The following applications have been filed by the Applicant simultaneously with the present application:
Various methods, systems and apparatus relating to the present invention are disclosed in the following US Patents/ Patent Applications filed by the applicant or assignee of the present invention:
An application has been listed by its docket number. This will be replaced when application number is known. The disclosures of these applications and patents are incorporated herein by reference.
The present invention relates to a media pick-up device of a compact printer.
Conventional print media pick-up devices for printers are generally of simple construction and operation. These devices are designed to “pick” print media, such as sheets of paper, from a supply and deliver it to the media transport mechanism of the printer. The efficiency of such devices in successfully picking the sheets, usually one sheet at a time, can be controlled by various structural and operational factors, such as the type of grip material used on the pick-up roller, the speed at which the roller is rotated and/or power and torque of the motor used to drive the roller. Conventionally, motors which over-budget on the required power and torque for driving rotation of the roller are used. In some arrangements, this over-budget is necessary due to the placement of the motor external to the pick-up device itself.
The present invention houses the motor for driving the pick-up roller within the pick-up device itself, thereby reducing the required power of the motor. This in turn reduces the size of the motor, allowing it to be effectively housed in the device whilst providing full pivoting operation. The result is a compact and power efficient pick-up device.
In a first aspect the present invention provides a printer comprising:
Optionally, the motor and driven roller are incorporated in a molded body of the pick-up device.
Optionally, the driven roller is incorporated in an arm of the molded body, the arm being arranged to position the driven roller on the sheet media, in use.
Optionally, the pick-up device further comprises a gear assembly which operationally connects the motor to the driven roller.
Optionally, the gear assembly incorporates a plurality of gears which cooperate with one another so as to communicate the rotation of a shaft of the motor to a shaft of the driven roller.
Optionally, the motor, driven roller and gear assembly are incorporated in a molded body of the pick-up device.
Optionally, the driven roller and gear assembly are incorporated in an arm of the molded body, the arm being arranged to position the driven roller on the sheet media, in use.
Optionally, the driven roller incorporates a grip material for gripping the sheet media.
Optionally, the grip material is rubber.
Optionally, the motor is configured to deliver a maximum torque of 2 mNm.
Optionally, the support frame is arranged to support the sheet media supply.
Optionally, the supply of sheet media is incorporated in a media cartridge, and the support frame is arranged to removably engage with the media cartridge.
Optionally, the driven roller is arranged to contact the sheet media through an opening in a lid of the media cartridge.
Optionally, the driven roller is configured to drive individual sheets up an inclined face of the media cartridge through the opening to the sheet media transport mechanism of the printer.
Optionally, the pick-up device is configured to pivot the driven roller out of contact with the sheet media when the leading edge of a picked sheet is delivered to, and taken-up by, the sheet media transport mechanism.
Optionally, the pick-up device is configured to swing about the pivot so as to position the driven roller back into contact with the sheet media, the swinging motion being configured to allow the driven roller to bounce on the sheet media when it comes back into contact therewith.
Optionally, the sheet media is 100 mm by 150 mm photo paper.
Optionally, the printer incorporating a pagewidth inkjet printhead for printing on the sheet media transported by the sheet media transport mechanism.
Optionally, the sheet media is 100 mm by 150 mm photo paper.
Optionally, a pagewidth is about 100 mm.
In a second aspect the present invention provides an inkjet printer comprising:
Optionally, the driven roller is a plain shaft roller.
Optionally, the contact surface of the driven roller is incorporated in at least one tubular sleeve arranged about an elongate shaft.
Optionally, the idler roller is supported by a body of the printer so as to be moveable away from and toward the driven roller whilst maintaining a minimum gap between the driven and idler rollers, the idler roller being arranged to rotate due to the translational motion imparted to the media.
Optionally, the minimum gap between the driven and idler rollers is less than a thickness of the media, the movement of the idler roller being configured to allow the media to pass between, and contact, the contact surfaces of the driven and idler rollers.
Optionally, the minimum gap is about 200 microns and a thickness of the media is at least about 250 microns.
Optionally, the media is photo paper.
Optionally, the photo paper is 4 by 6 inch photo paper.
Optionally, the driven and idler rollers are configured to transport the 4 by 6 inch photo paper, and the pagewidth printhead is configured to print across a 4 by 6 inch pagewidth.
Optionally, the photo paper has a pagewidth of about 100 millimeters.
Optionally, the driven and idler rollers are configured to transport the 100 millimeter wide photo paper, and the pagewidth printhead is configured to print across the 100 millimeter pagewidth.
Optionally, the idler roller is biased towards the driven roller by a spring assembly mounted to the body, the spring constant of the spring assembly being configured so that the take-up of the media causes the movement of the idler roller away from the driven roller.
Optionally, the driven roller is rotatably driven by a motor mounted to a body of the printer.
Optionally, the driven roller is operationally connected to the motor via a pulley assembly.
Optionally, the pulley assembly incorporates a first pulley wheel arranged about one longitudinal end of the driven roller, a second pulley wheel arranged about a shaft of the motor and a belt arranged about the first and second pulley wheels.
Optionally, the belt is a smooth belt.
Optionally, the pulley assembly further incorporates a tensioner for tensioning the belt about the first and second pulley wheels.
Optionally, the printhead is incorporated in a printing cartridge which is removably engageable with the printer.
Optionally, the printhead is pagewidth printhead, a pagewidth being about 100 mm.
Optionally, the media supply is incorporated in a media cartridge which is removably engageable with the printer.
In a third aspect the present invention provides a printer comprising:
Optionally, the support frame has a slot through which the first end of the roller is able to pass so as to engage with the bearing of the fixing means, the slot being configured to allow movement of the first end during the sliding engagement of the engagement means and support frame.
Optionally, the movement of the first end during the sliding engagement moves the roller from being at an angle off normal to the transport path of the print media to being normal to the transport path; and the bearing is configured to accommodate the angular movement of the roller.
Optionally the bearing is configured to only contact the first end of the roller about a line around the circumference of the roller throughout the angular movement of the roller.
Optionally, a cross-section of the bearing contact face is triangular.
Optionally, the engagement means slidably engages with the support frame by sliding parallel to the transport path.
Optionally, the fixing means incorporates a plate having the bearing positioned in a hole therethrough, and the engagement means incorporates at least one tab provided on the plate, the tab being configured to slidably engage with a slot of the support frame.
In a further aspect there is provided a printer further comprising second fixing means for fixing the roller to the support frame at the second end of the roller, the second fixing means comprising:
Optionally, the second bearing is configured to accommodate the angular movement of the roller during the sliding engagement of the engagement means and support frame.
