This application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2005-293335 filed on Oct. 6, 2005, Japanese Patent Application No. 2005-312313 filed on Oct. 27, 2005 and Japanese Patent Application No. 2005-312314 filed on Oct. 27, 2005, the disclosures of which, including specifications, drawings and claims are incorporated herein by reference in their entireties.
The present invention relates to a printer and a method of controlling the same.
As a printer for performing the printing on a printing medium, an ink jet printer for performing the printing by ejecting ink is well known. The ink jet printer of this type has a sheet detector for detecting a printing medium fed into the printer. Such a printer is disclosed in, for example, Japanese Patent Publication No. 2003-72964A (JP-A-2003-72964). The ink jet printer has a gap adjustment mechanism for adjusting a gap between an ink ejecting part for ejecting ink and a platen opposed to the ink ejecting part. Such a printer is disclosed in, for example, Japanese Patent Publication No. 2005-103835A (JP-A-2005-103835). The printer as disclosed in JP-A-2005-103835 has a gap detector for detecting the position of the ink ejecting part with respect to the platen. The sheet detector and the gap detector are optical detectors comprising a photo sensor having a light emitting element and a light receiving element, and a sensor lever for intercepting the light from the light emitting element to the light receiving element.
In recent years, the ink jet printer performs the printing on an optical disk such as a CD or a DVD, in addition to the printing sheet. The ink jet printer for performing the printing on the optical disk may have a disk tray on which the optical disk is laid, and a tray guide for guiding the disk tray into the inside of the printer. Such a printer is disclosed in, for example, Japanese Patent Publication No. 2005-125766A (JP-A-2005-125766). The printer as disclosed in JP-A-2005-125766 comprises a tray detector for detecting the presence or absence of a disk tray and a tray guide detector for confirming the open or closed condition of the tray guide. The tray detector and the tray guide detector are the mechanical detection devices having a contact switch with a switch lever and a sensor lever for pressing the switch lever.
Generally, a controller of the printer generates a control signal for judging the state of the printing medium to be detected, the ink ejecting part or the disk tray, based on an output signal from the sheet detector, the gap detector or the tray detector, and a predetermined threshold set to each output signal. For example, the controller of the printer generates a control signal S101 from an output signal S100 from the detector and a threshold range t100 having an upper threshold t101 and a lower threshold t102 is set to the output signal S100, as shown in
Herein, the internal components of the printer are likely to be charged due to the passage of the printing medium. Therefore, static electricity is likely to occur at a contact part of the contact switch or a terminal part of the photo sensor. In the case where the detector is the mechanical detection device, a chattering occurs immediately after switching of the contact. That is, an electrical noise caused by static electricity or chattering occurs in the output signal from the detector. For example, the electrical noise N100 occurs in the output signal S100 from the detector, as shown in
For example, a false judgment that the feeding of the printing medium is finished and the feeding of the next printing medium is started would be made. That is, the electrical noise N100 cause a false detection for the presence or absence of the printing medium fed into the inside of the printer.
To prevent this false detection, the printer is required to remove the influence of electrical noise occurring in the output signal. On the other hand, various detected objects may be detected in the printer. For example, there are various cases for feeding the printing medium into the inside of the printer, including a case for feeding consecutively plural sheets of printing medium into the inside of the printer to perform the continuous printing on plural sheets of printing medium, and a case for feeding only one sheet of printing medium into the inside of the printer to perform the printing on the only one sheet of printing medium. Therefore, even when the same configuration is uniformly employed to remove the influence of electrical noise, it may not be possible to fully prevent false detection depending on the detected object. The influence that the false detection of the detected object has on the overall control for the printer varies with the detected object. Therefore, it is not desirable to employ the same configuration uniformly to prevent the false detection of the state of detected object.
It is therefore an advantage of some aspects of the invention to provide a printer and a method of controlling the same, capable of generating a control signal for judging the state of detected object appropriately according to the configurational features of the detected object to be detected.
According to one aspect of the invention, there is provided a method of controlling a printer which comprises:
detecting the output signal;
detecting a timing signal indicative of a timing to judge the state of the printing medium; and
generating the control signal with at least two of:
The control signal may be generated with at least the first method in a case where printing is performed with respect to a plurality of printing media consecutively. The control signal may be generated with the second method in a case where printing is performed with respect to only one printing medium.
The control signal may be generated with the second method to detect a leading edge of the first one of the printing media.
The control signal may be generated with the second method to detect a trailing edge of the last one of the printing media.
The method may further comprise counting the first time period with a first cycle. The output signal may be detected with a second cycle different from the first cycle.
The second cycle may be a cycle of a PID control with respect to either a first motor operable to move a carriage mounting a print head adapted to performing the printing, or a second motor operable to transport the printing medium.
According to one aspect of the invention, there is also provided a method of controlling a printer which comprises:
detecting the first output signal;
detecting a first timing signal indicative of a first timing to judge the first state;
generating the first control signal with at least a first method, in which the first control signal is made valid when the level of the first output signal reaches the first threshold after the first timing signal is detected, and the first control signal is unchanged until when a first time period is elapsed from when the first control signal is made valid;
detecting the second output signal;
detecting a second timing signal indicative of a second timing to judge the second state; and
generating the second control signal with either one of:
The detected object may be a distance between a face of a print head from which liquid is ejected to perform the printing and a platen opposing the face and adapted to support the printing medium. The second control signal may be generated with the second method.
