The present application claims priority from Japanese Patent Application No. 2013-118767, which was filed on Jun. 5, 2013, the disclosure of which is incorporated herein by reference in its entirety.
1. Field
The present disclosure relates to a printer and printing method that continually produces a plurality of printed matter, each comprising a print object.
2. Description of the Related Art
In the past, there have been known printers that continually produce a plurality of printed matter, each comprising a print object. According to such a printer (tape printing apparatus), print formation of the print object (characters and symbols) is performed by printing means (a thermal head) on a print-receiving tape (laminated film tape) fed by feeding means (connecting rollers), thereby continually producing a plurality of printed matter (labels), each comprising the print object. The print object includes a print identifier (number) that can be incremented in accordance with a predetermined regularity when the plurality of printed matter is continually produced.
Further, according to the prior art, the operator can set various settings related to the increment of the print identifier. That is, the operator can perform setup operations of the print identifier specification, the increment execution count, and the like when the print identifier is to be incremented.
Nevertheless, according to the prior art, in a case where a plurality of printed matter is produced while incrementing a print identifier using various modes as described above, no particular consideration is given to the cutting settings related to the plurality of printed matter. That is, only a setting whereby the print-receiving tape is cut after the entire plurality of printed matter has been continually formed (the entire plurality of printed matter has been formed as an integrated object) is prepared in a fixed manner, resulting in low convenience for the operator.
It is therefore an object of the present disclosure to provide a printer and a printing method capable of cutting a printed matter when a plurality of printed matter is produced while a print identifier is sequentially incremented at a cutting position corresponding to the increment and improving operator convenience.
In order to above-described object, according to the aspect of the present application, there is provided a printer comprising a feeder configured to feed a print-receiving tape; a printing-head configured to perform desired printing of a print object on the print-receiving tape fed by the feeder; and a cutter configured to cut the print-receiving tape on which printing has been performed by the printing-head; the printer being configured to continually produce a plurality of printed matter wherein the print object is respectively formed on the print-receiving tape in a predetermined order along a feeding direction of the feeder, and further comprising a print object receiving portion configured to receive an input operation for the print object which is disposed in at least one block that can be set in a tape length direction in relation to a single the printed matter and includes a print identifier that can be incremented in accordance with a predetermined regularity; an increment mode receiving portion configured to receive a setup operation for an increment mode when the print identifier of the print object is to be incremented; a cutting mode receiving portion configured to receive a setup operation for a cutting mode by the cutter at a boundary between two adjacent printed matter included in the plurality of printed matter, in accordance with the increment mode received by the increment mode receiving portion; and a printing control portion configured to control the feeder and the printing-head to generate a plurality of the printed matter in which is respectively formed the print object which includes the print identifier incremented in accordance with a reception result of the print object receiving portion and the increment mode receiving portion, and which is cut using the cutting mode received by the cutting mode receiving portion.
The following describes an embodiment of the present disclosure with reference to accompanying drawings.
As shown in
A main substrate (not shown) on which electronic elements (an IC chip and the like) constituting a control circuit 210 (refer to
As shown in
Further, a thermal head 23 that performs desired printing on the cover film 103 is disposed on the cartridge holder 9 so that it is positioned at an opening thereof when the cartridge 8 is mounted. The thermal head 23 comprises a plurality of heating elements 23a (refer to
The cartridge 8 comprises a housing 8A; a first roll 102 (actually in a spiral shape, but simply shown in a concentric shape in the figure) around which is wound a strip base tape 101, disposed inside this housing 8A; a second roll 104 (actually in a spiral shape, but simply shown in a concentric shape in the figure) around which is wound the transparent above described cover film 103 with substantially the same width as that of the above described base tape 101; a ribbon supply side roll 111 around which is wound the above described ink ribbon 105 (heat transfer ribbon, which is not required in a case of employing a thermal tape as the print-receiving tape); a ribbon take-up roller 106 configured to take up the ink ribbon 105 after printing; and a feeding roller 27 rotatably supported near a tape discharging portion of the cartridge 8.
The first roll 102 has the above described base tape 101 wound around a reel member 102a. The base tape 101, in this example, comprises a bonding adhesive layer, a base film, an affixing adhesive layer, and a separation sheet, which are layered in that order from the side rolled to the inside toward the opposite side. The second roll 104 has the above described cover film 103 wound around a reel member 104a.
