The present disclosure relates to ink jet printing and more particularly to a cleaning device to remove contaminants—i.e., ink and other debris—that accumulate during normal operation at undesirable locations on functional components of a binary array print head.
In the course of operating a binary array continuous ink jet printer, various components at or near the nozzle orifices will become contaminated with ink. Additionally, environmental conditions may also lead to the contamination of various components at or near the nozzle orifices. The current method to clean the contamination from the components is a manual operation requiring hands-on operator intervention. Procedures and work instructions can be defined for printer operators to document the steps necessary to clean the components. These steps usually involve manually rinsing the print head with a solvent wash bottle. However, these procedures not only require operator intervention, but additionally call for the operator to make subjective judgment calls regarding the cleaning time, the precise locations where cleaning fluid is applied, the volume of fluid required to clean, and the time allowed for evaporation or drying of the cleaning fluid. In production environments, particularly where the print head may limit net production throughput by stopping the production line altogether, the operator is often forced to clean and ready the print head as rapidly as is conceivable to ensure production quotas. Hence, operator variability can actually contribute to downtime when and operator fails to perform sufficient cleaning resulting in rework due to failures in the electrical components after restart or the increased frequency of head cleanings during production, i.e., by a factor of two or more.
In addition to the above reasons, there is a significant cost savings potential for end users to be able to reduce the total amount of operator time involved with running a binary array printer.
The ability to reliably and consistently clean the print head using a less arbitrary procedure with little or no user input allow longer and more consistent head cleaning cycles and increased overall production efficiency.
In one aspect, a method of cleaning a print head assembly comprising a print head and a cover includes removing the cover from the print head assembly. A cleaning unit includes a fluid chamber, a fluid intake port, and a fluid exit port. The cleaning unit is attached to the print head such that the fluid chamber surrounds a portion of the print head. A solvent is introduced into the fluid chamber to contact the print head. The solvent is allowed to clean the print head. The solvent is removed from the chamber.
In another aspect, a method of cleaning a print head includes providing a print head assembly. The print head assembly includes a print head. The print head includes an array of nozzles for ejecting droplets of ink, a nozzle face through which the droplets of ink are ejected, a charge electrode adjacent the nozzle face for charging selected droplets of ink, a ground plate opposite the charge electrode and adjacent the nozzle face, and a gutter for collecting droplets ejected form the array of nozzles. The print head cover is removed from the print head assembly. The charge electrode and the ground plate are displaced away from the nozzle face while allowing droplets of ink to be ejected from the array of nozzles. A cleaning unit includes first and second members including a plurality of fluid ejection holes. The cleaning unit is attached to the print head such that the first and second member are configured to eject solvent from the fluid ejection holes onto the nozzle face, gutter, charge electrode, and ground plate of the print head. The solvent is allowed to clean the print head.
In another aspect, a cleaning unit for a binary array printer includes a plurality of fluid chambers. Each fluid chamber is configured to receive a portion of the binary array printer. A fluid spraying device includes a plurality of nozzles and is disposed in each of the fluid chambers and positioned along a substantial length of the fluid chamber to spray fluid on the respective portion of the binary array printer. A fluid exit port is disposed in each of the fluid chambers.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The presently preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
The invention is described with reference to the drawings in which like elements are referred to by like numerals. The relationship and functioning of the various elements of this invention are better understood by the following detailed description. However, the embodiments of this invention as described below are by way of example only, and the invention is not limited to the embodiments illustrated in the drawings.
The present disclosure provides methods of cleaning a binary array print head to remove contaminants—e.g., either ink, dried ink or other debris. In particular, the methods use cleaning devices that are configured to reduce cleaning procedure variance in the cleaning process by automating some or all of the required operator steps.
The arms 42, 44 are moveable between an open and closed position.
During operation, ink tends to accumulate at and in the vicinity of the functional surfaces of the print head 20, including the nozzle face 50, the charge electrode 54, the ground plate 56, the jet bias plate, and the gutter 52. It should be noted that the nozzle face 50 is integral with the nozzle orifices (i.e., cleaning the nozzle face 50 may also clean the orifices particularly if the ink streams are not on). It is desirable to regularly remove such accumulation. It is further desirable to do such cleaning with minimal disturbance of the print head 20 and with a high degree of reproducibility such that each cleaning event is consistent and thorough.
A solvent 66 is introduced into the fluid chamber 68 to contact the elements of the print head 20 to facilitate the removal of contaminants. The solvent is left around the print head 20 for a period of time that is effective to clean the components of the print head 20. After the cleaning process is completed, the solvent is removed from the chamber 68, such as by exit port 64. Vacuum suction may be used to remove the solvent from the cleaning unit 60.
