This application claims priority to Japanese Patent Application No. 2012-079184 filed Mar. 30, 2012, the content of which is hereby incorporated herein by reference.
The present disclosure relates to a printer that is capable of printing on a printing medium by using a thermal head, to a non-transitory computer-readable medium that stores a control program executable on the printer, and to a method that is executed by the printer.
A printer is known that includes a thermal head that has a plurality of heating elements. The printer causes the individual heating elements to generate heat by applying electric current to the individual heating elements. The printer thus performs printing by one of producing color on heat-sensitive paper and using hot melt ink to transfer a pattern to recording paper. In printing control for the thermal head, within a printing cycle in which one dot is printed, there must be, for example, a heating pulse time period for performing the printing and a non-heating time period for cooling the thermal head after the heating is finished.
When the printing starts, as well as when an isolated dot that stands alone is printed in the course of the printing, more than a little of the energy that is applied for generating heat may be used for initially heating the area around the heating element to its thermal capacity. Accordingly, the applied energy may be slightly insufficient. In order to compensate for the energy shortfall, the printing may be performed by adding an auxiliary pulse within the printing cycle, prior to the regular heating pulse, for example. In the case of a printer that uses heating elements that correspond to 128 dots, as an example of the thermal head, the printing operation may be performed by replacing data with every line. The auxiliary pulse may not be required for a heating element that is heated continuously since the heating element has been used for printing a dot for the preceding line. Conversely, in a case where a heating element that corresponds to a dot that precedes a print dot in a sub-scanning direction of the thermal head has not generated heat, and in a case where heating elements that correspond to dots that precedes and follows a print dot in a main scanning direction of the thermal head have not generated heat, the auxiliary pulse may be required. Therefore, within the printing cycle, the auxiliary pulse, the heating pulse, and the non-heating time period may be required.
In the printer that is described above, in a case where the printing speed is increased and the printing cycle is shortened, the pulses that are described above may not fall within the printing cycle. To form pulses suitable for the printing cycle, for example, the following methods are assumed: increasing the voltage that is applied to the heating elements of the thermal head; and increasing the electric current by lowering the resistance of the heating elements. In those cases, it would be necessary to increase the voltage resistance of the integrated circuit parts in the thermal head, or to increase the current capacities of the integrated circuits. For another method, it is assumed to increase the heat transfer efficiency to more efficiently transmit the heat from the heating elements to the printing medium. However, all of these methods may increase costs. In a case where the printing speed is increased and the printing cycle is shortened, the proportion of the printing cycle that is accounted for the heating pulse time period may increase, and the proportion of the printing cycle that is accounted for the non-heating time period may decrease. Therefore, the time period during which the raised temperature of a heating element falls may become shorter. Accordingly, blurring, smearing, or the like may occur in the printed characters due to the rise in the temperature of the thermal head during continuous printing.
Embodiments of the broad principles derived herein provide a printer that improves heating efficiency of a thermal head and allows high-density printing, a non-transitory computer-readable medium that stores a control program executable on the printer, and to a method that is executed by the printer.
Embodiments provide a printer that includes a feeding portion, a printing portion, and a processor. The feeding portion is configured to feed a printing medium in a sub-scanning direction that is orthogonal to a main scanning direction. The printing portion includes a plurality of heating elements that are arrayed in the main scanning direction and that is configured to perform printing on the printing medium fed by the feeding portion when heating pulses are applied to the plurality of heating elements each corresponding to a single dot. A length of each of the plurality of heating elements in the sub-scanning direction is shorter than a length of each of the plurality of heating elements in the main scanning direction. The processor is configured to apply one or more heating pulses to one of the plurality of heating elements in response to a command to print one dot.
Embodiments also provide a non-transitory computer-readable medium storing a control program executable on a printer. The printer includes a feeding portion and a printing portion. The feeding portion is configured to feed a printing medium in a sub-scanning direction that is orthogonal to a main scanning direction. The printing portion includes a plurality of heating elements that are arrayed in the main scanning direction and that is configured to perform printing on the printing medium fed by the feeding portion when heating pulses are applied to the plurality of heating elements each corresponding to a single dot. The program includes computer-readable instructions, when executed, to cause the printer to perform the step of applying one or more heating pulses to one of the plurality of heating elements in response to a command to print one dot. A length of each of the plurality of heating elements in the sub-scanning direction is shorter than a length of each of the plurality of heating elements in the main scanning direction.