The feeding roller 27 presses against the above described base tape 101 and the above described cover film 103 after print formation to adhere the two while feeding, thereby forming the above described label tape 109 with print, and feeds the obtained label tape 109 with print in the direction indicated by arrow A in
Further, a cutter 40 for cutting the label tape 109 with print in the thickness direction (hereinafter suitably referred to as a “full-cut”) is disposed on the downstream side of the feeding roller 27 and the pressure roller 28 along the feeding path of the label tape 109 with print. Furthermore, a half-cutter 40′ for partially cutting the label tape 109 with print in the thickness direction (hereinafter suitably referred to as a “half-cut”) is disposed on the downstream side of the cutter 40.
The control system of the print label producing apparatus 1 will now be described using
The roller driving circuit 209 controls the roller driving motor 208 that drives the above described feeding roller driving shaft 108 (refer to
The print-head driving circuit 205 distributes power to the heating elements 23a of the above described thermal head 23. That is, after the feeding of the label tape 109 with print is started by the driving force of the above described roller driving motor 208, the print-head driving circuit 205 controls the power distributed to the plurality of heating elements 23a corresponding to line print data (which divides the print data obtained from the control circuit 210 into single print line units) while switching the power distribution mode per the above described data.
The operation portion 2 inputs an operation signal from the key contacts disposed on the above described key substrate and closed in accordance with the operation of the keyboard 3 and the function key group 4. The control circuit 210 controls the print-head driving circuit 205, the roller driving circuit 209, the roller driving motor 208, the cutter solenoid driving circuit 300, the half-cutter solenoid driving circuit 300′, and the like via the control circuit 210, in accordance with the operation of the keyboard 3 and the function key group 4. Further, a display control signal is output from the control circuit 210 in accordance with the operation result of the operation portion 2, and the corresponding display is performed on the display portion 5.
Further, the control circuit 210 is a so-called microcomputer and, though not shown in detail, comprises a CPU which serves as the central processing unit, an ROM, a RAM, and the like. Then, the control circuit 210 performs predetermined processing in accordance with programs (including a print label producing program that executes the print label production flow shown in
In the print label producing apparatus 1 of the above described configuration, when the cartridge 8 is mounted to the above described cartridge holder 9, the cover film 103 and the ink ribbon 105 are sandwiched between the thermal head 23 and the platen roller 26, while the base tape 101 and the cover film 103 are sandwiched between the feeding roller 27 and the pressure roller 28. Then, the ribbon take-up roller 106 and the feeding roller 27 are synchronously rotationally driven along the directions denoted by arrow B and arrow C, respectively, in
Then, the above described base tape 101 and the above described cover film 103 on which printing has been completed are adhered by the above described feeding roller 27 and the pressure roller 28 so as to be integrated, thereby forming the label tape 109 with print, which is then fed to outside the cartridge 8 from the tape discharging portion. The ink ribbon 105, with which formation of the print object R on the cover film 103 has been completed, is then taken up onto the ribbon take-up roller 106 by the driving of the ribbon take-up roller driving shaft 107.
Subsequently, the cutter 40 or the half-cutter 40′ operates, fully cutting or half-cutting the label tape 109 with print at a predetermined length to form a print label L (refer to
Hence, the print label producing apparatus 1 is capable of continually producing a plurality of print labels in a preferred order along the feeding direction of the above described label tape 109 with print.
According to this embodiment, a plurality of blocks BL for arranging the above described print object comprising a character string, barcode, or the like is arranged in the tape length direction on the respective print labels L. Then, a single print object is disposed in the respective blocks. The example shown in
In the example shown, two blocks BL1a, BL1b are disposed on the print label L1, and the character “A” and the characters “001” are respectively disposed in the blocks BL1a, BL1b. Two blocks BL2a, BL2b are disposed on the print label L2, and the character “A” and the characters “002” are respectively disposed in the blocks BL2a, BL2b. Further, two blocks BL3a, BL3b are disposed on the print label L3, and the character “B” and the characters “001” are respectively disposed in the blocks BL3a, BL3b. Two blocks BL4a, BL4b are disposed on the print label L4, and the character “B” and the characters “002” are respectively disposed in the blocks BL4a, BL4b. Two blocks BL5a, BL5b are disposed on the print label L5, and the character “B” and the characters “003” are respectively disposed in the blocks BL5a, BL5b.
Further, as shown in
Further, the above described letters “A” “B” are incremented one by one from “A” for print labels L1, L2 of the label body LA to “B” for print labels L3, L4, L5 of the subsequent label body LB, in accordance with the production sequence of the label bodies LA, LB.
Then, according to this embodiment, when the print labels L1-L5 such as described above are produced, the various settings made by the operator that pertain to the increments of the above described character strings are received. At that time, in this embodiment, the operator can further set the cutting mode settings (the setting of the above described full-cut line FC and half-cut line HC; described later) corresponding to the above described increment related settings. In the following, details on the functions will be described in order.