The detected object may be a tray member adapted to support a disk medium to be subjected to the printing, and fed into the printer. The second control signal may be generated with the second method.
The detected object may be a tray guide adapted to guide a tray member adapted to support a disk medium to be subjected to the printing. The second control signal may be generated with the fourth method.
According to one aspect of the invention, there is also provided a printer, comprising:
the control signal is generated with at least two of:
According to one aspect of the invention, there is also provided a printer, comprising:
The “printing medium” includes not only plain paper for use in the normal document printing, but also photographic paper for use in the photograph printing, a cardboard that is thicker than the plain paper or photographic paper, and a transparent film such as a seal or an OHP sheet.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Embodiments of the invention will be described below in detail with reference to the accompanying drawings.
A printer 1 according to one embodiment of the invention is an ink jet printer for performing printing on a printing sheet P or an optical disk D such as CD or DVD by ejecting ink. The printer 1 of this embodiment comprises a carriage 3 mounting a print head 2 for ejecting ink droplets, a carriage motor 4 for driving the carriage 3 in a primary scanning direction MS, a sheet feeding motor 5 for conveying the printing sheet P in a secondary scanning direction SS, a sheet feeding roller 6 connected to the sheet feeding motor 5, a platen 7 disposed so as to oppose a noble face (lower face of
The printer 1 comprises a hopper 11 on which the printing sheet P to be subjected to the printing is laid, a sheet feeding roller 12 and a separation pad 13 for feeding the printing sheet P laid on the hopper 11 into the inside of the printer 1, a sheet guide plate 30 for guiding a leading edge of the printing sheet P fed from the hopper 11 into the inside of the printer 1 to the sheet feeding roller 6, a sheet detector 14 for detecting the passage of the printing sheet P fed from the hopper 11 into the inside of the printer 1, and a sheet ejecting roller 15 for ejecting the printing sheet P from the inside of the printer 1, as shown in
Further, the printer 1 comprises a disk tray 85 on which the optical disk D is laid and two tray guides 86 for guiding the disk tray 85 into the inside of the printer 1, as shown in
The carriage 3 can be conveyed in the primary scanning direction MS by a guide shaft 17 supported on a support frame 16 fixed to the main chassis 8 and a timing belt 18. That is, the timing belt 18 has a part fixed to the carriage 3 (see
The print head 2 has arranged a plurality of nozzles, not shown. The print head 2 has disposed a piezoelectric element (not shown) having excellent response ability, which is one of the electrostrictive elements, to correspond to each nozzle, for example. More specifically, the piezoelectric element is disposed at a position in contact with a wall face forming an ink channel (not shown). And the print head 2 ejects the ink droplets from the nozzles disposed at the end part of the ink path because the wall face is pressed by the operation of this piezoelectric element. The ink cartridge 21 stores dye-based ink having excellent coloring property and producing excellent image quality, and pigment-based ink having excellent water-proof and light-proof properties, whereby the dye-based ink or the pigment-based ink is ejected from the print head 2.
The sheet feeding roller 12 is connected via a gear, not shown, to the sheet feeding motor 5, and driven by the sheet feeding motor 5. The hopper 11 is a plate-shaped member on which the printing sheet P can be laid, as shown in
The sheet feeding roller 6 is connected directly or via a gear, not shown, to the sheet feeding motor 5. The printer 1 is provided with a follower roller 23 for conveying the printing sheet P together with the sheet feeding roller 6, as shown in
The sheet detector 14 outputs an output signal according to the presence or absence of the printing sheet P. This sheet detector 14 comprises a detection lever 26 and a photo sensor 27, and is provided near the follower roller holder 24, as shown in
That is, when the leading edge of the printing sheet P fed into the inside of the printer 1 comes into contact with a lower end part of the detection lever 26 in the state as indicated by the dashed chain line in
The sheet ejecting roller 15 is disposed on the downstream side of the printer 1, and connected via a gear, not shown, to the sheet feeding motor 5. The printer 1 is provided with a follower roller 29 for ejecting the printing sheet P, together with the sheet ejecting roller 15, as shown in
The disk tray 85 goes into or out of the inside of the printer 1 from the front side, while printing on the optical disk D, as shown in
The printer 1 comprises a linear encoder 33 having a linear scale 31 and a photo sensor 32 as a position detector for detecting the position and speed of the carriage 3 in the primary scanning direction MS, as shown in
The photo sensor 32 making up the linear encoder 33 comprises a light emitter 41 and a light receiver 42, as shown in
The photo sensor 35 making up the rotary encoder 36 comprises a light emitter 81 and a light receiver 82, as shown in
The disk tray 85 is a box-shaped member on which a stage of the optical disk D is formed, as shown in
Also, a tray detector 89 for detecting that the disk tray 85 is fed into the inside of the printer 1 and two tray guide detectors 90 for detecting the state of the two tray guides 86 are provided on the front side of the printer 1, as shown in
The tray detector 89 is a mechanical contact switch composed of a switch lever 89a and a contact part 89b. In this tray detector 89, a contact point (not shown) of the contact part 89b is turned on, when the disk tray 85 is moved to the left in
The tray guide detector 90, like the tray detector 89, is a mechanical contact switch composed of a switch lever 90a and a contact part 90b. In this tray guide detector 90, when the tray guide 86 is in the state as indicated by the solid line in
The gap adjuster 70 moves the guide shaft 17 in the vertical direction relative to the support frame 16 by the cam mechanism, as shown in
As shown in
As shown in
The detection plate 76 is a disk-shaped member having a plurality of detection parts 76a to 76f extending outward in the circumferential direction, as shown in
In the gap adjuster 70, when the gap adjusting motor 73 is rotated, a driving force of the gap adjusting motor 73 is transmitted via the gear train 74 to the first follower gear 72, so that the guide shaft 17 and the eccentric cam 71 are rotated together with the first follower gear 72. When the eccentric cam 71 is rotated, the distance between the guide shaft 17 at the rotation center of the eccentric cam 71 and the fixing pin 75 is changed, so that the guide shaft 17 is moved up or down from the support frame 16. That is, the carriage 3 is moved up or down. A driving force of the gap adjusting motor 73 is transmitted via the gear train 74 to the second follower roller 78, so that the detection plate 76 is rotated integrally with the second follower gear 78.
