This application claims priority from Japanese Patent Application No. 2019-109647 filed Jun. 12, 2019. The entire content of the priority application is incorporated herein by reference.
The present disclosure relates to a printer.
There has been known a printer in which a positional relationship between a platen roller and a printing head is changed in accordance with a pivotal movement of a cover. For example, Japanese Patent Application No. H04-166373 discloses a facsimile including a cover member and a release cam. In this facsimile, an engagement pin of the cover member is releasably engaged with an engagement groove formed in the release cam to transmit a force generated by an opening/closing operation of the cover member to the release cam. As the release cam is pivotally moved, a recording head is moved in a direction away from a platen or approaches the platen.
With the facsimile described above, however, the engagement pin is brought into disengagement from the engagement groove during the opening operation of the cover member. Therefore, if a posture of the release cam has been changed for some reason while the cover member is open, the engagement pin may fail to be engaged with the engagement groove in the closing operation of the cover member. That is, this configuration may hinder the positional relationship between the platen and the recording head from being stably changed in accordance with the opening/closing operation of the cover member.
In view of the foregoing, it is an object of the present disclosure to provide a printer in which a positional relationship between a platen roller and a printing head can be stably changed in accordance with a movement of an operation member operated by a user.
In order to attain the above and other objects, according to one aspect, the disclosure provides a printer including: a housing; a platen holder; a platen roller; a printing head; an operation member; a first link; a second link; a connection member; and a movable member. The platen holder is accommodated in the housing and is movable between a pressure position and a retracted position. The platen roller is rotatably supported by the platen holder. The printing head is configured to nip a printing medium in cooperation with the platen roller to perform printing on the printing medium. The platen roller presses the printing head when the platen holder is at the pressure position. The platen roller is spaced apart from the printing head when the platen holder is at the retracted position. The operation member is provided at the housing and is movable relative to the housing within a first movable range and within a second movable range different from the first movable range. The first link is pivotally movably supported by the operation member. The first link has a first portion and a second portion different from the first portion. The second link is supported by the housing and is pivotally movable between an operation position and a standby position. The connection member has a connecting portion at which the first link and the second link are connected to each other. The first link and the connecting portion provides therebetween a positional relationship including a first positional relationship at the first portion of the first link and a second positional relationship at the second portion of the first link. The movable member is movable in interlocking relation to a pivotal movement of the second link from the operation position to the standby position to move the platen holder from the pressure position to the retracted position. When the operation member is moved within the first movable range, the connection member causes the second link to be pivotally moved from the operation position to the standby position in response to a pivotal movement of the first link while maintaining the first positional relationship between the first link and the connecting portion. When the operation member is moved within the second movable range, the connection member causes the positional relationship between the first link and the connecting portion to be changed from the first positional relationship to the second positional relationship in response to the pivotal movement of the first link while maintaining the second link at the standby position.
The particular features and advantages of the embodiment(s) as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
Hereinafter, one embodiment of the present disclosure will be described while referring to the accompanying drawings. Note that the terms “upward”, “downward”, “leftward”, “rightward”, “frontward” and “rearward” appearing in the following description correspond to the terms “up”, “down”, “left”, “right”, “front” and “rear” shown in the drawings, respectively.
First, a configuration of a printer 1 according to the embodiment will be described with reference to
In one example, the tape cassette 60 is a receptor type. The tape cassette 60 has support holes 65 and 67 and a head opening 69, and includes a ribbon take-up spool 68 and a tape drive roller 46. Although not illustrated in the drawings in detail, the support hole 65 rotatably supports a tape spool around which the printing medium 5 is wound, and the support hole 67 rotatably supports a ribbon spool around which an unused ribbon is wound. The ribbon take-up spool 68 has a hollow cylindrical shape and is rotatable to take up a used ribbon. The tape drive roller 46 has a hollow cylindrical shape and is rotatable. The head opening 69 penetrates the tape cassette 60 in an up-down direction, and is open rightward. Within the head opening 69, the ribbon and the printing medium 5 are superposed on each other so that the ribbon is positioned to the left of the printing medium 5.