Embodiments further provide a method that is executed by a printer. The printer includes a feeding portion and a printing portion. The feeding portion is configured to feed a printing medium in a sub-scanning direction that is orthogonal to a main scanning direction. The printing portion includes a plurality of heating elements that are arrayed in the main scanning direction and that is configured to perform printing on the printing medium fed by the feeding portion when heating pulses are applied to the plurality of heating elements each corresponding to a single dot. The method includes the step of applying one or more heating pulses to one of the plurality of heating elements in response to a command to print one dot. A length of each of the plurality of heating elements in the sub-scanning direction is shorter than a length of each of the plurality of heating elements in the main scanning direction.
Embodiments will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, an embodiment will be explained with reference to the drawings. Hereinafter, the lower left side, the upper right side, the lower right side, and the upper left side in
The structure of the tape printer 1 will be explained briefly. As shown in
A display 5 is provided at the rear of the function key cluster 4. The display 5 may have a rectangular shape, for example, and the longitudinal direction of the display 5 may be in parallel to a tape discharge direction of the tape printer 1. The tape discharge direction may be, for example, a direction from a discharge outlet 15, which will be described below (refer to
A cover 6 is provided in the rear portion of the top face of the tape printer 1. The cover 6 has a substantially rectangular shape in a plan view. The rear edge of the cover 6 is axially supported at the rear of the top face of the tape printer 1. As shown in
A USB connector 16 is provided in the rear portion of the right side face of the tape printer 1. A terminal of a USB cable, which is not shown in the drawings, may be connected to the USB connector 16. The tape printer 1 may be connected to a personal computer (PC) 200 (refer to
The internal structure of the cassette mounting portion 8 will be explained with reference to
The tape feed mechanism includes a ribbon winding shaft 9 and a tape drive shaft (not shown in the drawings), for example. The ribbon winding shaft 9 is provided in a vertical orientation substantially in the center of the cassette mounting portion 8. The ribbon winding shaft 9 may be rotated by being driven by a tape feed motor 15 (refer to
The cutter mechanism is provided in the middle of a feed path for the tape 70 between the thermal head 10 and the discharge outlet 15. The cutter mechanism includes a moving blade and a fixed blade that are not shown in the drawings, as well as a cutter motor 12 (refer to
An optical sensor 25 (refer to
The structure of the tape cassette 30 will be explained with reference to
As shown in
The double-sided adhesive tape 58 is wound around the first tape spool 40. The double-sided adhesive tape 58 is a double-sided tape with a release paper affixing to one side. The double-sided adhesive tape 58 is wound around the first tape spool 40 with the release paper facing outward. The double-sided adhesive tape 58 is to be affixed to the print surface side of the printed film tape 59. The film tape 59 is wound around the second tape spool 41. The ink ribbon 60 is wound around the ribbon spool 42. Hereinafter, the upstream side and the downstream side in the feed direction of the film tape 59 is respectively referred to as the upstream side in the feed direction and the downstream side in the feed direction.
The ribbon winding shaft 9 (refer to
The cassette case 31 includes the arm portion 34. The arm portion 34 is a portion that extends to the left from the right front corner of the tape cassette 30. The film tape 59 that has been pulled out from the second tape spool 41 and the ink ribbon 60 that has been pulled out from the ribbon spool 42 may both be guided within the arm portion 34. The tip end of the arm portion 34 is curved somewhat toward the rear. An opening 35 is provided at the tip end of the arm portion 34. At the opening 35, the film tape 59 and the ink ribbon 60 may be discharged toward an open portion 77 in a state of being superposed on one another. The open portion 77 is a space that is provided on the front face side of the tape cassette 30.