In this embodiment, when any one of the detection parts 76a to 76f intercepts the light from the light emitter 83 toward the light receiver 84, the print head 2 is at the preset height. That is, when any one of the detection part 76a to 76f intercepts the light from the light emitter 83 toward the light receiver 84, the gap between the nozzle face of the print head 2 and the platen 7 is equal to the preset gap according to the thickness of the printing sheet P. For example, when the detection part 76e intercepts the light from the light emitter 83 toward the light receiver 84, the print head 2 is at the first height, as shown in
As shown in
The CPU 49 makes the arithmetic operations for executing a control program of the printer 1 stored in the ROM 50 or the non-volatile memory 53 and other necessary arithmetic operations. The ROM 50 stores the data required for the control program for controlling the printer 1 and the processings.
The RAM 51 temporarily stores the program in the course of execution by the CPU 49 and the data in the course of arithmetic operation. The CG 52 stores dot pattern data corresponding to a print signal inputted into the ASIC 54. The non-volatile memory 53 stores various kinds of data required to be retained after the power of the printer 1 is turned off.
The ASIC 54 controls various kinds of motor such as the carriage motor 4 and the sheet feeding motor 5 and the print head 2 via the motor controller 55 and the head driver 61. The cyclic output signals from the photo sensor 32 of the linear encoder 33 and the photo sensor 35 of the rotary encoder 36 are inputted into the ASIC 54, The ASIC 54 has a timer of 1 kHz and a timer of 1 MHz, both not shown That is, the ASIC 54 has a timer with a counting cycle of 1 msec and a timer with a counting cycle of 1 μsec.
An output signal from the sheet detector 14 is inputted into the ASIC 54, which generates a control signal for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 from the output signal that has been inputted and the threshold set for the output signal, Similarly, each output signal from the gap detector 79, the tray detector 89 and the tray guide detector 90 is inputted into the ASIC 54, which generates a control signal for judging the position of the print head 2, a control signal for judging the presence or absence of the disk tray 85, and a control signal for judging the state of the tray guide 86 from each output signal that has been inputted and the threshold set for each output signal. That is, in this embodiment, a part of the ASIC 54 is a control signal generator for generating a control signal for judging the state of the printing sheet P, the print head 2, the disk tray 85 and the disk guide 86 from each output signal outputted from the sheet detector 14, the gap detector 79, the tray detector 89 and the tray guide detector 90 and the threshold set for each output signal. Also, in this embodiment, a part of the ASIC 54 is a timing signal generator for outputting a timing signal for notifying the timing of judging the state of the printing sheet P, the print head 2 and the disk tray 85 of detected object to the control signal generator in generating the control signal. A method for generating each control signal and the timing signal will be described later in detail.
The motor controller 55 is a control circuit for controlling the speed of each of the carriage motor 4, the sheet feeding motor 5 and the gap adjusting motor 73. This motor controller 55 makes various arithmetic operations for the speed control of the carriage motor 4, the sheet feeding motor 5 and the gap adjusting motor 73, based on an operation instruction signal of the motor sent from the ASIC 54, and outputs a motor control signal to the sheet feeding motor driver 56, the carriage motor driver 57, the gap adjusting motor driver 58 and the tray motor driver 59 based on the arithmetic operation results. In this embodiment, as a method for controlling the carriage motor 4 and the sheet feeding motor 5, a PID control is adopted for controlling the current rotation speed of the carriage motor 4 or the sheet feeding motor 5 to converge into the target rotation speed by combining the proportional, integral and derivative controls. That is, in this embodiment, the motor controller 55 outputs a PID control signal based on the output signal from the linear encoder 33 to the carriage motor driver 57, and outputs a PID control signal based on the output signal from the rotary encoder 36 to the sheet feeding motor driver 56.
