 2016/0179132;
  • U.S. Patent Application Publication No. 2016/0179143;
  • U.S. Patent Application Publication No. 2016/0179368;
  • U.S. Patent Application Publication No. 2016/0179378;
  • U.S. Patent Application Publication No. 2016/0180130;
  • U.S. Patent Application Publication No. 2016/0180133;
  • U.S. Patent Application Publication No. 2016/0180136;
  • U.S. Patent Application Publication No. 2016/0180594;
  • U.S. Patent Application Publication No. 2016/0180663;
  • U.S. Patent Application Publication No. 2016/0180678;
  • U.S. Patent Application Publication No. 2016/0180713;
  • U.S. Patent Application Publication No. 2016/0185136;
  • U.S. Patent Application Publication No. 2016/0185291;
  • U.S. Patent Application Publication No. 2016/0186926;
  • U.S. Patent Application Publication No. 2016/0188861;
  • U.S. Patent Application Publication No. 2016/0188939;
  • U.S. Patent Application Publication No. 2016/0188940;
  • U.S. Patent Application Publication No. 2016/0188941;
  • U.S. Patent Application Publication No. 2016/0188942;
  • U.S. Patent Application Publication No. 2016/0188943;
  • U.S. Patent Application Publication No. 2016/0188944;
  • U.S. Patent Application Publication No. 2016/0189076;
  • U.S. Patent Application Publication No. 2016/0189087;
  • U.S. Patent Application Publication No. 2016/0189088;
  • U.S. Patent Application Publication No. 2016/0189092;
  • U.S. Patent Application Publication No. 2016/0189284;
  • U.S. Patent Application Publication No. 2016/0189288;
  • U.S. Patent Application Publication No. 2016/0189366;
  • U.S. Patent Application Publication No. 2016/0189443;
  • U.S. Patent Application Publication No. 2016/0189447;
  • U.S. Patent Application Publication No. 2016/0189489;
  • U.S. Patent Application Publication No. 2016/0192051;
  • U.S. Patent Application Publication No. 2016/0202951;
  • U.S. Patent Application Publication No. 2016/0202958;
  • U.S. Patent Application Publication No. 2016/0202959;
  • U.S. Patent Application Publication No. 2016/0203021;
  • U.S. Patent Application Publication No. 2016/0203429;
  • U.S. Patent Application Publication No. 2016/0203797;
  • U.S. Patent Application Publication No. 2016/0203820;
  • U.S. Patent Application Publication No. 2016/0204623;
  • U.S. Patent Application Publication No. 2016/0204636;
  • U.S. Patent Application Publication No. 2016/0204638;
  • U.S. Patent Application Publication No. 2016/0227912;
  • U.S. Patent Application Publication No. 2016/0232891;
  • U.S. Patent Application Publication No. 2016/0292477;
  • U.S. Patent Application Publication No. 2016/0294779;
  • U.S. Patent Application Publication No. 2016/0306769;
  • U.S. Patent Application Publication No. 2016/0314276;
  • U.S. Patent Application Publication No. 2016/0314294;
  • U.S. Patent Application Publication No. 2016/0316190;
  • U.S. Patent Application Publication No. 2016/0323310;
  • U.S. Patent Application Publication No. 2016/0325677;
  • U.S. Patent Application Publication No. 2016/0327614;
  • U.S. Patent Application Publication No. 2016/0327930;
  • U.S. Patent Application Publication No. 2016/0328762;
  • U.S. Patent Application Publication No. 2016/0330218;
  • U.S. Patent Application Publication No. 2016/0343163;
  • U.S. Patent Application Publication No. 2016/0343176;
  • U.S. Patent Application Publication No. 2016/0364914;
  • U.S. Patent Application Publication No. 2016/0370220;
  • U.S. Patent Application Publication No. 2016/0372282;
  • U.S. Patent Application Publication No. 2016/0373847;
  • U.S. Patent Application Publication No. 2016/0377414;
  • U.S. Patent Application Publication No. 2016/0377417;
  • U.S. Patent Application Publication No. 2017/0010141;
  • U.S. Patent Application Publication No. 2017/0010328;
  • U.S. Patent Application Publication No. 2017/0010780;
  • U.S. Patent Application Publication No. 2017/0016714;
  • U.S. Patent Application Publication No. 2017/0018094;
  • U.S. Patent Application Publication No. 2017/0046603;
  • U.S. Patent Application Publication No. 2017/0047864;
  • U.S. Patent Application Publication No. 2017/0053146;
  • U.S. Patent Application Publication No. 2017/0053147;
  • U.S. Patent Application Publication No. 2017/0053647;