The head insertion portion 39 is a space that is bounded by the front face of the cassette case 31 and the rear face of the arm portion 34. Through the open portion 77, the head insertion portion 39 is connected to the outside at the front face side of the tape cassette 30. The head holder 11 may be inserted into the head insertion portion 39. The head holder 11 is a member that supports the thermal head 10 (refer to
The operation of printing by the tape printer 1 will be explained briefly with reference to
The film tape 59 may be supplied from the opening 35 to the head insertion portion 39 in the state in which the ink ribbon 60 has been superposed on the surface of the film tape 59, and then may be fed between the thermal head 10 and the platen roller. Then a character may be printed on the printing surface of the film tape 59 by the thermal head 10, starting from the downstream side in the feed direction. Thereafter, the used ink ribbon 60 may be peeled away from the printed film tape 59 and may be wound up by the ribbon winding spool 44.
The double-sided adhesive tape 58 may be pulled out from the first tape spool 40 by the coordinated operations of the tape drive roller 46 and the feed roller. As the double-sided adhesive tape 58 that has been pulled out is guided between the tape drive roller 46 and the feed roller, the double-sided adhesive tape 58 may be superposed on and affixed to the print surface of the printed film tape 59. The printed film tape 59 to which the double-sided adhesive tape 58 has been affixed may become the tape 70 and may be fed toward a tape discharge outlet 49.
The size of a heating element 71 of the thermal head 10 will be explained with reference to
In contrast, the dimensions of the heating element 71 of the thermal head 10 in the present embodiment are different from the dimensions of the known heating element. The thermal head 10 includes a plurality of the heating elements 71. The plurality of the heating elements 71 are arrayed at a specified pitch in the main scanning direction. Each of the heating elements 71 is rectangular. The length of each of the heating elements 71 in the main scanning direction is the same as in the known heating element. The length in the sub-scanning direction may be 95 μm, for example. In other words, the length of the heating element 71 in the sub-scanning direction is shorter than the length of the heating element 71 in the main scanning direction. Therefore, the heat generation efficiency of the heating element 71 of the present embodiment can be improved over that of the known heating element. The electric power that is consumed can be conserved accordingly. It is unnecessary to raise the temperature of the heating element 71 above what is required. Problems such as sticking and the like, for example, can therefore be prevented.
Current application control and current application control patterns in the printing of one dot in the present embodiment will be explained with reference to
In the present embodiment, data replacement is required in order to change the duration of the current application for the heating pulses P1 and P2. The print density in the sub-scanning direction can be increased by replacing the data within the printing cycle t. High-quality printing thus may become possible. Hereinafter, each of the control patterns A to E will be explained in detail. In
The control pattern A will be explained with reference to
The control pattern B will be explained with reference to
The control pattern C will be explained with reference to
The control pattern D will be explained with reference to
The control pattern E will be explained with reference to
An electrical configuration of the tape printer 1 will be explained with reference to
The ROM 92 includes a program storage area 921 and the like. The program storage area 921 stores various types of programs for controlling the tape printer 1. The CGROM 93 stores size information for displaying characters on the display 5, printing dot pattern data for printing characters, and the like.
The RAM 94 includes a print buffer 941, a time parameter storage area 942, a control pattern A flag storage area 943, a control pattern B flag storage area 944, a control pattern C flag storage area 945, a control pattern D flag storage area 946, a control pattern E flag storage area 947, and the like. The print buffer 941 stores a print dot pattern in image data that are used during printing. The time parameter storage area 942 stores a time parameter n. The control pattern A to control pattern E flag storage areas 943 to 947 store control flags. The control flags are information items for setting one of a first part (a first round of current application) and a second part (a second round of current application) within one printing cycle under each of the control pattern A to the control pattern E, for example. For example, for the first part of the one printing cycle, the control flag is set to 1, and for the second part of the one printing cycle, the control flag is set to 2.