Optionally, the second bearing is configured to only contact the second end of the roller about a line around the circumference of the roller throughout the angular movement of the roller.
Optionally, a cross-section of the second bearing contact face is triangular.
Optionally, the second fixing means incorporates a plate having the second bearing positioned in a hole therethrough and at least one tab provided on the plate configured to engage with a slot of the support frame.
In a further aspect there is provided a printer comprising a plurality of elongate rollers for transporting the print media,
Optionally, the bearing of the fixing means for one of the rollers is arranged to be movable with respect to the fixing means so that said roller is allowed to move with respect to the transport path; and
Optionally, the fixing means incorporates a plate and a hole assembly arranged on the plate in which said roller is supported, the hole assembly being movable with respect to the plate; said bearing is arranged on said roller; and the spring is arranged on the plate to act against the hole assembly.
In a further aspect there is provided a printer comprising a plurality of elongate rollers for transporting the print media,
wherein the first and second fixing means are arranged to fix each of the rollers to the support frame at the respective first and second ends of the rollers, the first and second fixing means comprising a plurality of the first and second bearings with the first and second ends of each roller being positioned in a corresponding respective bearing.
Optionally, the first and second bearings for one of the rollers are arranged to be movable with respect to the respective first and second fixing means so that said roller is allowed to move with respect to the transport path; and the first and second fixing means comprise a spring for controlling the movement of said first and second bearings.
Optionally, the first and second fixing means each incorporate a plate and a hole assembly arranged on the plate in which said roller is supported, the hole assembly being movable with respect to the plate; said first and second bearings are arranged on said roller; and each spring is arranged on the respective plate to act against the respective hole assembly.
Optionally, the plurality of rollers are arranged, in use, to transport the print media past a pagewidth printhead, the printhead being incorporated in a printing cartridge which is removably engageable with the printer.
Optionally, the print media is supplied to the plurality of rollers from a media cartridge which is removably engageable with the printer.
In a fourth aspect the present invention provides a method of assembling a print media transport arrangement of a printer, the method comprising the steps of:
Optionally, in the step of positioning the roller, the first end of the roller is passed through a slot of the support frame, the slot being configured to allow movement of the first end during the engagement step.
Optionally, in the engagement step, the movement of the first end during the sliding engagement moves the roller from being at an angle off normal to the transport path of the print media to being normal to the transport path, the bearing being configured to accommodate the angular movement of the roller.
Optionally, the bearing is configured to only contact the first end of the roller about a line around the circumference of the roller throughout the angular movement of the roller in the engagement step.
Optionally, in the engagement step, the fixing plate is slid parallel to the transport path so as to slidably engage with the support frame.
Optionally, the fixing plate incorporates at least one tab configured to slidably engage with a slot of the support frame in the engagement step.
Optionally, in the step of positioning the roller so as to be supported at its longitudinal first and second ends by the support frame, the second end of the roller is positioned in a second bearing of a second fixing plate for fixing the second end of the roller to the support frame, the second bearing being configured to allow the rotation of the roller; and in the step of engaging the first fixing plate, the elongate roller pivots about the second end due to the configuration of both the first and second bearings.
Optionally, in the step of engaging the first fixing plate, the second bearing is configured to accommodate the angular movement of the roller.
Optionally, the second bearing is configured to only contact the second end of the roller about a line around the circumference of the roller throughout the angular movement of the roller in the step of engaging the first fixing plate.
Optionally, the step of positioning the roller comprises positioning a plurality of elongate rollers so as to be supported at their longitudinal first and second ends by the support frame; the step of positioning the bearing comprises positioning a plurality of bearings about the first end of each respective roller, each bearing being configured to allow rotation of the respective roller about the first end thereof; and in the engagement step, the configuration of each of the bearings allows the pivoting of the respective elongate roller about the second end thereof.
Optionally, the step of positioning the roller comprises positioning a plurality of elongate rollers so as to be supported at their longitudinal first ends by the support frame and positioned at their longitudinal second ends in a respective one of a plurality of second bearings of the second fixing plate, each second bearing being configured to allow rotation of the respective roller about the second end thereof; the step of positioning the first bearing of the first fixing plate comprises positioning a plurality of first bearings about the first end of each respective roller, each first bearing being configured to allow rotation of the respective roller about the first end thereof; and in the step of engaging the first fixing plate, the configuration of each of the bearings allows the pivoting of the respective elongate roller about the second end thereof.
In a fifth aspect the present invention provides an inkjet printer comprising:
Optionally, the support frame has a slot through which the first end of the shaft is able to pass so as to engage with the bearing of the fixing means, the slot being configured to allow movement of the first end during the sliding engagement of the engagement means and support frame.
In a further aspect there is provided an inkjet printer wherein:
Optionally, the bearing is configured to only contact the first end of the shaft about a line around the circumference of the shaft throughout the angular movement of the shaft.
Optionally, a cross-section of the bearing contact face is triangular.
Optionally, the engagement means slidably engages with the support frame by sliding normal to the capping position.
Optionally, the fixing means incorporates a plate having the bearing positioned in a hole therethrough, and the engagement means incorporates at least one tab provided on the plate, the tab being configured to slidably engage with a slot of the support frame.
In a further aspect there is provided an inkjet printer, further comprising second fixing means for fixing the shaft to the support frame at the second end of the shaft, the second fixing means comprising:
Optionally, the second bearing is configured to accommodate the angular movement of the shaft during the sliding engagement of the engagement means and support frame.
Optionally, the second bearing is configured to only contact the second end of the shaft about a line around the circumference of the shaft throughout the angular movement of the shaft.
Optionally, a cross-section of the second bearing contact face is triangular.
Optionally, the second fixing means incorporates a plate having the second bearing positioned in a hole therethrough and at least one tab provided on the plate configured to engage with a slot of the support frame.
Optionally, the second fixing plate incorporates a seat for housing a motor for driving the rotation of the shaft.
Optionally, a gear is arranged on the second end of the shaft, the seat of the second fixing plate being configured to arranged a motor gear of the motor in mesh with the shaft gear.
Optionally, the motor gear is a worm gear arranged on a shaft of the motor, the seat of the second fixing plate being configured so that the motor may be inserted into the seat by causing rotation of the shaft gear.
Optionally, the shaft gear is a part of a gearing assembly of the shaft for moving the capper.
Optionally, the printhead is incorporated in a printing cartridge which is removably engageable with the printer.
Optionally, the capper is incorporated in the printing cartridge.
Optionally, the printhead is pagewidth printhead and the capper is a pagewidth capper.