Specifically, the ASIC 54 generates the speed information signal or position information signal for the carriage 3 or the sheet feeding roller 6 based on the output signals from the photo sensors 32 and 35. The motor controller 55 outputs the PID control signal generated from the speed information signal or position information signal sent from the ASIC 54.
In the motor controller 55, the PID control signal outputted to the carriage motor driver 57 is generated at the control cycle (operation cycle) for the PID control according to the cycle of the output signal from the photo sensor 32. The control cycle for this PID control is 58.5 μsec, for example. Also, in the motor controller 55, the PID control signal outputted to the sheet feeding motor driver 56 is generated at the control cycle for the PID control according to the cycle of the output signal from the photo sensor 35. The control cycle for this PID control is 64 μsec, for example.
The sheet feeding motor driver 56 controls the driving of the sheet feeding motor 5 in accordance with a motor control signal from the motor controller 55. In this embodiment, as a control method for the sheet feeding motor 5, a PWM control, for example, is adopted, in which the sheet feeding motor driver 56 outputs a PWM drive signal. The carriage motor driver 57, the gap adjusting motor driver 58 and the tray motor driver 59 similarly control the driving of the carriage motor 4, the gap adjusting motor 73 and so on in accordance with a motor control signal from the motor controller 55. In this embodiment, the carriage motor 4 and the gap adjusting motor 73, like the sheet feeding motor 5, are controlled by the PWM control.
The head driver 61 drives the piezoelectric elements (not shown) of the print head 2, based on an operation instruction sent from the CPU 49 or the ASIC 54.
The bus 48 is a signal line connecting the above components of the controller 37. The CPU 49, the ROM 50, the RAM 51, the CG 52, the non-volatile memory 53 and the ASIC 54 are interconnected via this bus 48 so that the data can be sent or received between them.
The printer 1 as configured in the above way performs the printing on the printing sheet P in a state where the sheet feeding roller 6, the platen 7, the sheet guide plate 30 and the sheet ejecting roller 15 are placed in the position shown in
In the printer 1, when the printing is performed on an optical disk D, the sheet feeding roller 6, the platen 7, the sheet guide plate 30 and the sheet ejecting roller 15 descend from the state as shown in
When the printing is performed on the printing sheet P, the gap adjuster 70 adjusts the gap between the nozzle face of the print head 2 and the platen 7, as needed. For example, when the thickness of the printing sheet P is changed, it adjusts the gap between the nozzle face of the print head 2 and the platen 7. At the time of adjustment, the gap adjuster 79 outputs an output signal according to the position of the print head 2. And the printer 1 performs the predetermined control for the print head 2 or the sheet feeding roller 6, based on a control signal generated from this output signal.
Next, there will be subsequently described how to generate a control signal for judging the presence or absence of the printing sheet P fed into the inside of the printer 1, a control signal for judging the position of the print head 2, a control signal for judging the presence or absence of the disk tray 85 and a control signal for judging the state of the tray guide 86.
First, how to generate the control signal for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 will be described below. In this embodiment, how to generate the control signal during the continuous printing for performing the printing on a plurality of printing sheets P consecutively and how to generate the control signal during the one sheet printing for performing the printing on one sheet of printing sheet P are different. Further, during the continuous printing, how to generate the control signal for judging the leading edge of the first printing sheet P and the trailing edge of the last printing sheet P and how to generate the control signal for judging the leading edges of the second to the last printing sheets P and the trailing edges of the first to the second-last printing sheets P are different.
In the following, how to generate the control signal during the continuous printing will be described using an example of performing the continuous printing on three printing sheets P. In this embodiment, when the detection lever 26 intercepts the light from the light emitter 45 to the light receiver 46 as indicated by the dashed chain line in
Herein, every time the output signal S1 is changed from low level to high level, or from high level to low level, the electrical noise N1 to N6 of almost same magnitude occurs only once in the output signal S1 as shown in
The output signal S1 from the sheet detector 14 is set to a predetermined threshold t1, as shown in
The timing signal generator of the ASIC 54 outputs the timing signals F10 to F12 and F20 to F22 for notifying the timing for judging the leading edge and the trailing edge of the printing sheet P to the control signal generator. As shown in
In the case where the leading edge of the first printing sheet P is judged during the continuous printing, the control signal S11 is generated by a precedent reading method in which the control signal S11 is made valid when the output signal S1 outputted from the sheet detector 14 undergoes the level change of reaching the threshold range t1 by a predetermined number of times (in this case, once, or when the level change of firstly reaching the threshold range t1 occurs) after the timing signal (operation instruction signal to the sheet feeding roller 12) F10 is outputted, and the control signal S11 is not changed until the timing signal F20 becoming the next timing signal is outputted. That is, at a time point R1 when the level of the output signal S1 after the timing signal F10 is outputted becomes firstly higher than the lower threshold t12, the control signal S11 is changed from low level to high level, and not changed in level until the timing signal F20 is outputted, as shown in
Therefore, even when the noise N1 occurs in the output signal reaching the upper threshold t11 (becoming lower than the upper threshold t11) after the level of the control signal S11 is changed, the control signal S11 remains at high level, and is not changed in level. If the control signal S11 is not made valid at a time point R1 when the level of the output signal S1 is higher than the lower threshold t12, the control signal S11 undergoes the level change C1 due to the noise N1. And a false judgment is made that the feeding of the first printing sheet P is finished and the feeding of the second printing sheet P is started.