The flash memory 95 includes a basic constant table storage area 951, a decimal data table storage area 952, a document data storage area 953, a tape information storage area 954, and the like, for example. The basic constant table storage area 951 stores a basic constant table 9511 (refer to
The basic constant table 9511 will be explained with reference to
For example, for the control pattern A, the basic constant for the first part of the printing cycle (hereinafter referred to as the first constant) is 27700, and the basic constant for the second part (hereinafter referred to as the second constant) is 27700. For the control pattern B, the first constant is 36933, and the second constant is 18467. For the control pattern C, the first constant is 18467, and the second constant is 36933. For the control pattern D, the first constant is 18467, and the second constant is 18467. For the control pattern E, the first constant is 18467, and the second constant is zero. The ratios of the first constant and the second constant for each of the current application control patterns correspond to the respective pulse widths of the heating pulses P1 and P2 for that particular current application control pattern, for example.
The decimal data table 9521 will be explained with reference to
A method for setting the current application control pattern according to the relationship to the data for the area around the print dot will be explained with reference to
The print dot in the rank K of the third line is printed using the control pattern B. The dot in the rank K of the preceding line (the rank K of the second line) and the dot in the rank K−1 of the third line are both unprinted dots. It is therefore possible that the energy is to be insufficient in the area around the heating element 71 that corresponds to the print dot in the rank K of the third line or even in the entire thermal head 10. Accordingly, the energy insufficiency can be eliminated by performing the printing using the control pattern B. The preceding line is the line that was the target of printing before the printing of the line that is currently the target of printing. The print dot in the rank K+2 of the fourth line is also printed using the control pattern B, because the dot in the preceding line (the rank K+2 of the third line) is an unprinted dot. The dot in the rank K+2 of the third line, the same line as the print dot in the rank K+1 of the third line, is an unprinted dot. It is therefore possible that the energy is to be insufficient in the area around the heating element 71 that corresponds to the print dot in the rank K+1 of the third line or even in the entire thermal head 10. Accordingly, the energy insufficiency can be eliminated by performing the printing using the control pattern B. The print dot in the rank K of the sixth line is also printed using the control pattern B, because the dot in the rank K+1 of the same sixth line is an unprinted dot.
The print dots in the rank K of the fourth, fifth, and seventh lines are printed using the control pattern A. The dots that precede and follow the print dots in the rank K of the fourth, fifth, and seventh lines, as well as the dots in the rank K+1 and the rank K−1 of the same set of lines, are all print dots. Therefore, printing using the control pattern A makes it possible to perform stable, high-quality printing. For the same reason, the print dot in the rank K+1 of the fourth line and the print dot in the rank K+2 of the fifth line are also printed using the control pattern A.
The print dot in the rank K of the eighth line is printed using the control pattern C. The dots that precede and follow the print dot in the rank K of the eighth line, as well as the dots in the rank K+1 and the rank K−1 of the same line, are all print dots. Moreover, a specified number (five, for example) of the print dots are lined up in succession in the same rank. Therefore, a state may exist in which heat has accumulated in the area around the heating element 71 that corresponds to the print dot in the rank K of the eighth line or even in the entire thermal head 10. In this case, printing using the control pattern C makes it possible to increase the print density in the sub-scanning direction and to perform stable, high-quality printing.
The printed dot in the rank K+1 of the fifth line and the print dot in the rank K of the ninth line are printed using the control pattern D. The dot in the rank K+1 of the sixth line and the dot in the rank K of the tenth line are unprinted dots. Therefore, it is not necessary to accumulate heat for the printing of the next line in the area around the heating element 71 that corresponds to the print dot in the rank K+1 of the fifth line or in the thermal head 10. In this case, the electric power that is consumed can be conserved by performing the printing using the control pattern D and reducing the pulse widths for both the heating pulse P1 and the heating pulse P2.
Thus, in the control pattern B, relative importance is placed on the heating pulse P1 for the printing of the one dot, in order to reduce the energy shortfall when the printing starts. Therefore, the temperature of the heating element 71 reaches its peak in the first part of the printing cycle. In the control pattern C, relative importance is placed on the heating pulse P2. Therefore, the temperature of the heating element 71 reaches its peak in the second part of the printing cycle. The temperature that has been built up in the heating element 71 in the preceding line is thus reduced.
In a state in which print dots have been printed in succession in the preceding lines and heat has accumulated in the heating element 71, the possibility arises that smearing is to occur in the printing in an area where a change is made from a print dot to an unprinted dot. Accordingly, in order to reduce smearing and blurring, one of the control pattern D and the control pattern E is used, depending on the conditions for the printed dots in the next and subsequent lines. The next line is the line that is to be the target of printing after the printing of the line that is currently the target of printing.