Optionally, a pagewidth is about 100 mm.
In a sixth aspect the present invention provides a method of assembling a capping mechanism of an inkjet printer, the method comprising the steps of:
Optionally, in the step of positioning the shaft, the first end of the shaft is passed through a slot of the support frame, the slot being configured to allow movement of the first end during the engagement step.
Optionally, in the engagement step, the movement of the first end during the sliding engagement moves the shaft from being at an angle off parallel to the capping position to being parallel to the capping position, the bearing being configured to accommodate the angular movement of the shaft.
Optionally, the bearing is configured to only contact the first end of the shaft about a line around the circumference of the shaft throughout the angular movement of the shaft in the engagement step.
Optionally, in the engagement step, the fixing plate is slid normal to the capping position so as to slidably engage with the support frame.
Optionally, the fixing plate incorporates at least one tab configured to slidably engage with a slot of the support frame in the engagement step.
In a further aspect there is provided a method further comprising the steps of:
Optionally, in the step of engaging the first fixing plate, the second bearing is configured to accommodate the angular movement of the shaft.
Optionally, the second bearing is configured to only contact the second end of the shaft about a line around the circumference of the shaft throughout the angular movement of the shaft in the step of engaging the first fixing plate.
In a further aspect there is provided a method wherein:
In a further aspect there is provided a method wherein:
In a seventh aspect the present invention provides an inkjet printer comprising:
Optionally, the first gear assembly comprises first and second gears connected by a common shaft, the shaft being supported by the body to mount the first and second gears thereto, the first gear meshing with the motor gear and the second gear meshing with the second gear assembly.
Optionally, the first gear incorporates the code feature.
Optionally, the code feature is a protrusion arranged to protrude from part of the outer surface of the first gear with respect to the body.
Optionally, the protrusion has a semi-cylindrical shape.
Optionally, the second gear assembly comprises a third gear mounted to the body by a pin, the third gear meshing with the second gear of the first gear assembly.
Optionally, the third gear is an eccentric gear.
Optionally, the eccentric gear has an eccentricity feature configured to cooperate with an actuator feature of the capper, the cooperation causing the movement of the capper out of and into its capping position.
Optionally, the predetermined position of the first gear assembly is configured to position the eccentricity feature of the eccentric gear of the second gear assembly in a predetermined cooperation with the actuator feature of the capper.
Optionally, the eccentricity feature is a protrusion arranged to protrude from part of the outer surface of the eccentric gear with respect to the body.
Optionally, the protrusion has a semi-cylindrical shape.
Optionally, the eccentricity feature is configured to go into and out of cooperation with the actuator feature of the capper based on the rotated position of the eccentric gear in relation to the capper.
Optionally, the predetermined cooperation is configured to maintain the capper in its capping position.
In a further aspect there is provided an inkjet printer wherein:
Optionally, each of the third gears has an eccentricity feature configured to cooperate with a corresponding actuator feature of the capper, the cooperation causing the movement of the capper out of and into its capping position.
Optionally, the predetermined position of the first gear assembly is configured to position the eccentricity features of the third gears of the second gear assembly in a predetermined cooperation with the actuator features of the capper.
Optionally, each eccentricity feature is configured to go into and out of cooperation with the respective actuator feature of the capper based on the rotated position of the third gears in relation to the capper.
Optionally, the predetermined cooperation is configured to maintain the capper in its capping position.
Optionally, the printhead is incorporated in a printing cartridge which is removably engageable with the printer.
Optionally, the capper is incorporated in the printing cartridge.
In an eighth aspect the present invention provides a method of assembling a gear arrangement for a capper of an inkjet printer, the method comprising the steps of:
Optionally, the step of mounting the first gear assembly comprises mounting a common shaft connecting first and second gears of the first gear assembly to the body so that the first gear meshes with the motor gear and the second gear meshes with the second gear assembly.
Optionally, the first gear incorporates the code feature.
Optionally, the step of mounting the second gear assembly comprises mounting a pin of a third gear of the second gear assembly to the body so that the third gear meshes with the second gear of the first gear assembly.
Optionally, the third gear has an eccentricity feature configured to cooperate with an actuator feature of the capper, the cooperation causing the movement of the capper out of and into its capping position.
Optionally, the predetermined position of the first gear assembly is configured to position the eccentricity feature of the third gear of the second gear assembly in a predetermined cooperation with the actuator feature of the capper.
Optionally, the eccentricity feature is configured to go into and out of cooperation with the actuator feature of the capper based on the rotated position of the third gear in relation to the capper.
Optionally, the predetermined cooperation is configured to maintain the capper in its capping position.
In a further aspect there is provided a method wherein:
Optionally, each of the third gears has an eccentricity feature configured to cooperate with a corresponding actuator feature of the capper, the cooperation causing the movement of the capper out of and into its capping position.
Optionally, the predetermined position of the first gear assembly is configured to position the eccentricity features of the third gears of the second gear assembly in a predetermined cooperation with the actuator features of the capper.
Optionally, each eccentricity feature is configured to go into and out of cooperation with the respective actuator feature of the capper based on the rotated position of the third gears in relation to the capper.
Optionally, the predetermined cooperation is configured to maintain the capper in its capping position.
In a ninth aspect the present invention provides a printer comprising:
Optionally, the gear assembly is configured to rotate the pick-up roller at a rotational speed which delivers the sheet media to the sheet media transport mechanism at a first speed; the sheet media transport mechanism is configured to transport the sheet media at a second speed; and the first speed is lower than the second speed.
Optionally, the first speed is about 5% lower than the second speed.
Optionally, the gearing assembly is configured to deliver a gearing ratio of 50:1 from the motor to the pick-up roller.
Optionally, the motor is configured to deliver a maximum torque of 2 mNm.
Optionally, the first gear is configured to disengage from the second gear due to the increase in rotational speed of the pick-up roller at the point of delivery of the leading edge of the picked sheet media to the sheet media transport mechanism.
Optionally, the first gear is configured to re-engage with the second gear substantially at the point of a trailing edge of the picked sheet media leaving contact with the pick-up roller.
Optionally, the first gear is configured to re-engage with the second gear due to a driving force of the motor and the decrease in rotational speed of the pick-up roller at the point of the trailing edge of the picked sheet media leaving contact with the pick-up roller.
Optionally, the first gear is arranged so as to be pivotable relative to the second gear so as to disengage and re-engage therewith.
Optionally, the gear assembly incorporates a plurality of gears which cooperate with one another so as to communicate the rotation of a shaft of the motor to a shaft of the pick-up roller.