Similarly, in the case where the trailing edge of the last printing sheet P (the third sheet in the example as shown in
On the other hand, in the case where the trailing edge of the first to second-last printing sheets (first and second sheets in the example as shown in
Herein, a determination cycle for determining the level change of the output signal S1 after the timing signals F10 to F12 and F20 to F22 are outputted is a PID period that is an operation period of the PID control for the carriage motor 4 or the sheet feeding motor 5. When the PID period for the carriage motor 4 is employed as the determination cycle, the determination cycle is 58.5 μsec, for example. Also, when the PID period for the sheet feeding motor 5 is employed as the determination cycle, the determination cycle is 64 μsec, for example. The determination cycle is not limited to the PID period, but may be other control cycles.
The mask time period T is preferably determined in consideration of the maximum feeding speed of the printing sheet P in the printer 1 and the reaction speed of the photo sensor 27. That is, the mask time period T is preferably determined in consideration of the shortest time after the trailing edge of the printing sheet P gets out of the lower end of the detection lever 26 till the leading edge of the next printing sheet P comes in contact with the lower end of the detection lever 26, and the reaction speed of the photo sensor 27. With this configuration, even when the mask time period T is set up, the leading edge of the printing sheet P can be securely detected. For example, in this embodiment, the maximum feeding speed of the printing sheet P is 11.6 ips (inch per second); and the mask time period T is 20 msec.
The mask time period T is preferably 5 msec or more. A cause of occurrence of the electrical noise in the output signal S1 from the sheet detector 14 is the static electricity arising at the terminal part (not shown) of the photo sensor 27, and this electrical noise caused by the static electricity occurs in about 1 to 3 msec after the trailing edge of the printing sheet P gets out of the lower end of the detection lever 26 or after the leading edge of the printing sheet P comes in contact with the lower end of the detection lever 26. Accordingly, when the mask time period T is 5 msec or more, the control signal S11 can be generated by removing the influence of the electrical noise occurring in the output signal S1.
The mask time period T is counted by the timer of 1 kHz inside the ASIC 54. That is, in this embodiment, the determination cycle for determining the level change of the output signal S1 after the timing signal F11, F12, F20 and F21 is outputted is the control cycle for the PID control, as described above, whereas the mask time period T is not counted at the control cycle for the PID control, but counted by the timer of 1 kHz. More specifically, the level change of the output signal S1 is determined at the control cycle for the PID control till a time point R2 when the level of the output signal S1 reaches the upper threshold t11 after the timing signal F20 is outputted, and the timer of 1 kHz causes an interruption at a time point R2 when the upper threshold t11 is reached and counts the mask time period T. Also, when the counting of the mask time period T is finished (the mask time period T has elapsed), the level change of the output signal S1 is determined at the control cycle for the PID control again. In this embodiment, because the mask time period T is 20 msec, for example, the timer of 1 kHz is preferably employed to count the mask time period T, but the timer of 1 MHz may be employed to count the mask time period T, depending on the mask time period T.
Next, how to generate the control signal during the one sheet printing will be described below. The output signal S2 from the sheet detector 14 is set to a predetermined threshold range t1 having an upper threshold t11 and a lower threshold t12 in the same way as during the continuous printing, as shown in
In this embodiment, in the case where the leading edge or the trailing edge of the printing sheet P is judged during the one sheet printing, the control signal S21 is generated by the precedent reading method. That is, at a time point R5 when the level of the output signal S2 is firstly higher than the lower threshold t12 after the timing signal F30 is outputted, the control signal S21 is changed from low level to high level, and not changed in level until the timing signal F40 is outputted, as shown in
Next, how to generate the control signal for judging the position of the print head 2 will be described below, In the following, how to generate the control signal will be described using an example in which the position of the print head 2 is changed from a state where the detection part 76e intercepts the light from the light emitter 83 to the light receiver 84 (i.e., state where the print head 2 is at the first height) to a state where the detection part 76b intercepts the light from the light emitter 83 to the light receiver 84 (the height of the print head 2 at this time is made the fourth height), as shown in
In this embodiment, when the detection part 76e intercepts the light from the light emitter 83 to the light receiver 84, the gap detector 79 outputs an output signal of high level, and when the light receiver 84 receives the light from the light emitter 83, the gap detector 79 outputs an output signal of low level, as shown in
The output signal S3 from the gap detector 79 is set to a predetermined threshold range t3 having an upper threshold t31 and a lower threshold t32, as shown in
The timing signal generator of the ASIC 54 outputs a timing signal F50 for notifying the timing for judging the position of the print head 2 to the control signal generator. The timing signal F50 is an operation instruction signal for changing the height of the print head 2 to the gap adjusting motor 73.
