This patent application claims priority from European Patent Application Serial No. 07111445.8, filed Jun. 29, 2007.
This invention relates to the field of printing, and more particularly to the field of calibrating a printer.
The quality of pictures, imagery and text printed by a printer is highly dependent on the accuracy of the printer. Calibration processes are used to improve the accuracy of printers, and such calibration processes typically comprise a variety of methods and/or measurements which are undertaken during or directly following the manufacture of a printer.
It is a recognized issue that the amount of ink deposited by printers may be excessive for cheap and thin printing media. When the quantity of deposited ink is too high, media is deformed causing a waviness known as cockle. If cockle height or amplitude is greater than the physical space between the printhead of the printer and the media (for example, around 1.2 mm), the printhead nozzle plate may touch the media while printing, creating an ink smearing on the printout. In addition to causing a defect in the print quality, the nozzle plate may be scratched. Such scratches can create directionality and nozzle health problems because media particles can get inside the nozzles/scratches and block them.
For a better understanding of the invention, embodiments will now be described, purely by way of example, with reference to the accompanying drawings, in which:
a and 6b are exemplary interference patterns according to embodiments of the invention;
According to an embodiment of the invention, there is provided a method of calibrating a printer comprising: printing a reference pattern on the print media; depositing ink over at least a portion of the printed reference pattern; printing a test pattern over the deposited ink to form an interference pattern; and determining an ink density value that results in a maximum acceptable deformation of the print media based on a optical evaluation of the interference pattern.
Thus, there is provided a way to automatically optimize the amount of ink deposited by a printer onto media in order to control and/or reduce an amount of cockle in the media.
Embodiments use an interference pattern, the interference pattern being printed onto media and then scanned by a sensor. Results from the scan can be analyzed and used to calibrate a density or amount of ink that can be deposited on the print media. A specific calibration method has, for example, been disclosed in EP1211084, where an interference pattern is used for linefeed calibration of a printer. It should be understood that the interference pattern may be built differently in alternative embodiments, for example as described in EP1211084.
Referring to
The print media 20 is fed along a media axis denoted as the X axis. A second axis, perpendicular to the X axis, is denoted as the Y axis. The printhead reciprocates along a scan axis over print media 20 fed to the printer, wherein the scan axis is parallel to the Y axis.
The printhead also comprises an optical sensor 235 which is adapted to optically evaluate patterns and/or ink printed on media (either by the same printhead or a different printhead). The optical sensor 235 can therefore be used to evaluate interference patterns, for example, in order to obtain information regarding an amount of distortion and/cockle introduced into the print media.
The nozzles are the printing elements and, as such, define the swath height of the printhead. The swath height is the length L (represented in
An interference pattern as represented in
In a second pass of the printhead (otherwise referred to as a second printing pass), the printhead deposits ink from all of the nozzles over the printed reference pattern. In other words, the reference pattern is overprinted with a quantity of ink. This ink should provoke media deformations, such as cockle, making the parallel lines distort, wherein the amount of deformation depends on the amount or density of the ink deposited in the second printing pass.
The second printing pass can be a uniform deposition of ink over the full area of the base pattern, or it may be a pattern which overprints one or more portions of the base pattern.
In a third printing pass, a test pattern is printed over the interference pattern and the ink deposited in the second printing pass. The test pattern is a stair step pattern formed by stairs 410 to 415. Each stair comprises steps, the steps being printed by consecutive nozzles, the central step of each stair being printed by the nozzle having printed the corresponding line of the base pattern. This means that stair 410 is printed using nozzles 2 to 10. Only the central steps printed by nozzles 4 to 8 are represented in
If no media deformations are caused by the ink deposited in the second printing pass, the step printed by nozzle 6 will exactly overlap the line printed by nozzle 6, the step printed by nozzle 16 will exactly overlap the line printed by nozzle 16, and the step printed by nozzle 26 will exactly overlap the line printed by nozzle 26, etc. (as illustrated in
A lighter region of each interference pattern is created where steps of the stair are close to or align with the lines of the base pattern. The more there is an overlap between a line of the basic pattern and a step of the overlay pattern, the greater the area of unprinted space.
If the media is not deformed, all of the central steps will exactly overlap with the corresponding lines of the base pattern, therefore producing a straight lighter region in the middle of the interference pattern (as illustrated in
In practice, the ink deposited in the second printing pass may cause media deformation, thereby meaning that the central steps of the test pattern do not align with the lines of the base pattern. Such distortion or misalignment therefore means that other steps of the test pattern are closer to or align with the lines of the base pattern. The lighter region will therefore be distorted by an amount proportional to the media distortion.
Actual resulting interference patterns are illustrated in
The interference patterns show a wavy signal comprising light and dark zones. The lighter or brighter zones correspond to low media deformation areas (where the base and stair step patterns align or match, leaving large gaps between lines).
