The present invention relates to printing machines, and particularly but not exclusively to printing machines using multiple printheads, for example of the drop-on-demand, inkjet variety having an array of nozzles for droplet ejection.
It is frequently desirable in drop on demand printing to align a plurality of printer components, typically printheads, to provide contiguous print swaths. Such alignment must be performed very accurately to minimise visible errors on the printed substrate. WO 01/60627 for example describes a method of aligning printheads using tapered screw fittings. Prior art methods of alignment can however be time consuming and/or require parts manufactured to extremely high tolerances.
The present invention seeks to provide an improved mounting arrangement and method for a printer component.
According to a first aspect therefore, there is provided a mounting arrangement for mounting a printer component to a substantially rigid base component, said arrangement comprising a foil member attached to one of the printer component or the base component, said foil including one or more mounting apertures, one or more mounting pins attached to the other of the printer component or the base component, said pins adapted to engage said apertures, wherein engagement of said mounting pins with said mounting apertures causes local deformation of said foil, said deformation providing a locating force on said pins so as to urge said printer component into alignment with said base component in a plane substantially parallel to said foil.
The foil is preferably between 0.1 mm and 0.5 mm in thickness, more preferably 0.25 mm in thickness. The foil can be of any material which gives the desired deformation properties, but is preferably metal, and preferably a beryllium copper alloy, or a bronze.
A second aspect of the invention provides a method for mounting a first printer component to a support, the method comprising, attaching to one of the printer component or the support a foil having one or more mounting apertures, arranging on the other of the printer component or the support one or more mounting pins adapted to engage said mounting apertures, inserting said mounting pins into said mounting holes, so as to locally deform said foil, allowing said local deformation to locate said component in a plane perpendicular to the direction of insertion, and rigidly securing said printer component to said support.
A second printer component can be mounted to the support in substantially the same way, to secure the first and second components in a fixed spatial relationship. In a preferred embodiment, a printer component can be removed from said support, and the same, or more usefully a replacement component mounted in its place, the replacement component being aligned with respect to the original component, to a high degree of accuracy, preferably +/−5 μm, more preferably +/−2 μm, and more preferably still to an accuracy of +/−1 μm. In an embodiment where the components are printheads mounted on a printbar, printheads can be replaced with sufficient accuracy to enable printing without further adjustment. This method allows printheads to be replaced quickly and easily, without complex alignment steps.
A third aspect of the invention provides a method for manufacturing a support for supporting one or more printer components, the method comprising the steps of providing on the support one or more foil members, each foil member including one or more mounting apertures for engaging with at least one printer component, inserting into at least one mounting aperture on each said foil a mounting pin adapted to engage with said aperture, positioning said one or more foils so as to align said pin or pins in a desired spatial configuration, and securing said foils to said support
The invention will now be described by way of example only with respect to the accompanying drawings in which
Referring to
It is desirable to be able to remove a printhead 10 from a mount 30 and replace it with another without having to undergo a separate procedure to re-align the replacement printhead with the other printheads in the mounting plate.
The elastic deflection of the foil, and the resulting locating forces provide alignment to a higher degree of accuracy than might be expected when considering the tolerances of the pins or the hole in the foil. This effect can be exploited in the arrangement shown in
In an alternative embodiment, shown in
It will be appreciated that a combination of the above embodiments could be employed, using two or more distinct foils, each foil adapted for mounting more than one printhead.
Detail of the pin assembly is shown in
Lands 95 accurately located a distance A below the top of the sleeve ensure that the foil is not deformed past its elastic limit. The taper T of the sleeve 90 is typically 5 degrees, resulting in a typical deflection of 0.2 to 0.3 mm of the foil. The print bar is typically 10 mm in thickness.
It has been found that the engagement of pins in a flexible foil as described above can produce alignment to accuracies of plus or minus 2 μm, and in some cases to accuracies of plus or minus 1 μm, or less. Stated differently, a component mounted to a base using such an engagement can be removed and repeatably re-mounted with a positional error of less than 2, or in some cases 1 μm.
These accuracies can be achieved even if the foil and pins themselves are manufactured to lower tolerances, provided that there is an interference fit sufficient to cause local deformation of the foil, resulting in turn in locating forces perpendicular to the direction of motion.
For example, if an aperture in a foil has a diameter of 5.80 mm, +/−0.10 mm, in order to ensure an interference, the diameter of the pin should be at least 5.90 mm. The pin could therefore be specified to a diameter of 5.95+/−0.05 mm. Etching would be a suitable manufacturing process for such components, since it is relatively easy to provide etched parts to tolerances of +/−0.050 mm. These exemplary dimensions and tolerances have been found to provide alignment to an accuracy of approximately +/−5 μm, or +/−0.005 mm. It can therefore be seen that the present invention provides a
coupling arrangement which provides alignment between the printer component and the base component with an accuracy approximately ten times greater than the accuracy with which the separate components of that arrangement are formed.
Considering the shape and configuration of the mounting apertures, it can be seen from
As also seen from
A further advantage of the present invention is that the pin and foil engagement arrangement does not constrain the component in the direction of insertion, that is, substantially perpendicular to the foil. This allows the remaining degrees of freedom to be constrained by abutment of lands 95 with the foil, without over-constraint from the pins.
Two such pins 40 positioned, e.g. at either end of a printhead nozzle array 110 as shown in
Moreover, as long as the foil is not deformed past its plastic limit, such positioning will be repeatable so that a printhead can be removed and a replacement installed in the same position, with a very high degree of accuracy, as noted above. If all printheads are manufactured with identical nozzle positioning relative to the alignment pins, e.g. using the alignment mechanism of the present invention, then the swath printed by the replacement printhead will also be accurately positioned relative to the swaths printed by the other printheads and image quality will be maintained.
It will be appreciated that the invention is not only applicable to the mounting of a printhead in a print bar 20, as described above, but may also be used in the mounting of multiple print bars in a printer and the like.
Number | Date | Country | Kind |
---|---|---|---|
0502440.1 | Feb 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/000422 | 2/7/2006 | WO | 00 | 9/21/2007 |