First, when the operator performs a quantity setup operation for the above described blocks of a single print label (for example, “2” in this example; note that the number may differ from the number of blocks of the produced print label L due to the existence of the above described cutting mode settings as described later) via the keyboard 3 with a suitable initial settings screen (not shown) used for editing displayed on the liquid crystal display portion 2, the setup operation is received. Subsequently, when the operator performs an input operation for the print objects, which include the above described print identifiers respectively disposed in the above described received quantity of blocks, via the keyboard 3, the input operation is received. According to this embodiment, a setting image in relation to the single print label L is generated and displayed on the liquid crystal display portion 2 based on the above described reception result.
For example, in the example shown in
Then, according to this embodiment, the above described increment related settings made by the operator are set for the first block BLx. At this time, the range of print identifiers (a letter and number in this example) to be incremented that is specifiable by the operator is two. In other words, the operator can select at least one (that is, one or two) print identifier(s) to be incremented. Note that the message, “Set the various increment settings” is displayed in a setting instruction message area S1 above the above described setting image M1 on the liquid crystal display portion 2.
In this example, as shown in
Specifying the range as described above displays an increment mode specification area S2 in relation to the first increment target (displayed as “Range specification 1” in the figure), and an increment mode specification area S3 in relation to the second increment target (displayed as “Range specification 2” in the figure) on the left and right sides below the above described setting image M1 in this example, as shown in
In the example shown in
Hence, according to this embodiment, the increment count of one print identifier can be set to variable for each other print identifier. That is, in this example, when “Variable” is selected as the increment execution count in the above described increment mode specification area S3, an increment count setting screen S4 is displayed in the form of an interrupt window, as shown in
In the example shown in
When the respective increment interval and increment execution count settings of the characters “A” “B” of the setting image M1 are all completed as described above, a full-cut pattern setting area S7 in relation to the above described full-cut pattern setting is displayed as one of the cutting mode settings, as shown in
When the setting of the full-cut mode is completed as described above, a half-cut pattern setting area S9 in relation to the above described half-cut pattern setting is displayed as one of the cutting mode settings, as shown in
Then, with the selection of one of the two types of half-cut modes shown in the above described
The following describes the control steps in relation to the printing method executed by a CPU 44 of the label producing apparatus 1 for achieving the above described technique, using the flowchart of
In
First, in step S10, the control circuit 210 receives a quantity setup operation for the blocks in a single print label, performed by the operator via the operation portion 2 with the aforementioned initial settings screen used for editing displayed.
Subsequently, the flow proceeds to step S20 where the control circuit 210 receives an input operation for the print objects, such as a character string or the like (including the letters and numbers to be incremented), to be respectively disposed in the quantity of blocks (the two blocks BLx, BLy in the aforementioned example) received in the above described step S5, via the operation portion 2.
Subsequently, the flow proceeds to step S30 where the control circuit 210 generates the single setting image M1 wherein the quantity of blocks received in the above described step S5, respectively comprising the print objects received in the above described step S20, is arranged in the tape length direction.
Then, in step S40, the control circuit 210 outputs a control signal to the display portion 5 and displays the setting image M1 generated in the above described step S30 on the display portion 5 (refer to
Subsequently, the flow proceeds to step S50 where the control circuit 210 receives various setup operations related to the increment mode made by the operator via the operation portion 2. Note that the increment related setup operations for the print label that are received in this step S50 include, for example, setup of the print identifiers to be incremented (range setup; refer to
Subsequently, the flow proceeds to step S60 where the control circuit 210 receives settings related to the cutting mode (the full-cut mode by the cutter 40 and the half-cut mode of the half-cutter 40′). That is, the control circuit receives a setting (refer to
Then, in step S70, the control circuit 210 determines whether or not a predetermined label production instruction was input via the operation portion 2. Until the label production instruction is input, the condition of step S70 is not satisfied (S70: NO), and the flow loops back and enters a standby state. Once a label production instruction is input, the condition of step S70 is satisfied (S70: YES), and the flow proceeds to step S200.
In step S200, the control circuit 210 executes label production processing whereby the print label L corresponding to the increment mode and cutting mode received in the above described step S50 and step S60 is produced. The processing indicated in this flow then terminates here.
The detailed steps of the label production processing of the above described step S200 will now be described using
In
Subsequently, in step S210, the control circuit 210 outputs a control signal to the roller driving circuit 209 and starts the driving of the roller driving motor 208. As a result, the rotation of the platen roller 26 and the like is started, and the feeding of the cover film 103, the base tape 101, and the label tape 109 with print is started.