  • U.S. Patent Application Publication No. 2017/0055606;
  • U.S. Patent Application Publication No. 2017/0060316;
  • U.S. Patent Application Publication No. 2017/0061961;
  • U.S. Patent Application Publication No. 2017/0064634;
  • U.S. Patent Application Publication No. 2017/0083730;
  • U.S. Patent Application Publication No. 2017/0091502;
  • U.S. Patent Application Publication No. 2017/0091706;
  • U.S. Patent Application Publication No. 2017/0091741;
  • U.S. Patent Application Publication No. 2017/0091904;
  • U.S. Patent Application Publication No. 2017/0092908;
  • U.S. Patent Application Publication No. 2017/0094238;
  • U.S. Patent Application Publication No. 2017/0098947;
  • U.S. Patent Application Publication No. 2017/0100949;
  • U.S. Patent Application Publication No. 2017/0108838;
  • U.S. Patent Application Publication No. 2017/0108895;
  • U.S. Patent Application Publication No. 2017/0118355;
  • U.S. Patent Application Publication No. 2017/0123598;
  • U.S. Patent Application Publication No. 2017/0124369;
  • U.S. Patent Application Publication No. 2017/0124396;
  • U.S. Patent Application Publication No. 2017/0124687;
  • U.S. Patent Application Publication No. 2017/0126873;
  • U.S. Patent Application Publication No. 2017/0126904;
  • U.S. Patent Application Publication No. 2017/0139012;
  • U.S. Patent Application Publication No. 2017/0140329;
  • U.S. Patent Application Publication No. 2017/0140731;
  • U.S. Patent Application Publication No. 2017/0147847;
  • U.S. Patent Application Publication No. 2017/0150124;
  • U.S. Patent Application Publication No. 2017/0169198;
  • U.S. Patent Application Publication No. 2017/0171035;
  • U.S. Patent Application Publication No. 2017/0171703;
  • U.S. Patent Application Publication No. 2017/0171803;
  • U.S. Patent Application Publication No. 2017/0180359;
  • U.S. Patent Application Publication No. 2017/0180577;
  • U.S. Patent Application Publication No. 2017/0181299;
  • U.S. Patent Application Publication No. 2017/0190192;
  • U.S. Patent Application Publication No. 2017/0193432;
  • U.S. Patent Application Publication No. 2017/0193461;
  • U.S. Patent Application Publication No. 2017/0193727;
  • U.S. Patent Application Publication No. 2017/0199266;
  • U.S. Patent Application Publication No. 2017/0200108; and
  • U.S. Patent Application Publication No. 2017/0200275.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A printer, comprising: a set of printhead banks, wherein each of printhead banks in the set of printhead banks is operable to independently print an identical pattern with a different print quality on a media;a processor operable to: generate a strobe signal for each of the printhead banks in the set of printhead banks based on a quality factor, wherein the quality factor determines the print quality for each of the identical patterns on the media; andtransmit a corresponding strobe signal and data signal to a corresponding printhead bank of the set of printhead banks, wherein each of the set of printhead banks prints a set of identical patterns, each with different print quality, on the media.
  • 2. The printer according to claim 1, wherein the processor receives an indication of a preferred pattern based on the print quality.
  • 3. The printer according to claim 1, wherein the processor independently controls the quality factor associated with each strobe signal.
  • 4. The printer according to claim 2, wherein a selection of the preferred pattern is aided or automated by a scanner and processor software.
  • 5. The printer according to claim 2, wherein a placement of the printer in a normal print mode of operation causes the set of printhead banks to print on the media based on the quality factor corresponding to the preferred pattern.
  • 6. The printer according to claim 2, wherein the processor analyzes the selected preferred pattern and determines whether to tune the quality factor based on the print quality associated with the preferred pattern.
  • 7. The printer according to claim 6, wherein, if the processor decides to tune the quality factor, the processor generates another set of quality factors based on the preferred pattern as a seed.
