The present invention relates to a printer for printing a substrate, including a print unit and a supply unit for holding a substrate and delivering the substrate for transport to the print unit, wherein the supply unit is provided with a member for receiving a core on which the substrate is wound, whereby after reception by the member said core is functionally connected to a motor for rotatably driving the core, and a downstream transport nip for engaging and transporting an unwound part of the substrate. The transport nip is functionally connected to the motor for the purpose of being driven thereby.
In a printer of this kind, the transport of the substrate must, under all conditions, be very accurate, particularly when the printer builds up an image on the substrate from a set of sub-images which must adjoin one another accurately. However, it is often also necessary to wind the substrate back on the core, for example because a different substrate has to be printed or because the core with the substrate wound thereon must itself be completely replaced by a new type of substrate. In the above-mentioned printer the return movement of the substrate is often found to be accompanied by inaccuracies in the winding of the substrate on the core, and there also appears to be regular damage to the substrate, such as folds and the like. These inaccuracies and damage have a negative effect on the print quality when the substrate has to be unwound again from the core for printing.
The object of the present invention is to provide a printer with a drive for the core and transport nip which is inexpensive but nevertheless provides accurate transport of the substrate to the print unit and, if necessary, accurate winding of the substrate on the core. To this end, a printer has been invented whereby the transmission from the motor to the core and the nip, respectively, is such that on transport of the substrate to the print unit only the nip is actively driven by the motor and on the return of the substrate for winding thereof on the core both the core and the nip are actively driven by the motor, the core winding up as many meters of substrate per second as the nip returns.
In the present printer, during the unwinding of the substrate, only the nip is actively driven by the motor. The speed of transport of the substrate is thus determined by the speed that the nip imposes on the substrate. Since the substrate is still situated on the core upstream (considered in the direction of transport of said substrate), a pull is exerted on the substrate automatically during transport, the substrate being unwound from the core during this process. The core is not actively driven in these conditions by the motor but rotates freely. An accurate unwinding of the substrate can take place in this manner. During winding it has been found advantageous to drive both the core and the nip actively. A torque is transferred to both components of the printer by means of the motor. This prevents any slack from forming in the substrate by making the speed of winding on to the core equal to the speed of transport of the nip. It has been found that this can result in a very accurate winding of the substrate on the core, with practically no damage occurring to the substrate. Thus the wound substrate can be re-used in a printer for the printing thereof.
In one embodiment, the transmission comprises a freewheel bearing between the motor and the core such that during the transport of the substrate to the print unit the core is decoupled from the motor. The use of a freewheel bearing is a simple and reliable means of providing a break in the active drive between the motor and the core. The bearing is so mounted that practically no power from the motor is transmitted to the core during the unwinding of the substrate. On winding up, however, the bearing itself provides a direct coupling between the motor and the core.
In one embodiment, the ratio in the transmission from the motor to the core and the nip, respectively, on the return movement is such that if the nip and the core rotate freely the speed at which the substrate is wound on the core in meters of substrate per second is at all times greater than the speed that the nip imparts to the substrate. This embodiment provides for the core to tend to impose on the substrate always a higher speed than the nip, in principle, during the return movement of the substrate. In this way it is made certain that there is no slack in the substrate between the nip and the core during the return movement of the substrate. In a further embodiment, a slipping clutch is provided between the motor and the core to ensure that the actual speed of winding, i.e., the winding speed when the substrate is on the core and is engaged by its free end by the nip, is equal to the speed that the nip imposes on the substrate during the return movement. This embodiment has the advantage that no slip is imposed in the nip. The speed of the return movement is determined by the nip. The slipping clutch ensures that the transmission from the motor to the core is at least decoupled for a percentage, in fact such that the speed of winding of the substrate on the core is exactly equal to the speed of transport of the nip.
In one embodiment, a braking torque that counteracts rotation of the core is provided at least during the unwinding of the substrate. Using this braking torque can prevent the core—which may have a relatively high inertia due to the possible presence of a large amount of substrate—from still rotating for some time when the nip is no longer actively driven by the motor. If the core were in fact to continue to rotate for some time before completely stopping, then a slack of the substrate would be formed between the core and the nip, and this is disadvantageous for the further transport of the substrate if the nip is again driven. In a further embodiment, a braking torque is continuously applied to the core, for example by keeping a mechanical brake shoe pressed against the peripheral edge of the core. The advantage of this embodiment is that the continued rotation of the core can be counteracted under all circumstances.
In one embodiment, a second nip is provided downstream of the transport nip for engaging and transporting the substrate to the print surface. The second nip is provided with its own drive motor. It has been found that the transport of the substrate can, as a result, be even more accurate. In a further embodiment, the drive of the first transport nip is switched off if the substrate is engaged by the second nip. In this embodiment, the second transport nip therefore determines the speed of transport of the substrate to the print unit. In this embodiment, the first nip co-rotates since the substrate is also engaged by this nip. In yet another embodiment, the motor for driving the first transport nip is an electric motor which during the said switching-off does not form part of a closed electric circuit. This can be effected, for example, by electrically decoupling the terminals of the electric motor from the motor by the use of a switch. In this way it is possible to prevent the motor from acting as an electromechanical brake for the first nip during the co-rotation thereof.
