The present invention relates generally to printing presses and more specifically to web offset printing presses having removable sleeve-shaped blankets.
U.S. Pat. No. 4,240,346 describes for example a printing press with two blanket cylinders separable from each other to permit a blanket throw off.
In such presses, the blankets are offset from a vertical from each other, and in order to pass the web through the blankets when the blankets are offset, lead rolls or air bars are necessary to properly guide the web through the blankets. These guides can mark the printed product and also alter registration of the web between two printing print units, causes deteriorated print quality.
U.S. Pat. No. 5,678,485, hereby incorporated by reference herein, discloses a counterpoise and lift mechanism to permit a blanket cylinder to be cantilevered to permit a sleeve-shaped blanket to be slid on and off the cylinder body.
Semi-automatic or fully automatic plating (autoplating) mechanisms are known which permit plates to be attached to the plate cylinder. U.S. Pat. No. 5,495,805 for example is hereby incorporated by reference herein. The plate cylinder should be driven to permit such autoplating.
When throwing-off the blanket cylinder to permit axial removal of sleeves with a single motor drive unit, the blanket cylinder gears are disengaged so that autoplating of both plate cylinders using the single drive motor for the unit is not possible.
An object of the present invention is to permit a single drive motor to drive a print unit while still permitting a wide throw-off of the blanket and permitting autoplating.
The present invention provides a web offset print unit comprising:
a first plate cylinder;
a first blanket cylinder selectively in contact with the first plate cylinder;
a second blanket cylinder, the web passing between the first and second blanket cylinders, the second blanket cylinder and first blanket cylinder being selectively disengageable from the web in a throw-off position to permit the web to pass between the first and second blanket cylinders;
a second plate cylinder selectively engageable with the second blanket cylinder; and
a single drive motor driving the first plate cylinder, first blanket cylinder, second blanket cylinder and second plate cylinder when the first and second blanket cylinders engage the web; and capable of rotating the first and second plate cylinders when the first and second blanket cylinders are in the throw-off position.
The first and second plate cylinders thus can be autoplated using the drive motor.
Preferably, the first and second plate cylinders each have an associated autoplating unit.
The present invention provides a web offset print unit comprising:
a first plate cylinder;
a first plate gear fixedly connected to the first plate cylinder;
a first blanket cylinder selectively in contact with the first plate cylinder;
a first blanket gear fixedly connected to the first blanket cylinder;
a second blanket cylinder, the web passing between the first and second blanket cylinders, the second blanket cylinder and first blanket cylinder being selectively disengageable from the web in a throw-off position to permit the web to pass between the first and second blanket cylinders;
a second blanket gear fixedly connected to the second blanket cylinder;
a second plate cylinder selectively engageable with the second blanket cylinder;
a second plate gear fixedly connected to the second plate cylinder;
a single motor driving the first plate gear, first blanket gear, second blanket gear and second plate gear, the first blanket gear and second blanket gear being engaged when the first and second blanket cylinders engage the web; and
an at least one further gear connecting the first plate gear and the second plate gear in the throw-off position, the first and second blanket gears being disengaged in the throw-off position, the single motor driving the first plate gear, second plate gear and at least one further gear when the first and second blanket cylinders are in the throw-off position.
The at least one further gear may include two further gears, and may be engaged solely during throw-off or during both throw-off and when the web is engaged by the first and second blanket cylinders.
The present invention also provides a method for autoplating a first and a second plate cylinder of an offset print unit, the offset print unit also having a first and second blanket and a single drive motor, the method comprising the steps of throwing-off the first blanket cylinder from the second blanket cylinder to permit the web to pass between the first and second blanket cylinders without contact so as to define a throw-off mode, removing the first plate cylinder from the first blanket cylinder and the second plate cylinder from the second blanket cylinder during throw-off mode to permit changing a first blanket on the first blanket cylinder and a second blanket on the second blanket cylinder, respectively, contacting the first plate cylinder with the first blanket cylinder during throw-off mode to permit the first plate cylinder to be rotated by the single drive motor, and contacting the second plate cylinder with the second blanket cylinder during throw-off mode to permit the second plate cylinder to be rotated by the single drive motor.
The blanket cylinders 44, 46 for each print unit may be thrown-off, as shown for units 22 and 24, so as to separate from each other and from the respective plate cylinder 42, 48. Plate cylinders 42, 48 may move back into contact with the blanket cylinders 44, 46, respectively, during an automatic plate change operation, for example via automatic plate changers 40 and 50, respectively. Automatic plate changers are described in U.S. Pat. Nos. 6,053,105, 6,460,457 and 6,397,751 and are hereby incorporated by reference herein.
A throw-off mechanism 60 is shown schematically for moving the blanket and plate cylinders 42, 44, 46, 48. Preferably, each print unit is driven by a single motor 172. Each print unit 10, 12 . . . 24 may be the same. The individual motors may be controlled by a common control unit 200, which can also control each throw-off mechanism and each autoplating unit for the entire press.
The web path length between the nip rollers 32, 34 advantageously need not change, even when one of the print units has blanket cylinders which are thrown off. Registration may be unaffected by the throw-off. In addition, no web deflectors or stabilizers are needed, such as lead rolls or air rolls to make sure the web does not contact the blankets 44, 46, which could cause marking.
The throw-off distance D preferably is at least 1 cm and most preferably at least 2.5 cm, i.e. that the web has 1.25 cm clearance on either side of the web. Moreover, the centers of the blanket cylinders 44, 46 preferably are in a nearly vertical plane V, which is preferably 10 degrees or less from perfect vertical. This has the advantage that the throw-off provides the maximum clearance for a horizontally traveling web.
The creation of the large throw-off distance D requires changes from normal gearing and is explained with an exemplary embodiment as follows:
While gears 72, 74, 76 and 78 are disengaged, gears 194 and 196 remain engaged, as shown also in
Autoplate units 40 and 50 thus can each function using a single drive motor even while the blanket cylinders 74 and 76 remain thrown-off.
This application claims priority to U.S. Provisional Application No. 60/670,187 filed Apr. 11, 2005, and hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60670187 | Apr 2005 | US |