  • 8. The printer according to claim 7, wherein the processor then proceeds to select same or another preferred pattern based on the another set of quality factors.
  • 9. The printer according to claim 2, wherein the processor modifies the quality factor based on an analysis of the print quality of the preferred pattern.
  • 10. A method, comprising: generating, by a processor of a printer, a strobe signal for each of printhead banks in a set of printhead banks operable to independently print an identical pattern with a different print quality on a media, wherein the strobe signal is generated based on a quality factor that determines a print quality for each of the identical patterns on the media; andtransmitting, by the processor of the printer, a corresponding strobe signal to a corresponding printhead bank of the set of printhead banks, wherein each of the set of printhead banks print a set of the identical patterns, each with different print quality, on the media.
  • 11. The method of claim 10, further comprising: receiving, by the processor of the printer, an indication of a preferred pattern based on the print quality.
  • 12. The method of claim 11, further comprising: modifying, by the processor of the printer, the quality factor based on an analysis of the print quality of the preferred pattern.
  • 13. The method of claim 12, further comprising: determining, by the processor of the printer, that the printer is operating in a normal printing mode; andcausing, by the processor of the printer, the set of printhead banks to print on the media based on the modified quality factor corresponding to the preferred pattern.
  • 14. The method of claim 11, further comprising generating, by the processor of the printer, another set of quality factors based on the preferred pattern as a seed.
  • 15. The method of claim 14, further comprising selecting, by the processor of the printer, same or another preferred pattern based on the another set of quality factors.
  • 16. The method of claim 15, wherein the selection is aided or automated by a scanner and processor software.
  • 17. The method of claim 10, wherein generating the strobe signal based on the quality factor further comprises, independently controlling, by the processor of the printer, the quality factor associated with the strobe signal.
US Referenced Citations (655)
Number Name Date Kind
5502468 Knierim Mar 1996 A
5745146 Durst et al. Apr 1998 A
6007175 Tanahashi Dec 1999 A
6283647 Konishi Sep 2001 B1
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8322811 Chandu et al. Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8774654 Kielland Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
D737321 Lee Aug 2015 S
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Wang Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9443123 Hejl Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9301427 Feng et al. Mar 2016 B2
D754205 Nguyen et al. Apr 2016 S
D754206 Nguyen et al. Apr 2016 S
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey May 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9360304 Chang et al. Jul 2016 B2
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390304 Chang et al. Jul 2016 B2
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
9411386 Sauerwein Aug 2016 B2
9412242 Van Horn et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van Volkinburg et al. Aug 2016 B2
9423318 Lui et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9487113 Schukalski Nov 2016 B2
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
20020191066 Bouchard Dec 2002 A1
20070063048 Havens et al. Mar 2007 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120194692 Mers et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130332996 Fiala et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140191684 Valois Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140285608 Oshiro Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150178685 Krumel et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150212565 Murawski et al. Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150220901 Gomez et al. Aug 2015 A1
20150227189 Davis et al. Aug 2015 A1
20150236984 Sevier Aug 2015 A1
20150239348 Chamberlin Aug 2015 A1
20150242658 Nahill et al. Aug 2015 A1
20150248572 Soule et al. Sep 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150261643 Caballero et al. Sep 2015 A1
20150264624 Wang et al. Sep 2015 A1
20150268971 Barten Sep 2015 A1
20150269402 Barber et al. Sep 2015 A1
20150288689 Todeschini et al. Oct 2015 A1
20150288896 Wang Oct 2015 A1
20150310243 Ackley Oct 2015 A1
20150310244 Xian et al. Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150312780 Wang et al. Oct 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160025697 Alt et al. Jan 2016 A1
20160026838 Gillet et al. Jan 2016 A1
20160026839 Qu et al. Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160179132 Harr et al. Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Linwood Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 DiPiazza et al. Jun 2016 A1
20160192051 DiPiazza et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggert et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160316190 McCloskey et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Geramine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van Horn et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170108838 Todeschinie et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 d'Armancourt et al. May 2017 A1
20170139012 Smith May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Jonas et al. Jul 2017 A1
20170193727 Van Horn et al. Jul 2017 A1
20170199266 Rice et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
Foreign Referenced Citations (1)
Number Date Country
2013163789 Nov 2013 WO
Related Publications (1)
Number Date Country
20190124230 A1 Apr 2019 US