Electrophotographic printing refers to a process of printing in which a printing substance (e.g., a liquid or dry electrophotographic ink or toner) can be applied onto a surface having a pattern of electrostatic charge. The printing substance conforms to the electrostatic charge to form an image in the printing substance that corresponds to the electrostatic charge pattern. An electrophotographic printer may use digitally controlled lasers to create a latent image in a charged surface of an imaging element such as a photo imaging plate (PIP). In this process, a uniform static electric charge is applied to the photo imaging plate and the lasers dissipate charge in certain areas creating the latent image in the form of an invisible electrostatic charge pattern corresponding to one “separation” of the image to be printed. An electrically charged printing substance, in the form of dry or liquid toner, is then applied and attracted to the partially-charged surface of the photo imaging plate, recreating a color separation, in the form of a layer of printing substance, of the desired image.
In certain electrophotographic printers, a transfer member, such as an intermediate transfer member (ITM) is used to transfer developed toner to a print medium. For example, a developed image, comprising toner aligned according to a latent image, may be transferred from a photo imaging plate to a transfer blanket of an intermediate transfer member. This transfer occurs via predominantly electrical and mechanical forces that exist between the charged toner and the intermediate transfer member which is often biased at a particular voltage level. Pure mechanical force, using zero electrical potential difference between the blanket of the intermediate transfer member and toner produces poor print quality. From the intermediate transfer member, the toner is transferred to a desired substrate, which is placed into contact with the transfer blanket.
At least two different methodologies may be used to print multi-color images on an electrophotographic printer. These involve the generation of multiple separations, in the form of multiple layers of a printing substance, where each separation is a single-color partial image. When these separations are superimposed, they result in the desired full color image being formed. In a first methodology, a color separation layer is generated on the photo imaging plate, transferred to the intermediate transfer member and is finally transferred to a substrate. Subsequent color separation layers are similarly formed and are successively transferred to the substrate on top of the previous layer(s). This is sometimes known as a “multi-shot” imaging sequence. In a second methodology, a “one-shot” imaging process is used. In these systems, the photo imaging plate transfers a succession of separations to the transfer blanket on the intermediate transfer member, building up each separation layer on the blanket. Once a predetermined number of separations are formed on the transfer blanket, they are all transferred to the substrate together.
Various features of the present disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate features of the present disclosure, and wherein:
In the following description, for purposes of explanation, numerous specific details of certain examples are set forth. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least that one example, but not necessarily in other examples.
As described herein, an example electrophotographic printer in the form of a liquid electrophotographic (LEP) printer comprises an imaging element such as a photo imaging member, which can be referred to as a photo imaging plate (PIP). The photo imaging plate may be implemented, for example, as a drum or a belt. A charging element charges the photo imaging plate and a latent image is generated on the photo imaging plate. At least one image development unit deposits a charged layer of printing fluid onto the photo imaging plate. In one example, each image development unit deposits a different colored layer of printing fluid onto the photo imaging plate. Those skilled in the art will appreciate that some areas of the photo imaging plate will be charged, and charge in some other areas will have been dissipated by the lasers in generating the latent image. The areas where the layer of printing fluid is applied will form the inked image and the remaining areas will be background areas which do not contain printing fluid. An example printing fluid in the form of liquid toner comprises ink particles and a carrier liquid. The ink or pigment particles are charged and may be arranged upon the photo imaging plate based on a charge pattern of a latent image. The inked image comprises ink particles that are aligned according to the latent image. In an example, the ink particles may be in the order of about 1-2 microns in diameter.
An intermediate transfer member (ITM) receives the inked image from the photo imaging plate and transfers the inked image to a print substrate. In order to transfer the image from the photo imaging plate to the ITM, the photo imaging plate and the ITM may engage one another and move relative to one another. For example, the photo imaging plate and the ITM may rotate relative to one another. In one example, the ITM is heatable. The ITM may comprise a drum or belt wrapped with a blanket. In an example, the ITM is supplied with a high voltage, such as +500V to +600V, in order for the first electrical transfer of printing fluid from the PIP to the blanket. A second transfer, from the blanket to a print substrate, takes place as the ink comes into contact with the substrate, owing to a temperature differential between the blanket, which has been heated, and the cooler substrate; the ink solidifies, sticks to the substrate and peels off the blanket, leaving the blanket clean and ready to accept a new ink layer. However, in the case of printing to a metallized substrate, electrostatic discharge issues can occur owing to the high voltage that is applied to the ITM drum.