Main processing that the CPU 91 performs will be explained with reference to the flowchart in
In a case where the CPU 91 determines that the printing has started (YES at Step S2), the ambient temperature sensor 27 detects the ambient temperature (Step S3). The CPU 91 stores the detected ambient temperature in the RAM 94, for example. The CPU 91 performs the current application control of the thermal head 10 in accordance with the detected ambient temperature. The CPU 91 specifies the type of tape (Step S4). The CPU 91 uses the cassette identification sensor 26 to detect the type of the tape cassette 30. The CPU 91 also references the tape information that is stored in the flash memory 95 and specifies the type of tape (for example, the tape A) in the tape cassette 30. In the print buffer 941, the CPU 91 expands the printed dot pattern for the image data. For example, in a case where the document data that are stored in the document data storage area 953 are character strings, the document data are stored as text code. Therefore, the text code is converted into the printed dot pattern.
The CPU 91 turns on the tape feed motor 15 (Step S5). The CPU 91 determines whether the feeding of the tape 70 by a margin amount has been finished (Step S6). In a case where the feeding of the tape 70 by the margin amount has not been finished (NO at Step S6), the CPU 91 returns to the processing at Step S5 and continues the feeding of the tape 70. A margin is thus created on the tape 70. In a case where the feeding of the tape 70 by the margin amount has been finished (YES at Step S6), the CPU 91 acquires the data for the one line that is the line that is the target of printing, as well as the data for one line that precedes the line that is the target of printing and three lines that follow the line that is the target of printing (Step S7). The data that is to be acquired include ON and OFF information for each of the dots. For example, the print dots are indicated as ON, and the unprinted dots are indicated as OFF. The CPU 91 uses the heating element temperature sensor 28 to detect the temperatures of the heating elements 71 as temperature A/D values (Step S8). The temperature A/D value is a value that is acquired when the value of the temperature of the heating element is converted from analogue to digital. The CPU 91 stores the detected heating element temperatures (the temperature A/D values) in the RAM 94, for example. Processing at Step S8 may be omitted. The CPU 91 performs control pattern setting processing (Step S9).
The control pattern setting processing will be explained with reference to the flowchart in
The CPU 91 extracts, from the data that were acquired at Step S7, data for printing the individual dots, one dot at a time, starting from the rank d of the line that is the target of printing. For each individual dot, the CPU 91 determines whether the dot is ON (Step S22). In a case where the dot that is indicated by the extracted data is ON (YES at Step S22), the CPU 91 acquires dot information for the dots that surround the print dot that is indicated by the extracted data. The CPU 91 determines whether the dot in the rank d of the preceding line is OFF (Step S23). In a case where the dot in the rank d of the preceding line is OFF (YES at Step S23), the CPU 91 sets the current application control pattern for the dot that is the target object of the processing to the control pattern B (Step S29). Hereinafter, the dot that is the current target of the processing is referred to as the target dot.
In a case where the dot in the rank d of the preceding line is ON (NO at Step S23), the CPU 91 determines whether the dot above is OFF (Step S24). In a case where the CPU 91 determines that the dot above is OFF (YES at Step S24), the CPU 91 sets the current application control pattern for the target dot to the control pattern B (Step S29). In a case where the CPU 91 determines that the dot above is ON (NO at Step S24), the CPU 91 determines whether the dot below is OFF (Step S25). In a case where the CPU 91 determines that the dot below is OFF (YES at Step S25), the CPU 91 sets the current application control pattern for the target dot to the control pattern B (Step S29). In the processing at Step S29, the CPU 91 sets to ON a control pattern B flag that is stored in the RAM 94, for example.