Optionally, the second gear is arranged on the shaft of the pick-up roller and the first gear is an intermediate gear between the second gear and a third gear of the gear assembly which is arranged on the shaft of the motor.
Optionally, the gear assembly comprises at least five gears, and the second and third gears are arranged to communicate with one another via the first gear and fourth and fifth gears of the gear assembly.
Optionally, a pivot arm connects a bearing shaft of the first gear and a bearing shaft of the fourth gear, the pivot arm being arranged to pivot the first gear out of mesh with the second gear.
Optionally, the motor, driven roller and gear assembly are incorporated in a pick-up device of the printer.
Optionally, the pick-up roller and gear assembly are incorporated in an arm of the pick-up device, the arm being arranged to position the pick-up roller on the sheet media, in use.
Optionally, the pick-up device is mounted to the printer so as to be pivotable relative to the supply of sheet media.
Optionally, the pick-up roller incorporates a grip material for gripping the sheet media.
Optionally, the grip material is rubber.
Optionally, the supply of sheet media is incorporated in a media cartridge which is removably engageable with the printer.
Optionally, the sheet media is 100 mm by 150 mm photo paper.
In a tenth aspect the present invention provides a method of picking sheet media in a printer, comprising:
Optionally, the driving of the pick-up roller rotates the pick-up roller at a rotational speed which delivers the sheet media to the sheet media transport mechanism at a first speed; the sheet media transport mechanism transports the sheet media at a second speed; and the first speed is lower than the second speed.
Optionally, the first speed is about 5% lower than the second speed.
Optionally, the gearing assembly is configured to deliver a gearing ratio of 50:1 from the motor to the pick-up roller.
Optionally, the motor is configured to deliver a maximum torque of 2 mNm.
Optionally, the disengaging of the first and second gears is caused by the increase in rotational speed of the pick-up roller at the point of delivery of the leading edge of the picked sheet media to the sheet media transport mechanism.
In a further aspect there is provided a method further comprising, substantially at the point of a trailing edge of the picked sheet media leaving contact with the pick-up roller, re-engaging the first and second gears.
Optionally, the re-engaging of the first and second gears is caused by a driving force of the motor and the decrease in rotational speed of the pick-up roller at the point of the trailing edge of the picked sheet media leaving contact with the pick-up roller.
Optionally, the second gear is arranged on the shaft of the pick-up roller and the first gear is an intermediate gear between the second gear and a third gear of the gear assembly which is arranged on a shaft of the motor.
Optionally, contacting the pick-up roller with the sheet media comprises allowing the pick-up roller to move relative to the supply of sheet media.
In the drawings:
A printer 100 is variously illustrated in the accompanying drawings. The printer 100 is intended for use as a digital photo color printer and is dimensioned to print 100 millimeter by 150 millimeter (4 inch by 6 inch) photos whilst being compact in size and light in weight. As will become apparent from the following detailed description, reconfiguration and dimensioning of the printer could be carried out so as to provide for other printing purposes.
The printer 100 of the illustrated photo printer embodiment has dimensions of 18.6 cm (W); 7.6 cm (H); 16.3 cm (D), and a weight of less than two Kilograms. The compact and lightweight design of the printer provides portability and ease of use.
The printer 100 may be easily connected to a PC via a USB connector 408 (such as a USB 1.1 port for USB 2.0 compatible PCs) and to digital cameras and other digital photo equipment, such as electronic photo albums and cellular telephones, via USB or a PictBridge connector 410. Direct printing is available when using Pictbridge compatible digital photo equipment. This enables quick and convenient printing of digital photo images.
Connection to external power is used, preferably to mains power via a 12 Volt; 2 Amp (or 24 Volt; 1 Amp) DC power converter at power connector 406. However, the printer may be configured to operate from an internal power source, such as batteries. The printer is configured to efficiently use power, operating with a maximum power consumption of 36 Watts.
The printer 100 has three core components: a printhead cartridge 200 housing a printhead and ink supply; a printer or cradle unit 400 for supporting the printhead cartridge and housing a media transport mechanism for transporting print media past the printhead; and a media supply cartridge 600 for supplying the media to the printer.
The following detailed description is direct to the cradle unit 400 and media supply cartridge 600, and therefore detailed description of the printhead cartridge is not provided herein. A full description of a suitable printhead cartridge for use with the cradle unit 400 is described in the Applicant's simultaneously co-filed U.S. Patent Applications (currently identified by their Docket Numbers, which will be substituted once U.S. Ser. Nos. are known) the entire contents of which are hereby incorporated by reference. For ease of understanding, a brief excerpt of the description provided in these co-pending Applications is provided below under the heading Printhead Cartridge.
Printhead Cartridge
The printhead cartridge 200 is an assembly having the necessary components for operation as a printer when mounted to the printer or cradle unit having a media supply.
The printhead cartridge has a body which is shaped to fit securely in a complementarily shaped printhead cartridge support bay of the cradle unit (see
The printhead is a pagewidth inkjet printhead. By using a pagewidth printhead it is unnecessary to scan the printhead across print media, rather the printhead remains stationary with the print media being transported therepast for printing. By operating the printhead to continuously print as the print media is continuously fed past the printhead, so called ‘printing-on-the-fly’, the need to stall the media feed for each print line is obviated, therefore speeding up the printing performed.
The printer incorporating the printhead of the printhead cartridge is configured to print a full colour page, e.g., one 4 inch by 6 inch photo, in at most two seconds. In other words, the printhead is capable of printing at a minimum of 30 pages per minute up to 60 pages per minute. This high speed printing is performed at high quality as well, with a resolution of at least 1600 dots per inch being provided by the printhead. Such a high resolution provides true photographic quality above the limit of the human visual system.
This is achieved by forming the printhead from thousands of ink ejection nozzles across the pagewidth, e.g., about 100 millimeters for 4 inch by 6 inch photo paper. In the illustrated embodiment, the printhead incorporates 32,000 nozzles. The nozzles are preferably formed as Memjet™ or microelectomechanical inkjet nozzles developed by the Applicant. Suitable versions of the Memjet™ nozzles are the subject of a number of the applicant's patent and pending patent applications, the contents of which is incorporated herein by cross reference and the details of which are provided in the cross reference table above.
Brief detail of a printhead suitable for use in the printhead cartridge is now provided. The printhead is formed as a ‘linking printhead’ which comprises a series of individual printhead integrated circuits (ICs). A full description of the linking printhead, its control and the distribution of ink thereto is provided in the Applicant's co-pending U.S. application Ser. No. 11/014,769 all filed Apr. 4, 2005 and the entire contents of which are incorporated herein by reference. In the illustrated embodiment, the linking printhead has five printhead ICs arranged in series to create a printing zone of a 100.9 millimeter pagewidth (which is approximately four inches).