In this embodiment, the control signal S31 for judging the position of the print head 2 is generated by the precedent reading method. That is, the control signal S31 is made valid when the output signal S3 outputted from the gap detector 79 undergoes the level change of reaching the threshold range t3 by a predetermined number of times after the timing signal (operation instruction signal to the gap adjusting motor 73) F50 is outputted, and the control signal S31 is not changed until the timing signal F50 becoming the next timing signal is outputted, as shown in
Specifically, when the detection plate 76 is rotated counterclockwise, for example, in accordance with an operation instruction signal (i.e., timing signal F50) to the gap adjusting motor 73, the detection part 76e gets out of a sensing area (between the light emitter 83 and the light receiver 84) of the photo sensor 77, and the detection parts 76f and 76a pass successively through the sensing area of the photo sensor 77, so that the detection part 76b intercepts the light from the light emitter 83 to the light receiver 84. Meanwhile, the output signal S3 outputted from the gap detector 79 is changed six times from high level to low level, and from low level to high level across the threshold range t3. That is, the output signal S3 undergoes the level change of reaching the threshold range t3 six times, and at a time point R7 when the output signal S3 undergoes the sixth level change of reaching the threshold range t3 after the timing signal F50 is outputted, the control signal S31 is changed from low level to high level and made valid, and not changed in level until the next timing signal F50 is outputted, as shown in
Next, how to generate the control signal for judging the presence or absence of the disk tray 85 will be described below. In this embodiment, the disk tray 85 is moved to the left in
The output signal S4 from the tray detector 89 is set to a predetermined threshold range t4 having an upper threshold t41 and a lower threshold t42, as shown in
The timing signal generator of the ASIC 54 outputs the timing signals F60 and F70 for notifying the timing for judging the presence or absence of the disk tray 85 to the control signal generator. The timing signals F60 and F70 are the operation instruction signals for feeding the disk tray 85 into the inside of the printer 1 to the tray motor. The timing signal F60 is the signal for notifying the timing for judging whether or not the disk tray 85 is fed into the inside of the printer 1 to the control signal generator, and the timing signal F70 is the signal for notifying the timing for judging whether or not the disk tray 85 is taken out of the inside of the printer 1 to the control signal generator.
In this embodiment, the control signal S41 for judging the presence or absence of the disk tray 85 is generated by the precedent reading method. That is, the control signal S41 is made valid when the output signal S4 outputted from the tray detector 89 undergoes the level change of reaching the threshold range t4 by a predetermined number of times (in this case, once, namely, when the level change of reaching the threshold range t4 is firstly made) after the timing signal (operation instruction signal to the tray motor) F60 is outputted, and the control signal S41 is not changed until the timing signal F70 becoming the next timing signal is outputted, as shown in
Likewise, the control signal S41 is made valid when the output signal S4 outputted from the tray detector 89 undergoes the level change of reaching the threshold range t4 for the first time after the timing signal F70 is outputted, and the control signal S41 is not changed until the timing signal F60 becoming the next timing signal is outputted, as shown in
Finally, how to generate the control signal for judging the state of the tray guide 86 will be described below. In this embodiment, the tray guide detector 90 outputs an output signal of high level, when the contact point of the contact part 90b is on, as shown in
The output signal S5 from the tray guide detector 90 is set to a predetermined threshold range t5 having an upper threshold t51 and a lower threshold t52, as shown in
In this embodiment, the control signal S51 for judging the state of the tray guide 86 is generated by a normal reading method. That is, every time the output signal S5 outputted from the tray guide detector 90 undergoes the level change of reaching the threshold range t5, the control signal S51 is changed from low level to high level, or from high level to low level, as shown in
As described above, in this embodiment, the control signal S11 for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 during the continuous printing is generated by the precedent reading method when judging the leading edge of the first printing sheet P and the trailing edge of the last printing sheet P, and generated by the mask reading method when judging the trailing edge of the first to second-last printing sheets P and the leading edge of the second or later printing sheets P. The control signal S21 for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 during the one sheet printing is generated by the precedent reading method. Further, the control signal S31 for judging the position of the print head 2 and the control signal S41 for judging the presence or absence of the disk tray 85 are generated by the precedent reading method. Therefore, even when the electrical noises N1 to N11 occur in the output signals S1 to 84 from each detector such as the sheet detector 14, it is possible to prevent the false detection of the state of the detected object (printing sheet P or print head 2) caused by the noises N1 to N11, as shown in
Before the leading edge of the printing sheet P comes in contact with the lower end of the detection lever 26 and the upper end of the detection lever 26 gets out of the part between the light emitter 45 and the light receiver 46, or before the trailing edge of the printing sheet P gets out of the lower end of the detection lever 26 and the detection lever 26 intercepts the light from the light emitter 45 to the light receiver 46, the possibility that the electrical noise occurs in the output signal S1, S2 from the sheet detector 14 is low. Therefore, when the leading edge of the first printing sheet P or the trailing edge of the last printing sheet P is judged during the continuous printing, or when the leading edge or trailing edge of the printing sheet P is judged during the one sheet printing, the control signal S11 or S12 is generated by the precedent reading method, whereby the leading edge and trailing edge of the printing sheet P can be judged appropriately.
