A conventional inkjet printing system includes a printhead, an ink supply that supplies liquid ink to the printhead, and an electronic controller that controls the printhead. The printhead ejects ink drops through a plurality of orifices or nozzles toward a print medium, such as a sheet of paper, so as to print onto the print medium. Typically, the orifices are arranged in one or more arrays such that properly sequenced ejection of ink from the orifices causes characters or other images to be printed upon the print medium as the printhead and the print medium are moved relative to each other.
One type of inkjet printing system is an inline printing system in which one or more printheads are fixed and the print medium is moved relative to the printhead(s). The speed of the print medium relative to the printhead(s) is measured by an encoder. In addition, the encoder tracks the position of the print medium relative to the fixed printheads with a resolution typically indicated in dots per inch (dpi). Typically, for multiple printhead inline printing systems, the image to be printed is divided between two or more printheads by a multiple of the encoder resolution. By dividing the image to be printed into multiple images, the firing frequency of each printhead is reduced. Therefore, the print medium can be moved faster relative to the printheads while having the same final number of drops ejected onto the print medium. For example, in an inline printing system having four printheads and a 150 dots per inch (dpi) encoder, a 600 dpi image to be printed can be divided into four 150 dpi images or two 300 dpi images that are printed interlaced to provide the final desired 600 dpi image.
The printheads have a firing frequency that ranges from zero to a maximum value, such as 36 kHz. In one embodiment, the firing frequency in kHz is defined by the following Equation I:
where:
Typically, in inline printing systems, an encoder is used to measure the speed of the print medium relative to the printhead(s) to set the firing frequency of the printhead(s) needed to obtain the desired resolution. For example, in a 600 dpi printing system having a 150 dpi encoder, one printhead can be used to print at 600 dpi to obtain a final resolution of 600 dpi. The maximum speed of the print medium to print a 600 dpi image using one printhead at a firing frequency of 36 kHz is 300 fpm. The maximum speed of the print medium to print a 600 dpi image using two printheads printing interlaced 300 dpi images at a firing frequency of 36 kHz is 600 fpm. The maximum speed of the print medium to print a 600 dpi image using four printheads printing interlaced 150 dpi images at a firing frequency of 36 kHz is 1200 fpm.
Typically, printheads have a range of values in the middle of the firing frequency range, such as 12 kHz to 24 kHz, where the printheads do not provide a good quality image. The firing frequency interval where the printheads do not provide a good quality image is called the “puddling zone” and should be avoided to obtain good image quality and printhead reliability. Therefore, to avoid the puddling zone, typically certain speeds of the print medium that would require the printheads to fire at a firing frequency within the puddling zone are avoided. In some circumstances, however, it is undesirable to avoid printing at certain speeds, such as where another system controls the print medium speed.
For these and other reasons, there is a need for the present invention.
One aspect of the present invention provides a printer. The printer includes at least one controller having first mode configured to control printing of an image including a sequence of columns by controlling printing a first column in the sequence and a fourth column in the sequence with a first printhead, a second column in the sequence and a fifth column in the sequence with a second printhead, and a third column in the sequence and a sixth column in the sequence with a third printhead.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Ink supply assembly 14 supplies ink to printhead assembly 12 and includes a reservoir 15 for storing ink. As such, ink flows from reservoir 15 to inkjet printhead assembly 12. Ink supply assembly 14 and inkjet printhead assembly 12 can form either a one-way ink delivery system or a recirculating ink delivery system. In a one-way ink delivery system, substantially all of the ink supplied to inkjet printhead assembly 12 is consumed during printing. In a recirculating ink delivery system, however, only a portion of the ink supplied to printhead assembly 12 is consumed during printing. As such, ink not consumed during printing is returned to ink supply assembly 14.
In one embodiment, inkjet printhead assembly 12 and ink supply assembly 14 are housed together in an inkjet cartridge or pen. In another embodiment, ink supply assembly 14 is separate from inkjet printhead assembly 12 and supplies ink to inkjet printhead assembly 12 through an interface connection, such as a supply tube. In either embodiment, reservoir 15 of ink supply assembly 14 may be removed, replaced, and/or refilled. In one embodiment, where inkjet printhead assembly 12 and ink supply assembly 14 are housed together in an inkjet cartridge, reservoir 15 includes a local reservoir located within the cartridge as well as a larger reservoir located separately from the cartridge. As such, the separate, larger reservoir serves to refill the local reservoir. Accordingly, the separate, larger reservoir and/or the local reservoir may be removed, replaced, and/or refilled.
Mounting assembly 16 positions inkjet printhead assembly 12 relative to media transport assembly 18 and media transport assembly 18 positions print medium 19 relative to inkjet printhead assembly 12. Thus, a print zone 17 is defined adjacent to nozzles 13 in an area between inkjet printhead assembly 12 and print medium 19. In one embodiment, inkjet printhead assembly 12 is a scanning type printhead assembly. As such, mounting assembly 16 includes a carriage for moving inkjet printhead assembly 12 relative to media transport assembly 18 to scan print medium 19. In another embodiment, inkjet printhead assembly 12 is a non-scanning type printhead assembly. As such, mounting assembly 16 fixes inkjet printhead assembly 12 at a prescribed position relative to media transport assembly 18. Thus, media transport assembly 18 positions print medium 19 relative to inkjet printhead assembly 12.
Electronic controller or printer controller 20 typically includes a processor, firmware, and other printer electronics for communicating with and controlling inkjet printhead assembly 12, mounting assembly 16, and media transport assembly 18. Electronic controller 20 receives data 21 from a host system, such as a computer, and includes memory for temporarily storing data 21. Typically, data 21 is sent to inkjet printing system 10 along an electronic, infrared, optical, or other information transfer path. Data 21 represents, for example, a document and/or file to be printed. As such, data 21 forms a print job for inkjet printing system 10 and includes one or more print job commands and/or command parameters.