Each printhead IC incorporates a plurality of nozzles positioned in rows (see
The nozzles are arranged in terms of unit cells containing one nozzle and its associated wafer space. In order to provide the print resolution of 1600 dots per inch, an ink dot pitch (DP) of 15.875 microns is required. By setting each unit cell to have dimensions of twice the dot pitch wide by five times the dot pitch high and arranging the unit cells in a staggered fashion as illustrated in
Due to this necessary staggered arrangement of the nozzles discontinuity is created at the interface between the adjacent printhead ICs. Such discontinuity will result in discontinuity in the printed product causing a reduction in print quality. Compensation of this discontinuity is provided by arranging a triangle of nozzle unit cells displaced by 10 dot pitches at the interface of each adjacent pair of printhead ICs, as illustrated in
The printhead cartridge may be operated either in a page-limited mode which sets the number of pages which can be printed using the printhead cartridge (e.g., 200 photo pages) or an ink-limited mode which sets a maximum number of pages that can be printed without depleting the ink of the (non-refillable) ink supply. In this way, the printhead cartridge is caused to be operational within the operational lifetime of the printhead nozzles and within the supply of ink for full colour printing. Other suitable modes for ensuring consistent print quality may also be used.
The arrangement and operation the capper is described in the Applicant's co-pending U.S. patent application Ser. No. 11/246,676, all filed Oct. 11, 2005 and the entire contents of which are hereby incorporated by reference.
For ease of understanding, a brief excerpt of the description provided in these co-pending Applications is now provided. As illustrated in
In the capping position, the contact surface of the pad, which defines the capping zone, sealingly engages with the nozzles of the printhead thereby capping or covering the nozzles. This capping isolates the ink within the nozzles from the exterior, thereby preventing evaporation of water from the primed ink from the nozzles and the exposure of the nozzles to potentially fouling particulate matter during non-operation of the printhead. In the non-capping position, the contact surface is disengaged from the nozzles, allowing printing to be performed.
The manner in which the capper 202 is operated in cooperation with the cradle unit 400 when the printhead cartridge 200 is mounted to the cradle unit 400 is described in detail later.
Cradle Unit
The printer or cradle unit 400 is an assembly having the necessary components for operation as a printer when the printhead and media supply cartridges are mounted.
From the exterior, the cradle unit 400 has a body 402 and a lid 404 hinged to the body 402. The body 402 houses the power connector 406, the data (USB and PictBridge) connectors 408 and 410, a media supply cartridge slot 412, a printed media exit slot 414, which is normally covered with a pivotable flap 416, and a control panel 418.
With the lid 404 hinged in its open position, a levered frame 420 is exposed. The open position of the levered frame 420 allows access to a printhead cartridge support bay 422 for insertion and extraction of the printhead cartridge 200. The closed position of the levered frame 420, via a snap fit of a clip 424 with a release detail 426 of the body 402, secures an inserted printhead cartridge in operational position.
The printhead cartridge support bay 422 and release detail 426 are part of an upper portion 428 of the body 402 which cooperates with a lower portion 430. The cooperation of the upper and lower portion 430s, which are preferably plastic moldings, creates an outer shell of the body 402 used to house the internal components of the cradle unit 400.
The internal components are shown in exploded and cross-sectional views in
An elongate capper shaft 432 is inserted at either end into a support frame 434 by feeding the ends through slots or apertures 436 arranged on opposite sidewalls 434a of the support frame 434. The sidewalls 434a of the support frame 434 are joined by a base 434b. The capper shaft 432 has a gear 438 fitted at either end which form part of a gearing assembly for operating the capper of the printhead cartridge.
A first end of the capper shaft 432 is fixed in place by a fixing plate 440 which is mounted to the support frame 434 as illustrated in
To assemble, the hook features 442, which have an “L” shaped profile as can be seen in
The fixing plate 440 has a locator 448 for an elongate idler roller 450 and further roller or ring bearings 452 for locating an elongate entry or drive roller 454 and an elongate exit roller 456. The drive, idler and exit rollers are part of a media transport mechanism of the cradle unit 400. The rollers are assembled into the support frame 434 by passing them through associated apertures 458 in the sidewalls 434a of the support frame 434 and then into the locator 448 and bearings 452, which are aligned with the support frame apertures 458, as illustrated in
The idler roller 450 has its own bearings on the roller shaft at either end, which locate within the locator 448 so that the idler roller 450 can rotate. The bearings 452 of the fixing plate 440 are also configured so that the drive and exit roller 454,456 can rotate. Suitable thrust washers and the like may also be used on the rollers to facilitate location and rotation.
The second ends of each of the capper shaft 432 and drive, idler and exit rollers 454,450,456 are fixed to the opposite sidewall 434a of the support frame 434 by a second fixing plate 460. As with the first fixing plate 440, the second fixing plate 460 has a number of “L” shaped hook features 442 (six are shown in
Further, as with the first fixing plate 440, the second fixing plate 460 has roller bearings 444 and 452 for locating the second ends of the respective capper shaft 432, drive roller 454 and exit roller 456 and a locator 448 for locating the bearing on the second end of the idler roller 450 (as illustrated in
The locators 448 of the fixing plates 440,460 for supporting the idler roller 450 shaft are illustrated in
In particular, the minimum gap is set to be less than the thickness of the print media which is to be transported by the drive and idler rollers. In the present embodiment, the minimum gap is set to be about 200 microns when photo paper having a thickness of at least 250 microns is used. Media of other thicknesses could be used, and therefore other suitable minimum gaps set.
The sprung movement of the idler roller 450 away from the drive roller 454 allows the media to pass therebetween whilst being contacted by both the drive and idler rollers as the drive roller is rotationally driven (described in detail later). This ‘pinch’ of the rollers 450 and 454 on the media ensures that appropriate friction is imparted on the media for trouble-free and effective transport.
In the present embodiment, the drive roller 454 is provided as a plain shaft roller having a substantially gripless surface. That is, the plain shaft is not provided with a grip or grit surface or other friction providing surface. The Applicant has found that, surprisingly, the effective pinch of the rollers is retained in the printer 100 when such a gripless drive roller 454 is used. A gripless idler roller may also be used. In the illustrated embodiment, the drive roller 454 has a smooth surfaced tubular sleeve 476 (two are illustrated in the drawings) arranged on a shaft. The tubular sleeve may be, for example, formed from smooth plastic or rubber.