It should be noted that a simpler apparatus is also within the scope of the current invention which would simply include a cleaning unit with a static bath that is introduced around print head 20 and allowed to clean the contaminants in the manner as described above. In such an embedment, the fluid ports would not necessarily need to be present to remove the fluid from the chamber. The cleaning unit might also be part of the print head 20. The internal side walls of the print head cover 30 may include the side walls of the fluid chamber and the floor that retains the solvent may, for example be a temporary floor created by a sealable flap, inflatable member, or other temporary barrier that covers over the drop exit slot at the bottom of the cover.
After the solvent is removed from the chamber 68, the components of the print head 20 may be dried. The drying process may be accomplished through providing an air current passing over the print head components using an air source that preferably exhibits controlled water content. A preferred level of moisture or solvent is preferably less than 25 g/m3 and more preferably less than 15 g/m3. The air may furthermore be heated to facilitate the drying. Any air temperature is conceivable up to the flash point of the solvents used in the printer. The air may be provided from the same compressed air source that supplies the printer. The print head may be disposed at any orientation during cleaning to facilitate the natural drainage of the cleaning fluid.
The cleaning process may include one or more cycles of filling the unit with solvent. The multiple cycles may use the same solvent or different solvents. In one embodiment, after a first solvent is drained from the cleaning unit 60, a second solvent and even a third solvent are introduced into the fluid chamber 68 to contact the print head 20 to clean it. After a period time, the second and/or solvents are removed from the chamber 68.
While the components of the print head 20 are immersed in the solvent, the solvent and/or the print head 20 may be agitated to enhance the cleaning of the print head 20. The agitation may be accomplished by mechanically mixing the solvent, such as using a pump, stir bar, impeller, or other device. Alternatively, the solvent may ultrasonically agitated to enhance the cleaning process. The type of mixing, whether mechanical or ultrasonic, should be carefully controlled to prevent damage to the print head 20.
In one embodiment, the print head is soaked in the solvent for a period of at least 10 minutes, 30 minutes, or 60 minutes. The solvent used may be any solvent including water or organic solvent. Examples of possible organic solvents include C1-C4 alcohols, C4-C8 ethers, C3-C6 ketones, C3-C6 esters, and mixtures thereof. Examples of C1-C4 alcohols include methanol, ethanol, 1-propanol, and 2-propanol. Examples of C4-C8 ethers include diethyl ether, dipropyl ether, dibutyl ether and tetrahydrofuran. Examples of C3-C6 ketones include acetone, methyl ethyl ketone and cyclohexanone. Examples of C3-C6 esters include methyl acetate, ethyl acetate and n-butyl acetate. In one embodiment, the solvent is a ketone solvent, such as acetone or methyl ethyl ketone. In another embodiment, the solvent is a blend of ketone and alcohol, such as acetone and ethanol.
In another embodiment, a combination of solvents is used where a first solvent corresponding to the first cleaning cycle is a non-aqueous solvent, a second solvent includes 100% water or an aqueous blend, and a third solvent that is again a non-aqueous solvent. An example of a preferred aqueous blend would for example be 50:50 ethanol:water. In yet another embodiment similar to the previous embodiment, the second solvent includes 100% alcohol such as methyl or ethyl alcohol. Water may be substituted in the embodiment with other solvents exhibiting similar Hansen solubility parameters (polar and protic components) such as nitriles, alkyl sulfoxides, carbonates, formamides, pyrrolidones, or glycols.
The fluid spraying devices 102, 104, 106, 108 may be attached to and disposed perpendicular to the respective chamber wall of the cleaning unit 80. For example, devices 102 and 104 extend from back wall 98 of chamber 82. The fluid spraying devices 102, 104, 106, and 108 are generally elongated in shape and may be cylindrical. The fluid spraying devices 102, 104, 106, 108 may extend a substantial length of the respective chamber to allow a majority of the desired surface to be sprayed with solvent. Each fluid spraying device includes a plurality of cleaning nozzles. The cleaning nozzles are configured to spray fluid in one or more directions. The fluid spraying devices may be thought of as similar in configuration to a garden sprinkler. The fluid spraying devices are supplied fluid from ports within the cleaning unit 80 and ultimately from an external source. In one embodiment, the fluid spraying devices may rotate or oscillate around their axes with respect to the wall to enhance the spray from cleaning nozzles. The cleaning fluid delivered may be in the form of a solid stream, a spray of any shape (i.e., flat, conical, etc.), or a mist.
As shown in
It should be noted that other means to achieve the same goals are possible such as by using a single spraying device—either stationary or movable—capable of being disposed at different locations. For example, in one embodiment, the swing arms might reside in their open or closed positions and a single spraying device is introduced at the front of the print head 20 that would wash through the narrow regions around the streams where the nozzle face 48, gutter 52, charge electrode 54, and ground plate 56 or jet bias plate are disposed. In such an embodiment, the jets would be switched over to jet solvents, such as the makeup solvent used by the printer or another solvent, so that when the cleaner is introduced via the cleaning nozzles of the external member, it would not result in an increase in contamination of the functional components by the ink jets. This switching over of jets to solvent instead of ink is routinely accomplished during the printer normal startup and shutdown orifice cleaning algorithms. This embodiment would avoid the additional step of relocation of the swing arm assemblies to their open/maintenance positions.