In order to allow printing on a conductive substrate, cumbersome workarounds may be employed in comparative systems to prevent the occurrence of high voltage breakdown between the biased ITM and the substrate. These voltage breakdowns are exhibited as violent sparks on the substrate, which can damage it. Comparative solutions may involve the use of insulating ITM drum bearings which are expensive. Furthermore, these bearings have a short life span meaning difficult, regular maintenance is involved.
In order to mitigate such discharge issues, the high voltage applied to the ITM drum can be turned off when the second transfer is taking place. However, this is not practical when a “two-page” print is being carried out by the ITM, that is, when two separate images are being developed on separate portions of the ITM. In such a situation, two portions of the ITM are in different stages of image development at a given moment, and a first image cannot be transferred to a conductive substrate simultaneously to the ITM receiving a color separation of a second image from the PIP.
In the present examples, a sequence of separation printing, which includes “null” separations between ink color separations, allows a first transfer to take place when there is no print substrate in contact with the ITM blanket (and conversely, the print substrate is printed to during the null separation when there is no “first transfer” taking place between the PIP and the blanket). A null separation occurs when there is no transfer of a color separation from the PIP to the ITM blanket as the PIP and ITM move, e.g. rotate, relative to one another. For example, a null separation may involve a period where there is no latent image on the PIP or no image development unit is engaged with the PIP, such that no liquid toner is applied by the image development units. This is turn leads to a period where there is no developed image (e.g. in the form of a layer of ink) to transfer from the PIP to the ITM. The null separations are inserted to eliminate the electrostatic discharge issues noted above, while ensuring an efficient print cycle in a two-page print process. Such a print sequence can also take into account the rise and fall time of the high voltage power supply provided to the ITM, e.g. may allow the voltage to be reduced or turned off for longer than the exact substrate contact time.
According to the example of
In the described example, printing fluid such as ink is transferred onto the PIP 110 by at least one image development unit 120. An image development unit may also be referred to as a Binary Ink Developer (BID) unit. There may be one image development unit 120 for each ink color. During printing, the appropriate image development unit 120 is engaged with the PIP 110. The engaged image development unit 120 presents a uniform film of ink to the PIP 110. The ink contains electrically-charged pigment particles which are attracted to the opposing charges on the image areas of the PIP 110. The PIP 110 now has a single color ink image on its surface, i.e. an inked image or separation. In other implementations, such as those for black and white (monochromatic) printing, one or more ink developer units may alternatively be provided.
The ink may be a liquid toner, comprising ink particles and a carrier liquid. The carrier liquid may be an imaging oil. An example liquid toner ink is HP ElectroInk™. In this case, pigment particles are incorporated into a resin that is suspended in a carrier liquid, such as Isopar™. The ink particles may be electrically charged such that they move when subjected to an electric field. Typically, the ink particles are negatively charged and are therefore repelled from the negatively charged portions of PIP 110, and are attracted to the discharged portions of the PIP 110. The pigment is incorporated into the resin and the compounded particles are suspended in the carrier liquid. The dimensions of the pigment particles are such that the printed image does not mask the underlying texture of the print substrate, so that the finish of the print is consistent with the finish of the print substrate, rather than masking the print substrate. This enables liquid electrophotographic printing to produce finishes closer in appearance to offset lithography, in which ink is absorbed into the print substrate.
The ink is transferred from the PIP 110 to the ITM 130. The ITM 130 may also be known as a blanket cylinder or a transfer element and may take the form of a rotatable drum, belt or other transfer system. In the example of
Once the layer of liquid toner has been transferred to the ITM 130, it is transferred to a print substrate 145. This transfer from the ITM 130 to the print substrate may be deemed the “second transfer”, which takes place at a point of engage T2 between the ITM 130 and the substrate 145. The impression cylinder 140 can both mechanically compress the substrate 145 in to contact with the ITM 130 and also help feed the substrate 145. In one example, the impression cylinder 140 is grounded. The present electrophotographic printer is capable of printing on either conductive or non-conductive substrates. Non-conductive substrates may include: sheets of metal; metal-coated paper or cardboard; or substrates with metal areas or parts.