As illustrated in
In a state where the tape cassette 60 is attached to the attachment portion 8, the ribbon take-up shaft 95 is inserted into the ribbon take-up spool 68, the auxiliary shaft 118 is inserted into the support hole 65, and the drive shaft 100 is inserted into the tape drive roller 46. In this state, the ribbon take-up shaft 95 and the drive shaft 100 are drivingly connected to a conveying motor 33 (see
Further, in the state where the tape cassette 60 is attached to the attachment portion 8, the head holder 74 is inserted into the head opening 69, and the printing medium 5 is accommodated in the attachment portion 8.
A platen holder 12 is accommodated within the housing 2. The platen holder 12 extends in a front-rear direction, and has a rear end portion pivotally movably supported by a support shaft 35 provided on the support plate 32. Specifically, the platen holder 12 is pivotally movable about the support shaft 35 between a pressure position (see
When the platen holder 12 is in the pressure position, the platen roller 64 presses the printing head 10, and the conveying roller 66 presses the tape drive roller 46. In this state, the printing medium 5 and the ribbon superposed on each other are nipped at a portion between the platen roller 64 and the printing head 10 while the ribbon is positioned rightward of the printing medium 5. Further, the printing medium 5 is nipped at a portion between the conveying roller 66 and the tape drive roller 46. The ribbon is conveyed to an inner space of the tape cassette 60 through a portion between the head opening 69 and the tape drive roller 46, and is taken up by the ribbon take-up spool 68.
When the platen holder 12 is in the retracted position, the platen roller 64 is positioned rightward of the printing head 10 to be spaced apart from the printing head 10, and the conveying roller 66 is positioned rightward of the tape drive roller 46 to be spaced apart from the tape drive roller 46. As the platen holder 12 is pivotally moved from the retracted position to the pressure position, the platen roller 64 is brought into driving connection to the conveying motor 33.
An inclined portion (not illustrated) is provided on a right end portion of the platen holder 12. The inclined portion is inclined frontward as extending from the left side toward the right side. The platen holder 12 is urged by a torsion spring (not illustrated) in the counterclockwise direction toward the retracted position about the support shaft 35 as viewed in a plan view. This configuration causes the inclined portion of the platen holder 12 to be pressed against a rotary roller 82 (see
As illustrated in
In response to a user's operation, the cover 6 is pivotally movable between a closed position (see
In the following description, of a range within which the cover 6 is pivotally movable (hereinafter also simply referred to as “movable range”), a movable range that includes the closed position of the cover 6 is referred to as “first movable range”, and a movable range that includes the open position of the cover 6 is referred to as “second movable range”. The first movable range is a range within which the cover 6 is pivotally moved as illustrated in
As illustrated in
Next, a configuration for connecting the cover 6 and the platen holder 12 to each other will be described with reference to
As illustrated in
As illustrated in
The first cam 131 has a substantially circular arc shape formed in a first portion in the first link 110. In the present embodiment, the first portion corresponds to a point P1 in the first link 110 illustrated in
Also, the first link 110 includes a protruding portion 119 (see
As illustrated in
The first arm 221 has a distal end portion on which a pin 228 is provided. Further, the second arm 222 has a distal end portion formed with a slot 229 extending substantially parallel to a direction in which the second arm 222 extends. The pin 228 protrudes from the distal end portion of the first arm 221, and is engaged with the cam portion 130. The pin 228 has an oblong cross-section taken along a plane perpendicular to the left-right direction in which a center axis 228A of the pin 228 extends. The pin 228 has a major diameter (a dimension S1) smaller than the inner diameter (the dimension D) of the first cam 131 and greater than the groove width (the dimension W) of the groove cam 133, and a minor diameter (a dimension S2) smaller than the groove width of the groove cam 133. The pin 228 is an example of a connecting portion of a connection member.
In the following description, the cam portion 130 and the pin 228 will also be correctively referred to as “connection member 88”. The first link 110 and the second link 220 are connected to each other via the connection member 88.