As can be seen from
The fixing plates 440,460 are preferably plastic moldings with each of the hook features 442, locators 448, arms 462, protrusions 474 and bearing apertures formed as part of the molding. The support frame 434 is preferably press formed from metal to form the illustrated chassis.
The bearings 444,452 of the fixing plates 440,460 are configured to allow pivotal movement of the capper shaft 432 and rollers 450,454,456 during assembly. This pivotal movement is needed due to the angular mismatch between the first and second ends of the capper shaft 432 and rollers 454,456 when they are positioned in the mounted first fixing plate 440 and yet to be mounted second fixing plate 460. This angular movement of the rigid shaft and rollers is required so that potentially damaging stresses are not placed on the shafts, rollers, bearings and/or support frame. In the final mounted position, the configuration of the bearings 444,452 align the capper shaft 432 parallel to the capper and align the rollers 454,456 perpendicular to the transport direction of print media.
Conventional roller or ring bearings for a shaft/roller are illustrated in
The bearing mount or contact face 478 of the roller bearings 444,452 of the present invention has an angular or triangular face with respect to the capper shaft 432 and rollers 454,456. As such, a relatively wide range of angular movement of the capper shaft and rollers, characterised by pivotal movement about the first end of the capper shaft and rollers as illustrated by the solid and dashed depictions in
Other suitably configured bearing mounts or contact faces may also be used, so long as the required range of angular displacement of the capper shaft 432 and rollers 454,456 is accommodated. The range of angular displacement to be accommodated may be of the order of about one or two degrees. The sprung locators 448 of the fixing plates 440,460 similarly provide for the angular movement of the idler roller 450 during assembly.
Further, the slots/apertures 436,458 of the support frame 434 are configured so as to accommodate the linear movement of the capper shaft and roller ends during assembly. The additional space provided within the slots/apertures does not cause any unwanted movement of the capper shaft and rollers once assembled due to the rigid capture of the capper shaft and rollers by the fixing plates 440,460.
With the capper shaft 432 held in position to the support frame 434 by the fixing plates 440,460, a third gear 480 of the gearing assembly is fitted to the second end of the capper shaft 432 at the exterior of the fixing plate sidewall, as illustrated in
The gear 480 is provided with a code feature 484 formed as a protrusion from the outer surface of the gear with respect to the gear's teeth. In the illustrated embodiment, the code feature protrusion has as a half-cylindrical shape, however, other types of protrusions may be used. Preferably, the gear and protrusion are formed as a molding.
The code feature 484 is arranged to cooperate with a holding feature 486 of a jig or mounting arrangement 488 used in the next stage of assembly. As illustrated in the magnified portion of
The jig 488 is used to mount further gears of the gearing assembly of the capping mechanism to the support frame 434. The further gears are eccentric gears 492 having an eccentricity or cam feature 494, as illustrated in
During the location of the eccentric gears 492, the teeth thereof mesh with the teeth of the gears 438 positioned on the capper shaft 432, where this meshing is used to transfer rotation of the shaft gears 438 to the eccentric gears 492. Without the engagement of the code and holding features, this meshing may cause the aforementioned uncontrolled rotation of the capper shaft 432, placing the eccentric gears 492 in an unknown position.
Once the eccentric gears are clipped in place, the assembly is removed from the jig. Whilst the illustrated embodiment uses the jig to mount the eccentric gears to the support frame, some other means of mounting the eccentric gears, including by picker robot or hand, is possible, so long as a holding feature is provided to engage and hold the code feature of the coded gear during mounting.
The motor 482 for driving the capping shaft 432, and in turn the eccentric gears 492, is fitted into a seat 506 formed in the second fixing plate 460, as illustrated in
Some rotation of the coded gear occurs during the meshing of the coded and motor gears. However, as the position of the eccentric gears is known this rotation can be corrected at power up of the printer to correctly position the eccentricity features of the eccentric gears (discussed later).
The eccentricity feature 494 of each eccentric gear 492 is formed as a protrusion from the outer surface of the eccentric gear with respect to the eccentric gear's teeth. In the illustrated embodiment, the eccentricity feature protrusion has as a semi-cylindrical shape, however, other types of protrusions may be used. Preferably, the eccentric gears and protrusions are formed as a molding.
The eccentricity features 494 are used to operate the capper of the printhead cartridge 200. In the normal position of the eccentric gears 492, the eccentricity features 494 are positioned so that an open part 494a of the eccentricity features 494 faces towards the position of the capper when the printhead cartridge 200 is inserted into the cradle unit 400 (see
When it is desired to print, the motor 482 is operated to rotate the capper shaft 432 via the coded gear 480. This causes rotation of the eccentric gears 492 via the shaft gears 438. The gear train of the capping mechanism provides a gearing ratio of 40:1 at the capper. The eccentricity features 494 have cam contact faces 494b which contact the lugs 208 of capper 202 during this rotation. This contact causes a lowering force on the lugs 208 which is transferred to the sprung cap 204,206 of the capper 202, thereby lowering the cap 204 and exposing the printhead for printing. The rotation is ceased once the open part 494a of the eccentricity features 494 faces away from the position of the capper 202, as illustrated in
When printing is complete or capping is otherwise desired, the motor 482 is again operated to rotate the eccentric gears 492 until the open part 494a of the eccentricity features 494 again faces toward the capper 202. In this position, the lugs 208, and therefore the sprung cap 204, return to the capped position.
Returning to the assembly, a printhead cartridge support 510 is positioned in the support frame 434, as illustrated in
The printhead cartridge support 510 has spike wheels 514 (see
A media sensor 522 is provided in the media guide 516 (see
With the printhead cartridge support 510 in place, a media transport drive arrangement is assembled on the support frame 434. This is done by fitting pulley wheels 524 onto the first ends of the drive and exit rollers 454,456, mounting a drive motor 526 with associated inertia flywheel 528 and pulley wheel 530 in a motor bay 532 of the printhead cartridge support 510, mounting a tensioner 534 to the sidewall 434a of the support frame 434 and feeding a drive belt 536 over the pulley wheels 524,530 and tensioning it with the tensioner 534 (see
The tensioned drive belt 536 transfers the driving force of the drive motor 526 to the pulley wheels 524 and therefore the drive and exit rollers 454,456. The resultant rotation of the drive and exit rollers is used and controlled to transport the print media from the media supply cartridge past the printhead of the inserted printhead cartridge and out through the printed media exit slot 414 in the body 402.
In the illustrated embodiment, the drive belt is a smooth endless belt, and the tensioner is used to provide proper operational tensioning of the smooth belt about the smooth pulley wheels. However, a corrugated or like drive belt may be used in conjunction with toothed pulley wheels.