In one embodiment, electronic controller 20 includes one or more application-specific integrated circuits (ASICs) for controlling each printhead 24 of inkjet printhead assembly 12. In one embodiment, electronic controller 20 controls inkjet printhead assembly 12 for ejection of ink drops from nozzles 13. As such, electronic controller 20 defines a pattern of ejected ink drops that form characters, symbols, and/or other graphics or images on print medium 19. The pattern of ejected ink drops is determined by the print job commands and/or command parameters.
In one embodiment, inkjet printhead assembly 12 includes one printhead 24. In another embodiment, inkjet printhead assembly 12 is a wide-array or multi-head printhead assembly. In one wide-array embodiment, inkjet printhead assembly 12 includes a carrier, which carries printheads 24, provides electrical communication between printheads 24 and electronic controller 20, and provides fluidic communication between printheads 24 and ink supply assembly 14. In one embodiment, each printhead 24 has its own ink supply assembly 14, which are housed together in an inkjet cartridge or pen.
In one embodiment, 600 dpi image data is printed on print medium 19 by dividing the image data into four 150 dpi images, each of which is printed by a separate printhead 24a-24d. Therefore, the 600 dpi image data, one column of which is indicated at 34 as 1/600 of an inch, is divided into four 150 dpi images, one column of which is indicated at 32 as 1/150 of an inch, which when interlaced provide the printed overlap area as indicated at 38. In another embodiment, 600 dpi image data is printed on print medium 19 by dividing the image data into three 200 dpi images, each of which is printed by a separate printhead. In yet another embodiment, 600 dpi image data is printed on print medium 19 by dividing the image data into two 300 dpi images, each of which is printed by a separate printhead.
Therefore, as indicated at 56, printhead 24a receives the I0, I4, I8, and I12 column data. Printhead 24b receives the I1, I5, I9, and I13 column data. Printhead 24c receives the I2, I6, I10, and I14 column data, and printhead 24d receives the I3, I7, I11, and I15 column data. In this embodiment, printhead 24a prints every 1/150 of an inch as indicated at 60 to print the I0, I4, I8, and I12 column data to produce a 150 dpi image. Likewise, printhead 24b prints the I1, I5, I9, and I13 column data to produce a 150 dpi image, printhead 24c prints the I2, I6, I10, and I14 column data to produce a 150 dpi image, and printhead 24d prints the I3, I7, I11, and I15 column data to produce a 150 dpi image. The four 150 dpi images of printhead 24a through printhead 24d are printed interlaced on print medium 19 to provide the desired 600 dpi image of image data 52.
In another embodiment, two printheads are used to print image data 52. Once again, the image data is divided by a multiple of the encoder resolution. In this embodiment, one of the printheads receives the even numbered columns and the other of the printheads receives the odd numbered columns. The even numbered column data produces a 300 dpi image and the odd numbered column data also produces a 300 dpi image. The two 300 dpi images of the two printheads are printed interlaced on print medium 19 to provide the desired 600 dpi image of image data 52. These embodiments have a disadvantage in that they cannot operate at all speeds up to a maximum speed without printing in the puddling zone since each printhead 24a through 24d prints at a resolution that is a multiple of the encoder resolution of 150 dpi. Therefore using this process, a 600 dpi image cannot be divided by a multiple of the 150 dpi resolution of the encoder to print using three printheads.
In this embodiment, the image data to be printed is 600 dpi. A first mode uses four printheads printing at 150 dpi. In this mode, the indicated printheads 24a through 24d print the column data as indicated in row 92. In this mode, printhead 24a prints the I0 column data, printhead 24b prints the I1 column data, printhead 24c prints the I2 column data, and printhead 24d prints the I3 column data. This mode is similar to table 50 illustrated in
A second mode uses three printheads printing at 200 dpi. In this mode, the indicated printheads 24a through 24c print the column data as indicated in row 94. In this mode, printhead 24a prints the I0 column data, printhead 24b prints the I1 column data, and printhead 24c prints the I2 column data. The process repeats with the I3-I5 column data printed by printheads 24a through 24c, respectively. This second mode is not possible using the process of
A third mode uses two printheads printing at 300 dpi. In this mode, the indicated printheads 24a and 24b print the column data as indicated in row 96. In this mode, printhead 24a prints the even numbered column data I0, I2, I4 etc., and printhead 24b prints the odd numbered column data I1, I3, I5, etc.
In one embodiment, the puddling zone is avoided between speeds 0 and 400 fpm by using four printheads with each printhead printing at 150 dpi to obtain a 600 dpi image as indicated by line 110. The puddling zone is avoided between speeds 400 and 600 fpm by using two printheads with each printhead printing at 300 dpi to obtain a 600 dpi image as indicated by line 106. The puddling zone is avoided between speeds 600 and 900 fpm by using three printheads with each printhead printing at 200 dpi to obtain a 600 dpi image as indicated by line 108. The puddling zone is avoided between 900 and 1200 fpm by using four printheads with each printhead printing at 150 dpi to obtain a 600 dpi image as indicated by line 110.
Using this method, printer 10 can print 600 dpi images with three inline printheads firing at 200 dpi while using a 150 dpi encoder. At 600 fpm, the firing frequency is 24 kH and at 800 fpm, the firing frequency is 32 kH, avoiding the puddling zone. Therefore, putting the possible resolutions together as described with reference to
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.