On the other hand, if the control signal S11 for judging the trailing edge of the first to second-last printing sheets P and the leading edge of the second or later printing sheets P is generated by the precedent reading method during the continuous printing, it is difficult to appropriately judge the presence or absence of the printing sheet P because the detection lever 26 is frequently pivoted and the timing signal is frequently outputted, and because the time period after the trailing edge of the printing sheet P passes under the detection lever 26 till the timing signal F11 and F12 is outputted is short. For example, the output timing of the timing signal F11 may occur earlier than the occurrence timing of the noise N2 during the continuous printing, as shown in
However, in this embodiment, since the control signal S11 is generated by the mask reading method, the occurrence of false detection is prevented during the continuous printing, whereby the presence or absence of the printing sheet P fed into the inside of the printer 1 can be appropriately judged. That is, in the case where the control signal S11 is generated by the mask reading method, the mask time point R can be appropriately set in consideration of the time after the trailing edge of the certain printing sheet P passes under the sheet detector 14 till the leading edge of the next printing sheet P passes, whereby the presence or absence of the printing sheet P can be judged appropriately.
The frequency of changing the position of the print head 2 (i.e., the frequency of adjusting the gap between the nozzle face of the print head 2 and the platen 7) is not so high, and the timing signal F50 for notifying the judgment timing for the position of the print head 2 is outputted less frequently. Also, with the configuration of the gap adjuster 70, it is unlikely that the output signal S3 outputted from the gap detector 79 undergoes the level change of reaching the threshold range t3 by a predetermined number of times, and the electrical noise occurs before the control signal S31 is made valid. Therefore, the control signal S31 for judging the position of the print head 2 is generated by the precedent reading method, whereby the position of the print head 2 can be judged appropriately. The generation process for the control signal S31 where the control signal S31 for judging the position of the print head 2 is generated by the precedent reading method is simpler than where the control signal S31 for judging the position of the print head 2 is generated by the mask reading method.
Moreover, the frequency of detecting the presence or absence of the disk tray 85 is not so high, and the timing signals F60 and F70 for the disk tray 85 are outputted less frequently. Also, with the configuration of the disk tray 85, it is unlikely that the output signal S4 outputted from the tray detector 89 undergoes the level change of reaching the threshold for the first time, and the electrical noise occurs before the control signal S41 is made valid. Therefore, the control signal S41 for judging the presence or absence of the disk tray 85 is generated by the precedent reading method, whereby the presence or absence of the disk tray 85 can be judged appropriately. Also, when the control signal S41 for judging the presence or absence of the disk tray 85 is generated by the precedent reading method, the generation process for the control signal S41 is simplified.
Thus, in this embodiment, the control signal is generated by the method conforming to the configurational features of the detected object (the precedent reading method or the mask reading method) for preventing the false detection of the printing sheet P, the print head 2 and the disk guide 85. Accordingly, the control signal for judging the state of the detected object can be generated by the suitable method according to the configurational features of the detected object.
When the tray guide 86 is once set at the guide position of the disk tray 85 to perform the printing on the optical disk D, the position of the tray guide 86 is not changed until the printing on the optical disk D is finished. That is, the frequency of changing the position of the tray guide 86 is low. Also, it is uncommon that the control signal for judging the state of the tray guide 86 is used as a trigger to perform the continuous operation such as a series of printing operations. Therefore, the position of the tray guide 86 can be judged appropriately by generating the control signal S51 for judging the position of the tray guide 86 by the normal reading method. The generation process for the control signal S51 is simplified by generating the control signal S51 for judging the position of the tray guide 86 by the normal reading method
In this embodiment, the ASIC 54 has the timer of 1 kHz and the timer of 1 MHz for counting the mask time period T in generating the control signal S11 by the mask reading method. Therefore, the mask time period T can be counted by the timer operating at the appropriate frequency (period) according to the mask time period T. As a result, the counting process for the mask time period T is simplified. That is, when the mask time period T of 20 msec is counted at the control cycle for the PID control of 64 μsec, the counting process for the mask time period T is complicated, but when the mask time period T of 20 msec is counted by the timer of 1 kHz in which the counting cycle is 1 msec, the counting process for the mask time period T is simplified.
Also, in this embodiment, the determination cycle for the level change of the output signal S1 after the timing signal F20, F21, F11 and F12 is outputted is the control cycle for the PID control of the sheet feeding motor 5. Therefore, the level change of the output signal S1 for judging the presence or absence of the printing sheet P can be determined at the appropriate period. That is, the appropriate control cycle can be chosen as the determination cycle for the level change of the output signal S1, irrespective of the counting cycle for the timer of 1 kHz or 1 MHz, whereby the presence or absence of the printing sheet P fed into the inside of the printer 1 can be appropriately judged based on the level change of the output signal S1 determined at the appropriate determination cycle.
Particularly, in this embodiment, the determination cycle for the level change of the output signal S1 is the control cycle for the PID control of the sheet feeding motor 5. Therefore, the control cycle for the PID control of the sheet feeding motor 5 easily available as the determination cycle can be employed, whereby the determination process for the level change of the output signal S1 is simplified.
Although only some exemplary embodiments of the invention have been described in detail above, those skilled in the art will readily appreciated that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the invention.