An extension portion 225 (see
Owing to the engagement of the pin 228 with the cam portion 130, the second link 220 is pivotally movable about the pivot shaft 281 between an operation position (see
The first cam 131 formed in the first link 110 is configured to be engaged with the pin 228 of the second link 220 with a clearance therebetween (see
The movable member 150 will be described next. The movable member 150 is a plate-like member having a rectangular shape extending in the front-rear direction as viewed in a side view. The movable member 150 is supported by support shafts 161 and 162 protruding leftward from the right plate 280 and is movable in the front-rear direction. The movable member 150 is provided with a projection portion 151 protruding leftward. The projection portion 151 is engaged with the slot 229 formed in the second link 220. Thus, as the second link 220 is pivotally moved about the pivot shaft 281, the movable member 150 is also moved in the front-rear direction.
The movable member 150 has a front end portion that holds the rotary roller 82. The rotary roller 82 is positioned rightward of the platen holder 12 (see
As the movable member 150 is moved frontward, the rotary roller 82 urges the inclined portion leftward while rolling on the inclined portion to cause the platen holder 12 to be pivotally moved toward its pressure position. As the movable member 150 is moved rearward, the rotary roller 82 rolls on the inclined portion, and thus the platen holder 12 is pivotally moved gradually toward the retracted position by an urging force of the torsion spring. In this way, movement of the movable member 150 in the front-rear direction causes the platen holder 12 to be pivotally moved between the pressure position and the retracted position.
Next, how the first link 110, the second link 220, and the platen holder 12 (see
Here, a positional relationship between the first link 110 and the pin 228 when the pin 228 is engaged with the first cam 131 will also be referred to as “first positional relationship”, whereas the positional relationship therebetween when the pin 228 is engaged with the second cam 132 will also be referred to as “second positional relationship”. That is, when the pin 228 is at the first portion of the first link 110 as illustrated in
As the user starts to open the cover 6, the cover 6 is pivotally moved within the first movable range toward the open position (see
After the first cam 131 is pivotally moved by the amount of the clearance, the lower end portion of the first cam 131 abuts against the pin 228 from the lower side thereof (see
While the second link 220 is pivotally moved, the pin 228 is rotated in the first portion inside the first cam 131. In other words, a posture of the pin 228 relative to the first cam 131 is changed. Specifically, while the pin 228 is rotated, a state where the major diameter direction of the pin 228 and a longitudinal direction of the groove cam 133 intersects with each other is maintained, but an angle θ (see
At the same time, a pivotal movement of the second link 220 causes the slot 229 to press the projection portion 151 rearward, thereby moving the movable member 150 rearward. Accordingly, the platen holder 12 (see
Then, the second link 220 reaches the standby position (see
After reaching the state illustrated in
Thereafter, the cover 6 reaches the open position (see
Next, how the first link 110, the second link 220, and the platen holder 12 are moved while the cover 6 is pivotally moved from the open position to the closed position will be described with reference to
As the user starts to close the cover 6, the cover 6 is pivotally moved within the second movable range from the open position toward the closed position as illustrated in
Concurrently with entry of the pin 228 into the first cam 131 (see
As the extension portion 225 is urged by the protruding portion 119, the second link 220 starts to be pivotally moved from the standby position toward the operation position. The slot 229 formed in the second link 220 presses the projection portion 151 frontward, whereby the movable member 150 is moved frontward to press the platen holder 12 to be pivotally moved from the standby position toward the pressure position.
While the extension portion 225 is moved away from the protruding portion 119 (see
Eventually, the pin 228 is rotated so that the major diameter direction of the pin 228 becomes substantially parallel to the groove width direction of the groove cam 133 (see
Next, a printing operation of the printer 1 will be described with reference to
As the heat generating elements of the printing head 10 generate heat, ink contained in the ink ribbon is transferred onto the printing medium 5, whereby a character is printed on the printing medium 5. The used ribbon is taken up by the ribbon take-up spool 68. The printing medium 5 is nipped at the portion between the tape drive roller 46 and the conveying roller 66 and is conveyed thereby toward the discharge opening 11. After the driving of the conveying motor 33 is stopped, the cutting mechanism cuts the printing medium 5. Thus, the user can take out the printing medium 5 discharged through the discharge opening 11.
A method for assembling the first link 110 to both the second link 220 and the cover 6 will be described next with reference to
An operator performing the assembly of the first link 110 places the first link 110 so that the second cam 132 is positioned to the left of the pin 228, and moves the first link 110 rightward as indicated by an arrow L in
As illustrated in
In this way, by fitting the pair of shaft portions 111 into the corresponding one of the pair of pivot holes 7A, the first link 110 is brought into connection to the cover 6 and the assembly of the first link 110 is completed.
