1. Field of the Invention
This invention pertains generally to a first-class mail production system or similar printing systems that permit a direct connection between a high-speed document printing process that utilizes “printer-lane-packaging” techniques to produce single to multi-page document package sets (variable page-count sets) and an envelope insertion and mailing process. More particularly, the subject invention relates to a system and a process for printing both form information and variable data information on printer-lane-generated documents that are subsequently cut, folded, and collated into individual document set packages having one or more pages per set in such a fashion that the resultant set packages may either directly or indirectly pass to a suitable envelope inserter for further post-printing processes, thereby combining two processes that traditionally have been completely separate entities and normally placed in different physical locations.
2. Description of Related Art
The exceedingly novel and non-obvious subject invention combines some elements of traditional direct mail processing with standard first-class mailing techniques and adds an overall new document processing sequence to create a reliable and efficient document package system for bulk mailings. Commercial printing practices routinely produce direct mail document packages that do not vary in the number of pages within each document package, in line with the printing process and achieve reliable rates, but do not attempt to fold, collate, and insert these sheets into envelopes or generate document packages which contain varied sheet counts per document package. Such direct mail identical sheets are commonly produced using commercial printing and finishing technology, where a high speed, high-tension paper web runs for hours without stopping. Downstream from the utilized printing units are positioned a slitter and a high-speed rotary cutter that convert the web into streams of shingled sheets that are then carried on a conveyor to a desired location. Subsequent processing equipment operates on these shingled streams of cut information-static sheets, typically doing aligning, trimming, and bundling. This approach reduces the likelihood of jams, allowing the equipment to run continuously for hours or even days. Thus, per-piece labor and capacity costs are low.
As will be described below in detail, the subject invention adds two further critical processing steps that are above and beyond those mentioned above to produce a highly flexible and integrated packaging system. First, the number of sheets per packaged piece may vary from as little as one sheet to as many as 20, 30, 100, or more. Second, each and every sheet is unique and must be accounted for and tracked. No existing direct mail production operation has ever achieved these two additional capabilities or constraints. Because of the complexity associated with meeting these two constraints, current practitioners of bulk first-class mail production have been forced to indirectly incorporate these two constraints into the chain of processing their mail by performing sheet-level processing (i.e., cutting, collating, and folding) off-line, away from the printer. This off-line approach prevents “exceptions” in the less reliable cutting, collating, and folding processes from stopping the printer. Instead, these processes are performed in-line with the inserter (see immediately below). This separation approach makes economic sense in an environment where printing assets are much more valuable than inserting assets, because the down-time capacity cost (i.e., depreciation) of a sheet jam at a quarter million dollar inserter is only a fraction of that of a sheet jam at a five million dollar printer.
As seen in
Wide (36 inch) rolls of blank stock paper are run through a form printer to create a “web” of printed forms. The web containing the printed forms is slit down the middle and wound into two narrow rolls (each 18 inches wide). These 18 inch rolls are then stored for later use or used immediately. In any case, the 18 inch rolls of forms, eventually, are transported to the next piece of equipment for utilization.
Thus, the existing prior art generally falls into two categories: 1) printing finishing systems that produce same-number-of-sheets sets of documents or 2) inserting systems that produce variable-number-of-sheets sets documents from already printed sheets. No combined systems are known to exist, therefore the subject invention that discloses a finishing system that produces variable-number-of-sheets sets of documents is novel and non-obvious.
U.S. Pat. No. 5,754,434 relates an integrated printing and inserting system in which two or more streams of sheets (i.e., bill detail sheets from one direction and a bill cover sheet from another direction) are merged into a collated package and then sent to a folder and from there to subsequent handling devices. The subject invention's “lane packaging” concept is not suggested or disclosed in the '434 patent.
Found in U.S. Pat. No. 5,321,624 is an insertions machine having a multiple document detector. Presented within this document is a means of thickness measurement for the purposes of exception detection and does not discloses any means or process of document generation.
U.S. Pat. Nos. 4,972,655, 5,409,441, 5,524,421, and 5,960,607 all disclose mailing finishing systems that produce, in a single run, same-number-of-pages sets of documents from a web press. It is once again stressed that the subject invention produces variable-number-of-pages sets of documents or same-number-of-pages sets of documents or a desired mixture of same or variable page count sets.
An object of the present invention is to provide a system and method of operation that efficiently links traditional direct mailing techniques with bulk first class mailing procedures to eliminate the necessity of generating wasteful fan-folded stacks of documents that must then be unfolded for cutting, collating, and folding into customer-related sets.