In one embodiment, the speed of the substrate in meters per second during the return to the core is determined by the speed imposed on the substrate by the second nip. In this embodiment, at least as long as the substrate is engaged by both the first and second nip during the return movement to the core, the speed of the return movement is equal to the speed of transport of the second nip. The first nip is then, for example, decoupled from its drive by the use of a unidirectional bearing. However, as soon as the substrate leaves the second nip the speed of the return movement will again be determined by the first nip as indicated previously. The present invention also relates to a supply unit for a printer, particularly an inkjet printer.
The present invention will now be explained with reference to the following drawings, wherein,
The substrate leaving the supply unit 10, e.g., substrate 12 in this example, is engaged by transport elements 31 of the transport unit 30. Those transport elements transport the substrate via guide element 33 onto second transport elements 32 of the transport unit 30. The transport means 32 engages the substrate and transports it on to the print unit 40. Thus the printer is configured to print substrate 12. For configuration to print substrate 22, it is necessary in this case to wind substrate 12 back on the core 11 so that the free end finally leaves the transit path 13. Roller pair 15 still holds the substrate 12 fast. Substrate 22 can then be spooled over guide element 26 by the drive of the roller pair 25 until nip 31 is reached whereupon the latter takes over the drive for the substrate and spools the substrate onto nip 32 for conveyance to the print surface 42. The printer is then configured to print substrate 22.
The guide elements 16 and 26 are, in this example, rollers extending parallel to the transport means 15 and 31; 25 and 31, respectively. They are basically stationary rollers (i.e., they cannot rotate about their axial axis). The guide elements are so disposed in the supply unit that they can each rotate, at least through a limited angle, about an axis. In the drawing, the rotational axis 18 of element 16 is shown and also rotational axis 28 of element 26. These rotational axes are perpendicular to the axes of the guide elements and intersect the middle of these elements.
Guide element 33 of transport unit 30, which element extends substantially parallel to the transport means 31 and 32, is also so disposed that it can rotate about an axis perpendicular to the axial direction of the said element. Said axis is shown by reference 34 and intersects the middle of guide element 33. Since element 33 in this embodiment is a co-rotating roller, the substrate remains substantially stationary with respect to the surface of this guide element. Element 33 is also so suspended so that it can rotate about axis 35, which axis 35 extends parallel to the bisector 36 of the angle 2α over which the substrate is fed from means 31 to means 32. The axis 35 intersects the middle of the substrate web at a distance of about 1 meter from the guide element itself.
Guide element 33 is movable from a first position in which said element is situated in
The distance between the support members is such that a user can readily place a roll in the holder by substantially making the ends of the core coincide with the positions of the two support members. After the roll has been placed in the holder, it is automatically brought by a number of resilient elements (not shown) into a substantially fixed position with respect to the print surface.
The roll illustrated includes substrate 12 rolled on core 11. An electric motor 200 is provided which is operatively connected via a drive belt 201 to gearwheel 70 and wheel 205. Belt 201 is trained over tensioning element 202. When the electric motor is switched on a driving force is transmitted to the wheels 70 and 205. It is thus possible to drive the core 11 of the roll, which consists of said core and the substrate 12 wound thereon, and also wheel 20 connected to shaft 19 on which one roller of roller pair 15 is mounted. To transport the substrate 12 to print surface 42 (not shown) the free end of the substrate must be brought into the transport nip formed by roller pair 15, after which said roller pair is driven via a shaft 19. During transport through this nip to the print surface, no power from the electric motor is transmitted to the core since a unidirectional bearing (not shown) is used. When the substrate is spooled back to the core and rewound thereon, the core 11 and shaft 19 are driven. By means of a slipping clutch (not shown) between the core 11 and the electric motor 200, the winding speed at the roll is made equal to the speed of feed of the substrate at the roller pair 15.
The second transport nip 31 is connected to drive motor 350. During the transport of the substrate 12 in the indicated direction P the speed of transport is imposed by the nip 31. Nip 15 and core 11 are then not driven but rotate freely because tension is exerted on the substrate 12. During the return movement of the substrate the two motors are driven. In the situation illustrated, however, in which the substrate is located both in the nip 15 and in the nip 31, the coupling between nip 15 and motor 200 is interrupted by the use of a unidirectional bearing 253. In this way the nip 31 determines what is the speed of the return movement. The winding speed at the core using the slipping clutch is such that it is exactly equal to the speed of transport at the nip 31. As soon as the substrate leaves nip 31, coupling takes place between the motor 200 and the nip 15 so that the latter is again actively driven. Further winding takes place as indicated above.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1027494 | Nov 2004 | NL | national |