In the above embodiment, the precedent reading method, the mask reading method and the normal reading method are employed to generate the control signals S11 to S51. In addition, a control signal S61 for judging the state of a predetermined detected object may be generated by a follow-up reading method in which the control signal S61 is made valid based on the last level change of reaching the predetermined threshold range t6 having an upper threshold t61 and a lower threshold t62 in the output signal S6 from the detector within a predetermined time period T10 after the timing signal F100 is outputted (i.e., the control signal S61 is made valid at high level, when the last level change of the output signal S6 is rising, or the control signal S61 is made valid at low level, when the last level change of the output signal S6 is falling), and the control signal S61 is unchanged until the next timing signal F100 is outputted, as shown in
That is, the control signal S61 may be generated such that at a time point R10 when the output signal S6 from the detector reaches the threshold range t6 lastly within a predetermined time period T10 after the timing signal F100 is outputted, the control signal S61 is changed from low level to high level, and not changed in level until the next timing signal F100 is outputted. When the control signal S61 is generated in this way, the control signal S61 is not changed in level even though the noise N14 occurs in the output signal S6 before the last level change of reaching the threshold range t6. Therefore, with the configuration of the detected object, when it is unlikely that the electrical noise occurs after the state of the detected object is changed, the state of the detected object can be appropriately judged when the control signal S61 is generated by the follow-up reading method. Also, when the control signal S61 is generated by the follow-up reading method, the final state of the detected object can be confirmed.
In the above embodiment, the control signal S21 for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 during the one sheet printing is generated by the precedent reading method. However, the control signal S21 may be generated by the mask reading method.
In the above embodiment, the control signal S11 for judging the presence or absence of the printing sheet P fed into the inside of the printer 1 during the continuous printing is generated by the precedent reading method when the leading edge of the first printing sheet P and the trailing edge of the last printing sheet P are judged. However, the control signal S11 may be generated by the mask reading method.
Further, the control signal S31 for judging the position of the print head 2 or the control signal S41 for judging the presence or absence of the disk tray 85 may be generated by the mask reading method. In these cases, the ASIC 54 may be provided with the timer according to the predetermined mask time period, in which the mask time period is counted by this timer, and the determination cycle for the level change of the output signals S3 and S4 may be the predetermined control cycle other than the counting cycle of the timer.
In the above embodiment, the control cycle for the PID control of the sheet feeding motor 5 is used as the determination cycle for the level change of the output signal S1. However, the control cycle for the PID control of the carriage motor 4 may be used as the determination cycle for the level change of the output signal S1. Further, other control cycles for controlling the printer 1 may be used as the determination cycle for the level change of the output signal S1.
In the above embodiment, the ASIC 54 has the timer of 1 kHz and the timer of 1 MHz. However, the ASIC 54 may be provided with the timer with other cycle (frequency) in accordance with the mask time period T.
In the above embodiment, a part of the ASIC 54 serves the control signal generator. However, each of the sheet detector 14, the gap detector 79, the tray detector 89 and the tray guide detector 90 may comprise the control signal generator.
In the above embodiment, the threshold ranges t1 to t6 have the upper thresholds t11 to t61 and the lower thresholds t12 to t62, respectively. However, the threshold ranges t1 to t6 may be defined as one value.
In the above embodiment, at the time when the output signals S1 to S5 cross the upper thresholds t11 to t51 or the lower thresholds t12 to t52, the control signals S1 to S5 are changed in level. However, the control signals S1 to S5 may be changed in level when the state is satisfied continually for a predetermined time period since the output signals S1 to S5 cross the upper thresholds t11 to t51 or the lower thresholds t12 to t52.
In the above embodiment, the sheet detector 14 is the optical detector composed of the detection lever 26 and the photo sensor 27, and the gap detector 79 is the optical detector composed of the detection plate 76 and the photo sensor 77. However, the sheet detector 14 or the gap detector 79 may be a mechanical detector comprising a contact switch having a switch lever.
In the above embodiment, the tray detector 89 or the tray guide detector 90 is the mechanical contact switch comprising the switch lever 89a, 90a and the contact point 89b, 90b. However, the tray detector 89 or the tray guide detector 90 may be an optical detector.
In the above embodiment, the configuration of the invention has been described using an example in which the printer 1 is the ink jet printer for performing the printing by ejecting ink. However, the configuration of the invention may be applicable to the laser printer or other printers.
Number | Date | Country | Kind |
---|---|---|---|
2005-293335 | Oct 2005 | JP | national |
2005-312313 | Oct 2005 | JP | national |
2005-312314 | Oct 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5975666 | Kawaguchi | Nov 1999 | A |
7540586 | Naito | Jun 2009 | B2 |
20030142161 | Miura et al. | Jul 2003 | A1 |
20040036732 | Shoji | Feb 2004 | A1 |
20070019023 | Weast | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
05-155472 | Jun 1993 | JP |
10-315553 | Dec 1998 | JP |
11-180594 | Jul 1999 | JP |
A-2003-72964 | Mar 2003 | JP |
2004-018227 | Jan 2004 | JP |
A-2005-103835 | Apr 2005 | JP |
A-2005-125766 | May 2005 | JP |
2005-178268 | Jul 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070081181 A1 | Apr 2007 | US |