As described above, as the second link 220 is pivotally moved from the operation position to the standby position in accordance with the pivotal movement of the cover 6, the movable member 150 is moved to cause the platen holder 12 to be pivotally moved from the pressure position to the retracted position.
When the cover 6 is pivotally moved within the first movable range toward the open position, the connection member 88 causes the second link 220 to be pivotally moved from the operation position to the standby position in interlocking relation to the pivotal movement of the first link 110 while maintaining the pin 228 that connects the first link 110 and the second link 220 to each other at the first portion of the first link 110 (i.e., the positional relationship between the first link 110 and the pin 228 is maintained at the first positional relationship).
Further, when the cover 6 is pivotally moved within the second movable range toward the open position, the connection member 88 causes the pin 228 to be moved relatively from the first portion to the second portion of the first link 110 in accordance with the pivotal movement of the first link 110 (i.e., the positional relationship between the first link 110 and the pin 228 is caused to be changed from the first positional relationship to the second positional relationship), and maintains the second link 220 at the standby position.
With the above operation, while the cover 6 is pivotally moved, a disengagement of the pin 228 from the cam portion 130 is prevented and the connection member 88 can continue to connect the first link 110 and the second link 220 to each other, thereby enabling the platen holder 12 to be pivotally moved stably between the pressure position and the retracted position. Consequently, the printer 1 according to the present embodiment can stably change a positional relationship between the platen roller 64 and the printing head 10 in accordance with the movement of the cover 6 which serves an operation member operated by the user.
Further, as described above, the platen holder 12 starts to be moved from the pressure position at a timing when the cover 6 starts to open the attachment portion 8. With this configuration, the platen holder 12 can reach the retracted position promptly. Further, when the cover 6 is pivotally moved within the second movable range, the pivotal movement of the second link 220 is restricted to maintain the second link 220 at the standby position. Accordingly, an amount (i.e., the movable range) by which the first link 110 is pivotally moved can be increased. This configuration leads to an increase of an amount (i.e., the movable range) by which the cover 6 is pivotally moved, thereby allowing the attachment portion 8 to be open widely. As a result, the tape cassette 60 including the printing medium 5 can be easily attached to and detached from the attachment portion 8.
The cover 6 is configured to cover the attachment portion 8 so as to open and close the attachment portion 8 which serves an opening configured to accommodate the printing medium 5 therein. When the cover 6 pivotally moved from the closed position to the open position to open the attachment portion 8, the platen holder 12 is pivotally moved from the pressure position to the retracted position. Therefore, when the cover 6 is in the open position, the user can easily remove the tape cassette 60 including the printing medium 5 from the attachment portion 8 of the housing 2.
When the cover 6 is pivotally moved within the first movable range toward the open position, the connection member 88 maintains the pin 228 at the first portion (i.e., the first cam 131) of the first link 110, and causes the second link 220 to be pivotally moved from the operation position to the standby position by the rotation of the pin 228. When the cover 6 is pivotally moved within the second movable range, the second link 220 is positioned such that the major diameter direction of the pin 228 is substantially parallel to the longitudinal direction of the groove cam 133, and the pin 228 enters and is slidingly moved relative to the groove cam 133.
Since the major diameter direction of the pin 228 and the longitudinal direction of the groove cam 133 intersect with each other (see
The pin 228 has a substantially oblong cross-section taken along a plane perpendicular to the left-right direction in which the center axis 228A of the pin 228 extends. This simple shape of the pin 228 allows the printer 1 to simplify the configuration of the connection member 88.
At a timing when the cover 6 is moved from the second movable range into the first movable range, the protruding portion 119 presses the extension portion 225 to cause the second link 220 in the standby position to be pivotally moved toward the operation position (see
The first cam 131 is engaged with the pin 228 with a clearance provided therebetween. When the cover 6 starts to be pivotally moved from the closed position, the first cam 131 formed in the first link 110 is moved by the amount of the clearance and then contacts to move the pin 228 upward. In other words, while the first cam 131 of the first link 110 is moved by the amount of the clearance, the pivotal movement of the second link 220 is prevented, and the movement of the movable member 150 is also prevented. This configuration can reduce an operation load applied when the user starts to open the cover 6. Accordingly, a force needed when the user starts to open the cover 6 can be reduced, whereby the user can easily open the cover 6.