The waviness of the lighter region (i.e. the amplitude of the wavy lighter zone) in the interference plot varies with the amount of ink deposited on the media in the second printing pass. A larger wave amplitude indicates a greater amount of media deformation or cockle. The magnitude or amplitude of the waves can be analyzed and/or determined by scanning the interference pattern with an optical sensor. Such an optical sensor may be adapted to determine the maximum offset at which a lighter region occurs, for example.
It should be understood, however, that a sensor of a conventional printer may be used, such as a line sensor. Conventional printers comprise such sensors for other calibration processes such as alignment, close loop color, etc.
An optical evaluation of the interference pattern may therefore enable the determination of an ink density value that results in an acceptable deformation of the print media.
Of course, more than one interference pattern may be printed, wherein each interference pattern is printed with a differing amount/density of ink being deposited in the second printing pass. Each interference pattern may then be scanned to determine the amount of deformation that is produced for a given amount/density of deposited ink. Thus, an ink limit for a media may therefore be determined by establishing a density of ink that provides a maximum acceptable deformation in the media.
The maximum acceptable deformation for a printer typically depends on the Printhead to Paper Spacing (PPS). Typical PPS values for printers may range from 1.5 to 1.7 mm. For some mechanical variability reasons, maximum allowable media deformations for this PPS range are around 1.2 mm.
a and 6b show actual interference patterns produced with 24 picolitre (pl) (one picolitre being 1*10−12 liters) and 15 pl of ink deposited in the second printing pass, respectively, for a 600 dpi printhead. For ease of understanding each wavy lighter region is indicated by a dashed white line. Also, reference to 24 pl in this example, for instance, means depositing 24 pl of ink in a 1/600 by 1/600 inches square. Ink droplets deposited from a nozzle of a printhead may be 4 pl, 6 pl or 9 pl for example.
As seen in
If an acceptable level of cockle lies between 1.2 mm and 0.8 mm, say 1.0 mm, interpolation may be used to determine an ink limit. For example, linear interpolation would indicate that an ink limit of 19.5 pl may be set for a maximum acceptable level of cockle of 1.0 mm. Of course, other suitable interpolation methods may be used to ascertain an ink limit for a given media based on interference patterns produced by differing amounts/densities of ink deposited in the second printing pass.
A light area in the interference pattern does not mean a peak or a valley of the cockle. It is, instead, the position where the base and test patterns have an improved overlay, and this is used as an indirect measure of Printhead to Paper Space.
For example, referring to
For a better understanding, a method of calibrating a printer according to another embodiment will now be described with reference to
First, a reference pattern 600 is printed on a print media as illustrated in
Next, one or more swathes of ink 620 are deposited over the printed reference pattern 600, as illustrated in
A test pattern 630 is then printed over the deposited ink to form an interference pattern (as shown in
The lines of each row of the test pattern are spaced apart such that they have substantially the same spacing as the lines of the reference pattern. Further, the test pattern is printed such that the lines of the first row should substantially coincide with the lines of the reference pattern if the media is not deformed by the ink deposited in the second step of the method (i.e. no media cockle is present).
Thus, it will be appreciated that the test pattern is a stair step pattern, each stair comprising steps wherein a central step of each stair should correspond to a line of the reference pattern 600. If the position of a printed central step of a stair does correspond to that of a line of the reference pattern 600, it is determined that ink deposited in the second printing pass (i.e. after printing the reference pattern, but before printing the test pattern) has introduced a deformation in the print media. The distance by which such a central step is distorted or offset from the line of the reference pattern provides a measure of the deformation/cockle caused by ink deposited over the reference pattern.
Thus, an ink density value that results in an acceptable deformation of the printing media can be determined based on an optical evaluation of the printed interference pattern.
It will be appreciated that embodiments may automatically calculate an optimal amount of ink to avoid unacceptable levels of media cockle and the undesirable printing defects that unacceptable amount of cockle can create.
Embodiments therefore help to keep printhead nozzles from being scratched and/or damaged, so as to increase printhead lifetime and improve printing quality.
While specific embodiments have been described herein for purposes of illustration, various modifications will be apparent to a person skilled in the art and may be made without departing from the scope of the invention.
For example, more than one interference pattern may be printed on the same sheet of media, wherein each interference pattern is printed with a differing amount of ink being deposited over the reference pattern. In this way, the cockle caused by different ink amounts/densities for a given print media can be investigated without having to use multiple sheets of media.
Further, it should be understood that embodiments are not limited to printing an interference pattern in the direction of the media advance (i.e. the central light region extending along the x-axis). Alternative embodiments may print the pattern along the scan axis direction (i.e. the central light region extending along the y-axis.
Number | Date | Country | Kind |
---|---|---|---|
07111445.8 | Jun 2007 | EP | regional |