In an example, the ITM 130 is used as a “two-sided” or “two-page” intermediate transfer drum to develop two images on different portions of the ITM 130 at a time. Image development units 120 deposit respective first and second sequences of color separations onto the PIP 110. The ITM 130 has a first portion (an example of which is shown as portion A in
The print method may be a “one-shot” imaging process as described previously. The sequences are controlled so that, during the second transfer of the first developed image to a conductive substrate 145, there is no first transfer of a color separation of the second image from the PIP 110 to the ITM 130, and conversely, no image is printed to the conductive substrate when a first transfer of a color separation between the PIP 110 and the ITM 130 is taking place.
Controller 150, discussed in more detail below, controls part, or all, of the print process. A memory 160 may comprise a set of computer-readable instructions stored thereon to perform functions such as controlling a voltage 170, inserting a null separation 172, reducing a voltage 174 and transferring an image 176, as explained further below. Alternatively, these functions may be implemented in dedicated circuitry. For example, the controller 150 can control the voltage level applied by a voltage source 155, for example a power supply, to the ITM 130 in accordance with the rotation of the ITM 130. The ITM 130 voltage is selectively applied such that the ITM 130 receives each color separation from the PIP 110. The controller 150 inserts at least one null separation into the second sequence of color separations during the development of the second image. During a period for the null separation, the controller 150 controls the voltage source 155 to reduce the voltage applied to the ITM 130, and to transfer the first image to the conductive substrate 145. The voltage source 155 is reduced to a low enough voltage in order that electrostatic charging/discharging issues are not introduced when printing to the conductive substrate 145. The voltage source 155 may be reduced to approximately 0V, for example by turning off an associated power supply.
It will be appreciated that the controller 150 can also control any other, or all of the components of the printer 100, however connections between those elements and the controller are not shown in
Referring to
At time t7, block P1S4 indicates that the fourth separation of the first image is transferred onto the first portion of the ITM 130. As each image in this example has four color separations, the transfer of the first image onto the ITM 130 blanket is now complete, and the first image is ready to be transferred to the conductive substrate 145. As can be seen from
At time t8, the controller 150 inserts a null separation into the second sequence of color separations, so that no color separation transfer occurs between the PIP 110 and the ITM 130. During the null separation, the controller 150 also reduces the voltage applied by the voltage supply 155 to the ITM 130 to the LOW/OFF level. The second transfer of the first image (T-P1) from the ITM 130 to the conductive substrate (in this example, substrate A) can then take place during the null separation. A second null cycle can be introduced at time t9, because in the example of
As shown in
As shown by blocks P3S1-P3S4, a third image P3 can be developed on the first portion (blanket A) of the ITM 130 by receiving a third sequence of color separations from the PIP 110 after the first image P1 has been transferred to a conductive substrate. In this example, the term “substrate A” is used to show that the third image is developed from blanket A, that is, the first portion of the ITM 130; however, it should be appreciated that the third image may, in practice, be printed onto a different physical substrate to the substrate to which the first image P1 has been printed. During the development of the third image, at least one null separation is inserted by the controller into the third sequence of color separations. During a period of time for the null separation, the ITM 130 voltage is reduced and the second image P2 is transferred at block T-P2 to a second conductive substrate. The second conductive substrate may be separate to, or part of, the first conductive substrate. For example, the first and second substrates may be first and second portions, respectively, of a continuous web substrate. As shown in
Referring to
While certain examples have been described above in relation to liquid electrophotographic printing, other examples can be applied to dry electrophotographic printing.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that any feature described in relation to any one example may be used alone, or in combination with other features described, and may also be used in combination with any features of any other of the examples, or any combination of any other of the examples.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/012727 | 1/8/2018 | WO | 00 |