In a case where, for example, the CPU 91 has determined that the dot in the rank d of the preceding line, the dot above, and the dot below are all ON (NO at Step S23; NO at Step S24; NO at Step S25), the CPU 91 determines whether the dot in the rank d of the next line is OFF (Step S26). In a case where the CPU 91 determines that the dot in the rank d of the next line is ON (NO at Step S26), the CPU 91 determines whether a first continuity condition is applicable to the target dot (Step S27). The first continuity condition is a condition that, for example, not less than a number x of ON dots (for example, five ON dots) occur in succession in the rank d up to the preceding line. In a case where the CPU 91 determines that the first continuity condition is not applicable to the target dot (NO at Step S27), the CPU 91 sets the current application control pattern for the target dot to the control pattern A. Then the CPU 91 sets the target dot to ON in the work data for the control pattern A (Step S28). The CPU 91 sets to ON a control pattern A flag that is stored in the RAM 94, for example. In a case where the CPU 91 determines that the first continuity condition is applicable to the target dot (YES at Step S27), the CPU 91 sets the current application control pattern for the target dot to the control pattern C. Then the CPU 91 sets the target dot to ON in the work data for the control pattern C (Step S33). The CPU 91 sets to ON a control pattern C flag that is stored in the RAM 94, for example.
In a case where, for example, the CPU 91 has determined that the dot in the rank d of the preceding line, the dot above, and the dot below are all ON (NO at Step S23; NO at Step S24; NO at Step S25), and that the dot in the rank d of the next line is OFF (YES at Step S26), the CPU 91 determines whether a second continuity condition is applicable to the target dot (Step S30). The second continuity condition is a condition that, for example, not less than a number y of OFF dots (for example, three OFF dots) occur in succession in the rank d from the next line onward. In a case where the CPU 91 determines that the second continuity condition is not applicable to the target dot (NO at Step S30), the CPU 91 sets the current application control pattern for the target dot to the control pattern D. Then the CPU 91 sets the target dot to ON in the work data for the control pattern D (Step S32). The CPU 91 sets to ON a control pattern D flag that is stored in the RAM 94, for example. In a case where the CPU 91 determines that the second continuity condition is applicable to the target dot (YES at Step S30), the CPU 91 sets the current application control pattern for the target dot to the control pattern E. Then the CPU 91 sets the target dot to ON in the work data for the control pattern E (Step S31). The CPU 91 sets to ON a control pattern E flag that is stored in the RAM 94, for example.
After setting the current application control pattern, the CPU 91 adds 1 to d (Step S34). In a case where the dot that is indicated by the extracted data is OFF (NO Step S22), the CPU 91 simply adds 1 to d (Step S34). Based on the value of d, the CPU 91 determines whether the processing has been completed for the data for all of the dots (Step S35). Specifically, in a case where one line has 128 dots, for example, the CPU 91 determines whether d is not less than 128. The thermal head 10 may include 128 heating elements, for example, and the print dot pattern in the image data may also contain 128 dots in a single line. In a case where the width of the image to be printed based on the image data is narrower than the width of the thermal head 10, the CPU 91 determines whether d is not less than a value that is equivalent to the width of the image. For example, in a case where the print dot pattern in the image data contains 100 dots in a single line, the CPU 91 determines whether d is not less than 100. In a case where an image with a narrower width than the width of the thermal head 10 is printed, there is to be heating elements that are not used in the printing. The heating elements that are not used in the printing may be seen as corresponding to the unprinted dots. In a case where the CPU 91 determines that the processing has not been completed for the data for all of the dots (NO at Step S35), the CPU 91 returns to the processing at Step S22. Then the CPU 91 repeats the processing for the data for all of the dots that correspond to the current rank. In a case where the CPU 91 determines that the processing has been completed for the data for all of the dots (YES at Step S35), the CPU 91 has completed the work data for the control pattern A to the control pattern E. Therefore, the CPU 91 terminates the control pattern setting processing and advances to the processing at Step S12 in
As shown in
The current application control processing will be explained with reference to the flowchart in
The CPU 91 sets the respective control flags to 1 in the control pattern A to control pattern E flag storage areas 943 to 947 in the RAM 94 (Step S44). As explained above, 1 is the control flag setting that indicates that the current application control is being performed for the first part of the printing cycle. Next, the CPU 91 sets, as transmission data, the work data for the control pattern A to the control pattern E for one line that were created by the control pattern setting processing (Step S9) that was explained above (Step S45). The data for the one line that were acquired at Step S9 are the work data for the control pattern A to the control pattern E. The CPU 91 transmits the transmission data to the thermal head 10 (Step S47). The heating elements 71 that correspond to the parts, within the transmission data for the one line, where the value is 1 generate heat, and the heating elements 71 that correspond to the parts, within the transmission data for the one line, where the value is zero do not generate heat.