An encoder disc 538 is fitted on the second end of the drive roller 454 and an encoder sensor 540 is mounted to the sidewall 434a of the support frame 434 for sensing the position of the encoder disc 538 and therefore the rotational speed of the drive motor 526 (see
Returning to the assembly, a media pick-up device 542 is then mounted to the support frame 434. The media pick-up device 542 comprises a media cartridge support 544 and a picker assembly 546. The media cartridge support 544 has two hook features 544a which are slid into engagement with two apertures 434c in the base 434b of the support frame 434. A screw is used to secure the media cartridge support 544 to the support frame 434 (see
The picker assembly 546 comprises a picker roller 548, associated gear train 550 and picker motor 552 housed in a body 554. Preferably the body 554 is a molding having a base 554a in which the picker motor 552 is mounted and an arm 554b in which the gear train 550 and picker roller 548 are mounted via associated shafts (see
The illustrated gear train 550 has five gears, including a motor gear 556 located on a shaft of the picker motor 552, a picker gear 558 located on a shaft of the picker roller 548 and three intermediate gears 560. With respect to the intermediate gears 560, the gear 560a adjacent (i.e., closest to) the picker gear 558 is a simple gear, whereas the other two intermediate gears 560b and 560c are compound gears. The (compound) gear train 550 is used to transfer the rotational driving force of the picker motor 552 to the picker roller 548 so that the picker roller 548 is rotated at a predetermined rotational speed. The gear train provides a gearing ratio of 50:1 at the picker roller. The picker roller 548 comprises a grip tyre 548a arranged on the roller shaft which grips the sheet media of the inserted media supply cartridge. The grip tyre is preferably made of rubber.
Each of the shafts of the picker and intermediate gears are flex fitted into molded details in the picker assembly body via suitable bearings for allowing rotation of the shafts. It is to be understood that more or less gears may be used in the gear train as is suitable with the rotational force delivered by the picker motor and the rotational speed required for the picker roller 548 to successfully and effectively pick-up the sheet media.
Whilst the rotation of the picker roller 548 is used to perform the picking of the sheet media, the pivoting of the picker assembly 546 is used to consistently position the picker roller 548 in contact with the sheet media as the sheet media is depleted from the inserted media supply cartridge.
In the illustrated embodiment, the picker motor 552 of the pick-up device 542 is located within this pivoting part 546 of the device. Conventionally, picker motors are located external to such a pivoting parts of a media picker. This external positioning means that a powerful, and therefore large, picker motor is required in order to deliver the necessary torque to the roller. The power and size of the picker motor is reduced by locating the picker motor closer to the roller within the pivoting part. For example, a brushed DC motor delivering a maximum torque of 2 mNm (milliNewton meters) can be used for the picker motor. Whereas a motor capable of delivering about 20% more torque is typically required for an externally positioned motor, due to drive train losses experienced in the extended drive mechanism, i.e., losses due to a longer coupling shaft and at least one or more gear reduction stages on the chassis, in addition to the usual gear coupling stage from pick-up assembly pivot to the picker roller 548.
The mounted position of the pick-up device 542 (see
In order to ensure successful take-up of the sheets, the picker roller 548 is driven at a rotational speed which is less than the rotational speed of the drive roller 454. Typically, the picker roller 548 is driven at a speed about 5% lower than that of the drive roller 454. This mismatch in speed means that the take-up rollers 450,454 pull the sheets faster than the picker roller 548 is able to deliver the sheets. The pivoting action of the picker assembly 546 allows the picker roller 548 to come out of contact with the sheet being pulled by the take-up rollers 450,454 due to the picker motor not be able to match the increase in speed on the picker roller 548.
Depending on the speed of take-up, the picker roller 548 may bounce and drag on the sheets as they are being taken up due to a swinging motion of the picker assembly 546 about the pivot points 544b,554c. This bouncing and dragging generally has a negligible effect on the take-up of the sheets, however it may cause wear on the rubber grip tyre 548a of the picker roller 548 and the bearings of the gear train 550, and velocity spikes in the transport of the sheets, which are undesired due to the possible effect on the print quality.
In an alternative embodiment of the picker device illustrated in
The pivoted gear 560a is configured to be brought back into engagement with the other gears by the driving torque of the picker motor 552 once the trailing edge of the currently picked sheet has been removed by the take-up rollers 450,454.
Returning to the assembly, a connection interface 564 for the printhead cartridge 200 is mounted to the cradle unit 400. The connection interface 564 incorporates a printed circuit board 566 on which power and data connections 568 for the printhead cartridge 200 are arranged. The connection interface board 566 is mounted to the cradle unit 400 by lowering a lower edge 566a of the connection interface board 566 into a slot 510a of the printhead cartridge support 510 for receiving the printhead cartridge 200 (see
Print control circuitry 570 is then mounted to the body 402 of the cradle unit 400. The print control circuitry 570 incorporates a printed circuit board 572 on which a print controller 573, the power connector 406 and the data connectors 408,410 are arranged. The print control circuitry board 572 is mounted by engaging a connection header 572a with a complementary connection header 566c of the connection interface 564 at the exterior of one of the sidewalls 434a of the support frame 434 and securing the board 572 with screws or the like to that sidewall (see
In the illustrated embodiment, the connection header 572a of the print control circuitry 570 is a male header and the connection header 566c of the connection interface 564 is a female header, and the connection interface board 566 projects substantially orthogonally to the print control circuitry board. Other arrangements are possible. During this connection, slight movement of the connection interface 564 board is possible on the details 510b within the slot 510a since an upper edge 566d of the connection interface board 566 is free to move. This movement facilitates the mating of the connection headers and accommodates the tilt angle of the connection interface board.
The print control circuitry board 572 has a capper sensor 574 for sensing a position of the capper (see
The capper sensor 574 is used by the print control circuitry 570 to operate the capper motor 482 to position the capper out and into its capped position. The capper sensor 574 is also used to reposition the eccentricity features 494 of the eccentric gears 492 in order to correct the movement caused by the aforementioned meshing of the coded and motor gears 480 and 508 during assembly.