In yet another embodiment, the cleaning spray application is timed with a jets-off event or a back-flushing function. A nozzle-off event may be provide by either disengaging the ink pressure by turning off the pump in the ink system or by closing the ink feed solenoid valve in the print head. A back-flush method is currently a used by a printer algorithm whereby the ink feed valve is closed and a negative pressure is applied across the entire nozzle orifice array via a pump, thereby pulling cleaning solution back through the nozzles into the ink system. By coordinating these events with the cleaner spraying events, the cleaner can be applied again without impacting the ink jets resulting that would result in increased contamination due to misdirected ink. A particularly advantageous embodiment is one where a cleaning member is positioned to direct spray across the nozzle face during the backflush event so that the nozzle orifices are cleared of contamination. This would effectively emulate the manual nozzle back-flush method, but would accomplish it again in a more automated and controlled fashion and, again, no active time on the part of the operator. Preferably, a series of different solvents can be employed in an automated back-flush method, as described above, which would comprise an organic solvent followed by an aqueous solvent and then again by an organic solvent. An entire cleaning cycle, including back flushing, spraying, and draining, may take less than about 15 minutes, preferably less than about 10 minutes.
The cleaning unit 80 can preferably be attached to the print head 20 and not moved or require any operator action after attachment, such that the cleaning process is essentially automatic and relatively invariant. The attachment of the unit 80 and movement of the internal parts within the print head 20 (e.g., the swing arms to the open/closed positions) may be carried out by any means including manually, robotic arms, or by incorporating further modifications into the print head such as solenoids, actuators, etc.
The solvent used with cleaning unit 80 may be any of the previous listed solvents. The solvent is preferably compatible with the ink used in the printer so that ink sucked into the gutter does not have any performance problems when it is recirculated into the printer. However, any residual cleaning solvent from the automated process that is incidentally introduced into the gutter and thus the printer's ink system may be diverted to a waste stream if desired.
The described and illustrated embodiments are to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the scope of the inventions as defined in the claims are desired to be protected. It should be understood that while the use of words such as “preferable”, “preferably”, “preferred” or “more preferred” in the description suggest that a feature so described may be desirable, it may nevertheless not be necessary and embodiments lacking such a feature may be contemplated as within the scope of the invention as defined in the appended claims. In relation to the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used to preface a feature there is no intention to limit the claim to only one such feature unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
This application claims priority under 35 U.S.C. §371 from PCT Application No. PCT/US2011/024481, filed in English on Feb. 11, 2011, which claims the benefit of U.S. Provisional Application No. 61/304,431, filed Feb. 13, 2010, the disclosures of both of which are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/024481 | 2/11/2011 | WO | 00 | 8/1/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/100517 | 8/18/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5412411 | Anderson | May 1995 | A |
5790147 | Hensel | Aug 1998 | A |
6247781 | Blum | Jun 2001 | B1 |
6637871 | Martin et al. | Oct 2003 | B1 |
6660103 | Johnston et al. | Dec 2003 | B1 |
7033003 | Martin et al. | Apr 2006 | B2 |
7128410 | Levin et al. | Oct 2006 | B2 |
20030011656 | Caren et al. | Jan 2003 | A1 |
20030058301 | Sekiya | Mar 2003 | A1 |
20030189614 | Steinfield et al. | Oct 2003 | A1 |
20050092204 | Zhu et al. | May 2005 | A1 |
20050116986 | Caren et al. | Jun 2005 | A1 |
20050206673 | Levin et al. | Sep 2005 | A1 |
20060247122 | Hampden-Smith et al. | Nov 2006 | A1 |
20070056604 | Wang et al. | Mar 2007 | A1 |
20070070101 | Sugahara | Mar 2007 | A1 |
20070252863 | Sun et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
2002127439 | May 2002 | JP |
2004358667 | Dec 2004 | JP |
2006150937 | Jun 2006 | JP |
2007090584 | Apr 2007 | JP |
WO 2008090164 | Jul 2008 | WO |
Entry |
---|
Machine generated English translation of JP 2002127439A to Osawa, Shigeru, “Capping Method for Ink Jet Head,” generated via http://www19.ipdl.inpit.go.jp/PA1/cgi-bin/PA1INDEX on Aug. 20, 2013; 2 pp. |
Number | Date | Country | |
---|---|---|---|
20120299993 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61304431 | Feb 2010 | US |