The cam portion 130 includes the second cam 132. When the printer 1 is assembled together (i.e., when the first link 110 is assemble to the second link 220 and the cover 6), the pin 228 of the second link 220 is first engaged with the second cam 132 to allow the second link 220 and the first link 110 to be connected to each other. Accordingly, the assembly of the printer 1 can be facilitated.
While the description has been made in detail with reference to the embodiment, it would be apparent to those skilled in the art that various changes and modifications may be made thereto.
For example, while the cam portion 130 is in a form of a hole in the above-described embodiment, the cam portion 130 may be a cam surface formed at an outer peripheral edge surface of the first link 110. In this case, the second link 220 may be urged by an elastic member so that the pin 228 is pressed against the cam surface. Further, the groove cam 133 may have a linear shape instead of a curved shape.
The cover 6 is provided at the housing 2 so as to be pivotally movable relative to the housing 2. However, the cover 6 may be provided at the housing 2 so as to be slidably movable relative to the housing 2. Further, instead of the cover 6, the printer 1 may include a lever. The lever need not be capable of opening and closing an opening (i.e., the attachment portion 8) provided in the housing 2 as long as the lever is an operation member that is movable in response to the user's operation. While the first cam 131 and the pin 228 are engaged with each other with a clearance therebetween in the above-described embodiment, such the clearance may not be provided between the first cam 131 and the pin 228.
Further, in the above-described embodiment, the pin 228 provided on the second link 220 has a substantially oblong cross-section taken along a plane perpendicular to the left-right direction. Instead of the above shape, the pin 228 may have an arbitrary cross-section such as a substantially oval cross-section, a substantially ellipse cross-section, a substantially rectangular cross-section, or a substantially polygonal cross-section, as long as the cross-section of the pin 228 has a major diameter and a minor diameter substantially the same as those of the pin 228 described above.
The two pins 249 form an imaginary elongated circle 250. The elongated circle 250 has a major diameter (a dimension T1) smaller than the inner diameter of the first cam 131 and greater than the groove width of the groove cam 133, and a minor diameter (a dimension T2) smaller than the groove width of the groove cam 133. Even with the above configuration, the set of pins 248 is prevented from entering the groove cam 133 when the second link 320 is in the operation position (see
Further, the cam portion 130 formed in the first link 110 may not include the second cam 132. In this case, the cam portion 130 has a shape in which the groove cam 133 is extended to replace the second cam 132.
However, with the above configuration in which the second cam 132 is dispensed with, the first link cannot be assembled in accordance with the method described above. In order to assemble the first link to both the second link 220 and the cover 6 in a different method, the first link includes a through-hole instead of the pair of shaft portions 111. The through-hole has a diameter equal to a diameter of each pivot hole 7A. Hereinafter, the first link without the second cam 132 and formed with the through-hole is referred to as “specific first link”. A shaft to be inserted into the through-hole and the pivot holes 7A is needed separately. The shaft has a length greater than a distance in the left-right direction between the pair of bearing portions 7.
A method of assembly of the specific first link will be described. The operator places the specific first link to the left of the pin 228. Then, the operator moves the specific first link rightward and causes the pin 228 to be engaged with the groove cam 133 at a position close to a distal end of the groove cam 133. Thereafter, the operator moves the specific first link to a position where the through-hole formed in the specific first link is aligned with the pivot holes 7A in the left-right direction. With the positions of the through-hole and the pivot holes 7A aligned with each other, the shaft is inserted into the through-hole and the pivot holes 7A. Thereafter, a retaining ring is fixed to each of ends of the shaft protruding outward of the bearing portions 7, and the assembly of the specific first link is completed.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-109647 | Jun 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8197060 | Maekawa | Jun 2012 | B2 |
8651757 | Inoue | Feb 2014 | B2 |
20070138193 | Aono | Jun 2007 | A1 |
20110107932 | Inoue | May 2011 | A1 |
20160176209 | Ishimori | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
H04-166373 | Jun 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20200391523 A1 | Dec 2020 | US |