The print control circuitry board 572 also has connection ports 576 for connecting the capper motor 482, the drive motor 526, the encoder sensor 540, the picker motor 552 and the media sensor 522 to the power supply and print control circuitry, as illustrated in
Various control buttons 578 and indicators 580, such as LEDs, for the function and control of the printer 100 are also incorporated on the print control circuitry board 572. The control buttons 578 include an on/off button and a print function button, where the print function button may be operated by a user to control functioning of the printer 100, such as media feed, reprint, creation of print effects, etc. The indicators 580 may include operation status, print status, printhead cartridge, ink volume, media supply, PC/camera connection, etc, indicators. The buttons and indicators 578,580 are positioned to locate within the control panel 418 when the upper portion 428 of the body 402 is assembled onto the support frame 434 (see
The complexity of the print control circuitry 570 is minimised by arranging certain circuitry in the connection interface 564. In particular, power regulation circuitry 582 and/or power storage circuitry 584 is integrated in the connection interface 564.
The power regulation circuitry 582 regulates the supply of power from the external (or internal) power supply via the print control circuitry board 572. Such regulation is needed in order to ensure that constant and consistent power is delivered to the ink ejection nozzles of the printhead, thereby maintaining consistent print quality. In particular, the drop ejection of the printhead nozzles is a function of both the supply voltage and the firing pulse width. Each nozzle is configured to eject an ink drop having a volume of about 1.2 picoliters and a velocity of about eight meters per second. If the supply voltage varies significantly, the pulse width needs to be varied to maintain consistent drop quality. Such pulse width variation is undesired and therefore tight regulation is needed.
An exemplary power regulation circuit 582 is illustrated in
The power storage circuitry 584 stores at least some of the power supplied from the external (or internal) power supply via the print control circuitry board 572. Such storage is desired to account for potential power shortages during operation of the printhead, thereby maintaining consistent print quality. Power storage also takes account for brief peaks in the nozzle current consumption which is dependent upon the image density and print speed of a printing operation.
An exemplary power storage circuit 584 is illustrated in
With the internal components of the cradle unit 400 assembled and the various connections made, the assembly is encased with the upper and lower portions 428 and 430 of the body 402, by securing the upper and lower portions to the support frame 434 with screws or the like, and the lid 404 is hingedly attached to the upper portion 428.
In order to ensure the use of a printhead cartridge which is properly configured to operate with the cradle unit 400, it is possible to arrange a key feature 490 on the cradle unit 400, as illustrated in
Media Supply Cartridge
The media supply cartridge 600 is an assembly of a sheet media support 602 and a hinged lid 604, as illustrated in
A spring 608 is located within the media support 602 for maintaining a position of the stack within the media support. In the illustrated embodiment, the spring 608 is located on one sidewall 610 of the media support 602 (see
The media supply cartridge 600 is inserted into the media supply cartridge slot 412 of the cradle unit 400 so as to locate in the media supply cartridge support 544 of the pick-up device 542. The media supply cartridge 600 is held in place by the engagement of recesses 612 in the cartridge 600 with (molded) details 544e of the media cartridge support 544 (see
As described earlier, the ridge and details 544b and 544c of the media cartridge support 544 facilitate the insertion of the media supply cartridge 600. A taper of the details 544c in conjunction with the ridge 544b result in the media supply cartridge 600 being held at an angle with respect to the base 544d of the cartridge support 544 (see
The lid 604 is formed to have nested openings 614. The larger opening 614a allows unobstructed withdrawal of the sheet media from the media supply cartridge, whilst the smaller opening 614b allows unobstructed access to the sheet media by the picker roller 548 of the pick-up device 542 when the media supply cartridge 600 is inserted in the media supply cartridge slot 412 of the cradle unit 400.
The delivery of the sheet media occurs past an inclined front face 602a of the sheet media support 602 which is supported by a similarly inclined front face 544f of the media cartridge support 544 (see
This assistance occurs when the picker roller 548 contacts and presses against the remaining sheets causing the sheets to slightly buckle about the stepped region 616. The buckling causes the leading edge of the sheets to raise slightly, making it easier for the sheets to be driven up the inclined face 602a to the nip of the take-up rollers 450,454 by the picker roller 548. Once the stack has been depleted, the media supply cartridge 600 can be removed from the printer 100 and replaced with a new cartridge or refilled for reinsertion.
The number of sheets remaining in a media supply cartridge is monitored by the print control circuitry 570 of the cradle unit 400. This is done by storing a count of the number of sheets fed from the cartridge as sensed by the media sensor 522 of the media guide 516 and/or storing a count of the number of sheets/pages that have been printed.
Alternatively, or in addition, if the media sensor 522 of the media guide 516 senses that a sheet has not been picked by the pick-up device 542 from the media cartridge 600, by not sensing the leading edge of the sheet, the print controller 570 may, for example, cause a media supply indicator 580 of the control panel 418 to operate and/or display of a media out message on the PC or digital camera connected to the printer 100, which indicates to a user that either the media supply cartridge is depleted, the media supply cartridge has not been inserted or the media has not been successfully picked from the cartridge and allows subsequent correction by the user.
Further, media jams can be detected by the media sensor 522 by sensing that the leading edge of a sheet has passed the sensor 522 but not the trailing edge. In such a case, the print controller 570 can respond by stopping printing and operating the drive roller 454 in the reverse direction to remove the jammed sheet. If this does not work, or alternatively, the print controller may, for example, cause a media jam indicator 580 to operate and/or display of a media jam message on the PC or digital camera connected to the printer 100, which indicates to a user that a media jam has occurred and allows subsequent correction by the user.
While the present invention has been illustrated and described with reference to exemplary embodiments thereof, various modifications will be apparent to and might readily be made by those skilled in the art without departing from the scope and spirit of the present invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but, rather, that the claims be broadly construed.
Number | Name | Date | Kind |
---|---|---|---|
5163674 | Parks | Nov 1992 | A |
5234208 | Bandura et al. | Aug 1993 | A |
5462373 | Chia | Oct 1995 | A |
5622364 | Dutton et al. | Apr 1997 | A |
5868385 | Embry et al. | Feb 1999 | A |
6412772 | Itoh et al. | Jul 2002 | B1 |
6578842 | Hoberock | Jun 2003 | B2 |
6708971 | Sasaki et al. | Mar 2004 | B1 |
7152972 | King et al. | Dec 2006 | B2 |
7401773 | Chen | Jul 2008 | B2 |
7515865 | Matsushima et al. | Apr 2009 | B2 |
20040091298 | Nellen | May 2004 | A1 |
20040155397 | Gaarder et al. | Aug 2004 | A1 |
20040207145 | Chang | Oct 2004 | A1 |
20050006835 | Teo et al. | Jan 2005 | A1 |
20050194732 | Asada | Sep 2005 | A1 |
20050200652 | Massey | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2000302280 | Oct 2000 | JP |
2004090484 | Mar 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070126170 A1 | Jun 2007 | US |