Next, the CPU 91 performs control pattern A data update processing (Step S48). The control pattern A data update processing is processing that, by updating as necessary the transmission data that are transmitted to the thermal head 10, switches the application of the electric current on and off for the print dots that is to be printed using the control pattern A. The CPU 91 then performs control pattern B data update processing (Step S49). The CPU 91 then performs control pattern C data update processing (Step S50). The CPU 91 then performs control pattern D data update processing (Step S51). The CPU 91 then performs control pattern E data update processing (Step S52). In the same manner as the control pattern A data update processing, the data update processing for the control pattern B to the control pattern E is processing that, by updating as necessary the transmission data that are transmitted to the thermal head 10, switches the application of the electric current on and off for the print dots that is to be printed using the control pattern B to the control pattern E, respectively. The data update processing for the control pattern A to the control pattern E (Steps S48 to S52) will be explained.
The control pattern A data update processing will be explained with reference to
In a case where the CPU 91 determines that the value of n is not 16 (NO at Step S62), the CPU 91 determines whether the time that has elapsed since the transmission data were transmitted to the thermal head 10 is ta (Step S66). As explained above, ta is the time of the maximum temperature for the first peak in the temperature curve for the control pattern A. Accordingly, it is desirable to turn off the electric current at ta in order to prevent an excess of the applied energy. The determination as to whether the elapsed time is ta can be made by determining, for example, whether the control flag in the control pattern A flag storage area 943 of the RAM 94 has been set to 1 and whether the control pattern A control constant has become not greater than zero. If the current application control has been performed for the first part of the printing cycle, and if the control pattern A control constant is not greater than zero, it can be inferred that the heating element 71 has reached its maximum temperature under the application of sufficient voltage. In this case, it can be determined that the elapsed time is ta.
In a case where the CPU 91 determines the elapsed time is not ta (NO at Step S66), the CPU 91 then determines whether the elapsed time is tb (Step S68). In a case where the CPU 91 determines the elapsed time is not tb (NO at Step S68), the CPU 91 terminates the control pattern A data update processing and proceeds to the processing at Step S49 in
On the other hand, in a case where the CPU 91 determines the elapsed time is ta (YES at Step S66), the CPU 91 prepares first work data as the transmission data (Step S67). The first work data are data that set the application of the electric current to OFF only for the heating element 71 that corresponds to the control pattern A dot and that leave the current application ON/OFF settings unchanged for the heating elements 71 that correspond to the other dots. For example, all of the data that correspond to the control pattern A dots may be set to zero. The data are transmitted to the thermal head 10 at Step S54 in
In a case where the CPU 91 determines that the value of n that is stored in the time parameter storage area 942 of the RAM 94 is 16 (YES at Step S62), the elapsed time is equivalent to the t2 that is shown in
The CPU 91 sets the control flag to 2 in the control pattern A flag storage area 943 in the RAM 94 (Step S64). 2 is the control flag setting that indicates that the current application control is being performed for the second part of the printing cycle. Next, the CPU 91 sets the second constant to the control pattern A control constant (Step S65). The CPU 91 references the basic constant table 9511 (refer to
The CPU 91 performs the same sort of processing for the current application control in the second part of the printing cycle as the CPU 91 performed for the current application control in the first part of the printing cycle that was described above. In the current application control for the second part of the printing cycle, the CPU 91 determines whether the elapsed time is tb (Step S68). As shown in
In a case where the CPU 91 determines the elapsed time is tb (YES at Step S68), the CPU 91 prepares third work data as the transmission data (Step S69). The third work data are data that set the application of the electric current to OFF only for the heating element 71 that corresponds to the control pattern A dot and that leave the current application ON/OFF settings unchanged for the heating elements 71 that correspond to the other dots. The CPU 91 terminates the control pattern A data update processing and proceeds to the processing at Step S49 in
As shown in
