Among the types of office equipment that consume power, printing devices have dynamic power use that may depend on a state of the printer (e.g., standby, warm up, scanning and printing). Moreover, printing devices may be comprised of numerous components that work in coordination to complete a print job.
Printing devices may handle a plurality of pages of printing media. Such printing devices may coordinate the transportation of the printing media within the printing device using various mechanisms. However, such printing devices may not meet current demands for media handling and power usage. Although the disclosure herein refers to “printing devices”, it is to be understood that the present disclosure applies equally to devices that do not print, such as “finishing devices”, among other examples.
Print zone coordination, according to the present disclosure, may allow switching between zones of the printing device separately. According to the present disclosure, a printing device may be divided up into subsystems which may be managed by a cooperative threading system referred to as fibers. The fibers may manage these zones, and wake up and execute when a page of print media is about to enter the respective zone. The fibers for each zone may return to an idle state once the page of print media has exited the zone. Print zone coordination, according to the present disclosure, may allow the printing device to handle multiple pages of print media at one time with minimal energy usage.
As illustrated in
The system 100 may include a threading coordination system 105 including the plurality of fibers to coordinate a print job through the plurality of printing zones 101 using the plurality of fibers 103. Although
Put another way, any time a fiber in system 100 is waiting on another component of system 100, such as another page to print, a motor to move, or another printing zone to switch to the active state, the waiting fiber allows other fibers to run while it waits. In such a manner, the waiting fiber waits in a ready state, does not take up central processing unit (CPU) resources, and allows execution of other processes in system 100. As such, the threading coordination system 105 may maintain a first printing zone among the plurality of printing zones 101 in an active state and a remainder of the printing zones 101 in a ready state. Moreover, the threading coordination system 105 may return the first printing zone, via the fibers in the first printing zone, to the ready state in response to a determination that another printing zone among the plurality of printing zones 101 is active. Examples are not limited to maintaining a single zone in an active state while the remainder are in a ready state. For instance, a plurality of the printing zones may be in the active state while the remainder are in the ready state. In such a manner, the system 100 may use less energy and less CPU resources.
The threading communication system 105 may coordinate switching between printing zones 101 using event flags that wake up the fibers 103 when the event flag is set. The event flags may be used to communicate between printing zones. That is, using the threading coordination system 105, an event flag associated with printing zone 101-2 may be set, which indicates that a print job will be arriving at printing zone 101-2. In response to the setting of the event flag of the printing zone 101-2, fiber 103-2 may be set to active and motors associated with printing zone 101-2 may initiate. In such a manner, the threading coordination system 105 may notify fibers associated with a second printing zone of an upcoming arrival of print media, and initiate motors in the second printing zone in response to the notification.
For instance, system 200 may include a duplex exit zone 211-1 and a duplex entry zone 211-2, both of which may be used to print in a duplex form. Zones 211-1 and 211-2 may be managed by fibers 213-1 and 213-2, respectively. Similarly, system 200 may include a deskew zone 211-2 and a printing zone 211-4. Moreover, system 200 may include a vertical zone 211-5 to pass the media in a vertical position within system 200, and an output zone 211-6 to feed the media to an output tray. Each of zones 211-3, 211-4, 211-5, and 211-6 may be managed by an associated fiber, 213-3, 213-4, 213-5, and 213-6, respectively.
Notably, system 200 may include more, fewer, and/or different zones than illustrated in
Moreover, the thread coordination system 205 may also include printing zones and associated fibers. For instance, the thread coordination system 205 may include a servicing zone 211-7, and an error zone 211-R, each managed by respective fibers 213-7 and 213-P, respectively. As used herein, the error zone refers to a portion of the threading coordination system that detects and reports errors within system 200. While
As described herein, each zone may be activated using the respective fibers as the print job proceeds through system 200. For example, during printing, image processing zone 211-4 may set itself to active to indicate to all other zones in system 200 that it is not ready to handle another page. Once the image processing zone 211-4 is ready to deliver the page to the next zone, e.g., the vertical zone 211-5, the image processing zone 211-4 may check the status of the vertical zone 211-5. If the vertical zone 211-5 is in a ready state, then the image processing zone 211-4 may notify the vertical zone 211-5 by setting an event flag in fiber 213-4, indicating to fiber 213-5 that the print job will be arriving at vertical zone 211-5 soon. The fiber 213-4 may coordinate this communication with thread coordination system 205. The image processing zone 211-4 may then initiate the movement of the print media to vertical zone 211-5, and the event flag of fiber 213-4 may be set back to the “ready” state from the “active” state, indicating that image processing zone 211-4 may once again accept print jobs. The event flag for fiber 213-4 may be set back to the ready state once the paper has left image processing zone 211-4, as detected by sensors within image processing zone 211-4. This process may continue, by passing print media through system 200, setting fibers to active or ready, using event flags.