Another object of the present invention is to furnish a system and procedure for sequentially utilizing a form printer followed by a lane-printing-capable variable-data printer to produce a stream of printed sheets that are immediately collated and folded into folded sets that are ready for storage or transport to a receiving inserter.
A further object of the present invention is to supply a system and procedure that employs a variable-data printer that generates, on pre-printed forms, documents via lane-printing procedures to produce a stream of shingled sheets that are collated and folded into variable page-count sets that may be stored or transported to a receiving inserter.
Still another object of the present invention is to disclose a procedure for producing collated, folded, and customer-related variable page-count sets of billing statements by utilizing a variable-data printer and printing-in-lane programming procedures.
Yet a further object of the present invention is to describe a method of producing inserter-ready folded sets of customer-related billing documents by eliminating wasteful intermediary fan-folding and unfolding steps via the use of printing-in-lane procedures to create a shingled stream of customer-related sheets that are then collated and folded into customer-related sets of billing documents having one of more pages.
It is stress that the examples provided herein are for a billing statement mailing system, but those skilled in the art will readily appreciate that any appropriate or equivalent documents may be printed with the disclosed system, apparatus, and method. Disclosed is a system, apparatus, and method for producing folded variable page-count sets of statements in a fast and efficient manner that utilizes a novel printing-in-lanes process that produces billing statements in a combined fixed-data printing, variable-data printing, and logically-related statement set collation process that eliminates the need for rolling up fixed-data printed forms, then un-rolling them to print the variable-data information, then fan-fold stacking and unstacking before the collator creates the logically-related statement sets. Comprising the subject system is a sequence of novel, efficient steps: 1) wide rolls of blank stock are unrolled and printed with fixed-data to produce a linear web of forms; 2) the web of forms is passed through a variable-data printer that utilizes “in-lane” printing techniques to generate a linear web of “in-lane” associated pages for eventual customer-related billing statements; 3) the linear web is cut into two or more shingled streams of pages; 4) as controlled by an overseeing program, each stream of shingled pages is passed to a folder/collator that groups customer-related pages together into variable page-count sets of folded billing statements; 5) the sets of folded billing statements are either stored for later processing or transferred to a suitable inserter; 6) the inserter accepts the sets of customer-related billing statements and handles them in an appropriate manner to produce final billing statements within an envelope; and 7) the enveloped statements are then placed in mailing trays and shipped by standard means.
Further objects and aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus generally shown in
Thus, disclosed is a system and method for producing folded sets of documents (billing statements being one example of such documents) in a fast and efficient manner that utilizes a novel printing-in-lanes process that produces documents in a combined fixed-data printing, variable-data printing, and logically-related document set collation process that eliminates the need for rolling up fixed-data printed forms, then un-rolling them to print the variable-data information, then fan-fold stacking and unstacking before the collator creates the logically-related document sets.
As can be seen in
As controlled by an overseeing program, each stream of cut, shingled sheets 35 (36, 37, 38) is passed to a folder/collator 40 that groups logically-related pages together into variable page-count sets of folded documents such as billing statements 45. The folder/collator 40 may be of various suitable configuration so long as folded variable page-count sets are produced. The variable page-count sets of folded documents 45 are either stored or transferred to a subsequent processing location 50. As seen in
More specifically, the folder/collator 40 seen in
As related in
For the sake of clarity,
Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention.
Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
Number | Name | Date | Kind |
---|---|---|---|
3586437 | Dietz et al. | Jun 1971 | A |
4179107 | Harris | Dec 1979 | A |
4279410 | Bolza-Schunemann | Jul 1981 | A |
4972655 | Ogawa | Nov 1990 | A |
5321624 | Helffrich et al. | Jun 1994 | A |
5409441 | Muscoplat | Apr 1995 | A |
5522586 | Bennett et al. | Jun 1996 | A |
5524421 | Nauheimer et al. | Jun 1996 | A |
5754434 | Delfer et al. | May 1998 | A |
5950036 | Konishi | Sep 1999 | A |
5960607 | Bohn et al. | Oct 1999 | A |
6327599 | Warmus et al. | Dec 2001 | B1 |
6402132 | Michaelis et al. | Jun 2002 | B1 |
6402136 | Lamothe | Jun 2002 | B1 |
6446100 | Warmus et al. | Sep 2002 | B1 |
6615105 | Masotta | Sep 2003 | B2 |
6709374 | Neubauer et al. | Mar 2004 | B2 |
6880818 | Desaulniers et al. | Apr 2005 | B2 |
20030146559 | Middelberg et al. | Aug 2003 | A1 |