Subsequently, the flow proceeds to step S220 where the control circuit 210 determines whether or not the feeding direction position of the cover film 103 has arrived at a predetermined print start position by a known technique. Until the feeding direction position arrives at the print start position, the condition of step S220 is not satisfied (S220: NO), the flow returns to the above described step S210, and the same step is repeated. Once the feeding direction position arrives at the print start position, the condition of step S220 is satisfied (S220: YES), and the flow proceeds to step S230.
In step S230, the control circuit 210 outputs a control signal (print data) in accordance with the label of the sequential number corresponding to the value of the variable N at this moment when the print identifier is sequentially incremented based on the increment mode set in the above described step S150, to the print-head driving circuit 205. As a result, the thermal head 23 is driven in accordance with the above described print data, and formation of the print object corresponding to the print data is started on the cover film 103.
Then, in step S240, the control circuit 210 determines whether or not the feeding direction position of the cover film 103 has arrived at a desired print end position by a known technique. Until the feeding direction position arrives at the print end position, the condition of step S240 is not satisfied (S240: NO), and the flow loops back and enters a standby state. Once the feeding direction position arrives at the print end position, the condition of step S240 is satisfied (S240: YES), and the flow proceeds to step S250.
In step S250, the control circuit 210 outputs a control signal to the print-head driving circuit 205, and stops the driving of the thermal head 23 to terminate printing.
Subsequently, the flow proceeds to step S260 where the control circuit 210 determines whether or not the feeding direction position of the label tape 109 with print has arrived at the tape cutting position (the above described full-cut line FC or half-cut line HC) by a known technique. Until the feeding direction position arrives at the tape cutting position, the condition of step S260 is not satisfied (S260: NO), and the flow loops back and enters a standby state. Once the feeding direction position arrives at the tape cutting position, the condition of step S260 is satisfied (S260: YES), and the flow proceeds to step S270.
In step S270, the control circuit 210 outputs a control signal to the roller driving circuit 209 and stops the driving of the motor 208. As a result, the rotation of the platen roller 26 and the like stops, and the feeding of the cover film 103, the base tape 101, and the label tape 109 with print stops.
Then, in step S280, the control circuit 210 outputs a control signal to the cutter solenoid driving circuit 300 (or half-cutter solenoid driving circuit 300′), drives the cutter 40 (or the half-cutter 40′) via the cutter solenoid 280 (or half-cutter solenoid 280′), and fully cuts (or half-cuts) the label tape 109 with print. Subsequently, the flow proceeds to step S290. Note that the label tape 109 with print is fully cut or half-cut (or neither fully cut by the cutter 40 nor half-cut by the half-cutter 40′ according to the above described cutting mode setting), thereby producing the print label L of the sequential number corresponding to the value of the variable N at the moment.
In step S290, the control circuit 210 determines whether or not the value of the variable N has reached the maximum number Nmax. Until the value of the variable N reaches the maximum number Nmax, the condition of step S290 is not satisfied (S290: NO) and the flow proceeds to step S295. In step S295, the control circuit 210 adds 1 to the value of the variable N, the flow returns to the above described step S210, and the same steps are repeated. On the other hand, once the value of the variable N reaches the maximum number Nmax, the condition of step S290 is satisfied (S290: YES), and this routine is terminated. With the above, the above described Nmax print labels L are all produced.
Note that the present disclosure is not limited to the above described embodiment, and various modifications may be made without deviating from the spirit and scope of the disclosure. The following describes such modifications. Note that components identical to those in the above described embodiment are denoted using the same reference numerals, and descriptions thereof will be omitted or simplified as appropriate.
(1) when the Increment Counts of the Respective Print Identifiers of the Two Blocks are Set to “Fixed”
At this time, in this example, as shown in
As shown in
At this time, as the result of the aforementioned settings, the print of the character string “A 001” is formed on the print label L1, and the print of the character string “A 002” is formed on the print label L2 by techniques similar to those described above. Further, the print of the character string “B 001” is formed on the print label L3, and the print of the character string “B 002” is formed on the print label L4. Further, the print of the character string “C 001” is formed on the print label L5, and the print of the character string “C 002” is formed on the print label L6.
Further, the arrows shown in
Also note that the present disclosure is not limited to the steps shown in the flowchart of
Further, other than that already stated above, techniques based on the above described embodiment and the like may be suitably utilized in combination as well.
Although other examples are not individually described herein, various changes can be made according to the present disclosure without deviating from the spirit and scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2013-118767 | Jun 2013 | JP | national |