Processor 321 may be one or more central processing units (CPUs), microprocessors, and/or other hardware devices suitable for retrieval and execution of instructions stored in machine-readable medium 323. In the particular example shown in
Machine-readable medium 323 may be any electronic, magnetic, optical, or other physical storage device that stores executable instructions. Thus, machine-readable medium 323 may be, for example, Random Access Memory (RAM), an Electrically-Erasable Programmable Read-Only Memory (EEPROM), a storage drive, an optical disc, and the like. Machine-readable medium 323 may be disposed within system 320, as shown in
Referring to
Instructions 329, when executed by a processor 321 may cause system 320 to identify a state of the second event flag, by the first printing zone. For example, the instructions 329 to identify the state of the second printing zone may include instructions to determine that the second printing zone is not in a ready state. In response to the determination that the second printing zone is not in the ready state, coordination of the print job may include not preceding the print job from the first printing zone to the second printing zone. In such instance, the first printing zone may send a wake signal to the second printing zone such that the second printing zone may move to the ready state and proceed with the print job. As such, instructions 331, when executed by a processor 321, may cause system 320 to coordinate a print job through the first printing zone and the second printing zone based on the state of the second printing zone. That is, if the second printing zone is in a ready state, the print job may proceed from the first printing zone to the second printing zone, as described in relation to
Although reference is made herein to moving a print job from a “first” printing zone to a “second” printing zone, examples are not so limited, and the same description applies to subsequent printing zones. For instance, in some examples, the system 320 may include instructions (not illustrated in
At 443, the method 440 may include setting a first printing zone among the plurality of printing zones to an active state using fibers associated with the first printing zone. As described in relation to
At 447, the method 440 may include setting a second printing zone among the plurality of printing zones to the active state using fibers associated with the second printing zone. That is, upon execution of the instructions associated with the first printing zone, an event flag may be set in the first printing zone, which indicates to the second printing zone that the print job will be arriving soon. As such, the method 440 may include setting the second printing zone to the active state by the first printing zone setting an event flag of the second printing zone. That is, in response to a wake signal received from the first printing zone, the event flag associated with the second printing zone (and the associated fibers) may be set to active, indicating that the second printing zone is now actively executing instructions to complete the print job.
In some examples, the method 440 may include returning the first printing zone to the initial state in response to the setting of the second printing zone to the active state. That is, once the print job has proceeded to a subsequent printing zone, the preceding printing zone may return to an initial or “ready” state, and thereby preserve CPU resources and energy.
In some examples, the method 440 may include initiating motors in a subsequent printing zone, in response to the setting of the printing zone in the active state. For example, the method may include initiating motors in a second printing zone in response to the setting of the second printing zone in the active state, as described herein.
In the foregoing detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how examples of the disclosure may be practiced. These examples are described in sufficient detail to enable those of ordinary skill in the art to practice the examples of this disclosure, and it is to be understood that other examples may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.
The figures herein follow a numbering convention in which the first digit corresponds to the drawing figure number and the remaining digits identify an element or component in the drawing. Elements shown in the various figures herein can be added, exchanged, and/or eliminated so as to provide a number of additional examples of the present disclosure. In addition, the proportion and the relative scale of the elements provided in the figures are intended to illustrate the examples of the present disclosure, and should not be taken in a limiting sense. As used herein, the designators “N”, “M”, “P”, and “R”, particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included with examples of the present disclosure. As used herein, “a number of” an element and/or feature can refer to one or more of such elements and/or features.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/051032 | 9/9/2016 | WO | 00 |