In the control pattern B data update processing (Step S49), at Step S62, the CPU 91 determines whether the value of the time parameter n that is stored in the time parameter storage area 942 of the RAM 94 is 24 (refer to
In the control pattern C data update processing (Step S50), at Step S62, the CPU 91 determines whether the value of the time parameter n that is stored in the time parameter storage area 942 is 8 (refer to
In the control pattern D data update processing (Step S51), at Step S62, the CPU 91 determines whether or not the value of the time parameter n that is stored in the time parameter storage area 942 is 24 (refer to
As shown in
In a case where the CPU 91 determines that there is a control pattern E dot (YES at Step S71), the CPU 91 determines whether the elapsed time is ti (Step S72). As explained above, ti is the time of the maximum temperature in the temperature curve for the control pattern E. Accordingly, it is desirable to turn off the electric current at ti in order to prevent an excess of the applied energy. The determination as to whether the elapsed time is ti can be made by determining, for example, whether the control pattern E control constant has become not greater than zero. If the control pattern E control constant is not greater than zero, it can be inferred that the heating element 71 has reached its maximum temperature under the application of sufficient voltage. In this case, it can be determined that the elapsed time is ti.
In a case where the CPU 91 determines the elapsed time is not ti (NO at Step S72), the CPU 91 terminates the control pattern E data update processing and proceeds to the processing at Step S53 in
As shown in
For example, if the transmission data are the first work data that were prepared at Step S67 in the control pattern A data update processing, the heating element 71 that corresponds to the control pattern A dot is not heated. Therefore, an excess of the applied energy can be prevented. If the transmission data are the second work data that were prepared at Step S63, the application of the electric current to the heating element 71 that corresponds to the control pattern A dot is set to ON, while the current application ON/OFF settings are left unchanged for the heating elements 71 that correspond to the dots other than the control pattern A dot. Therefore, the heating element 71 that corresponds to the control pattern A dot generates heat. If the transmission data are the third work data that were prepared at Step S69, the application of the electric current to the heating element 71 that corresponds to the control pattern A dot is set to OFF, while the settings are left unchanged for the dots other than the control pattern A dot. Accordingly, the heating element 71 that corresponds to the control pattern A dot is not heated. Therefore, an excess of the applied energy can be prevented. The cases in which the work data for the control pattern B to the control pattern E are transmitted are processed in the similar manner.
The CPU 91 performs the control constant update processing (Step S55). In a case where there has not been a change in the transmission data (NO at Step S53), the CPU 91 performs the control constant update processing (Step S55) without transmitting the transmission data.
The control constant update processing will be explained with reference to the flowchart in
As explained above, as the voltage becomes higher, the time until each of the control constants becomes not greater than zero becomes shorter. That is, the higher the voltage becomes, the shorter the application duration for the heating pulse becomes. Therefore, an excess of the applied energy can be prevented. Conversely, as the voltage becomes lower, the time until each of the control constants becomes not greater than zero becomes longer. That is, the lower the voltage becomes, the longer the application duration for the heating pulse becomes. It is therefore possible to compensate for a shortfall in the applied energy. The CPU 91 adds one to the time parameter n that is stored in the time parameter storage area 942 of the RAM 94 (Step S84). The CPU 91 terminates the control constant update processing and returns to the processing at Step S56 in
As shown in
At Step S13 in
In a case where the CPU 91 determines that the processing has been completed for all of the lines (YES at Step S14), the CPU 91 determines whether the feeding of the tape 70 by a margin amount has been finished (Step S15). In a case where the CPU 91 determines that the feeding of the tape 70 by a margin amount has not been finished (NO at Step S15), the CPU 91 returns to Step S15 and waits while the tape feed motor 15 operates. In a case where the CPU 91 determines that the feeding of the tape 70 by a margin amount has been finished (YES at Step S15), the CPU 91 turns off the operation of the tape feed motor 15 (Step S16). Then the CPU 91 returns to Step S1 and repeats the processing. The CPU 91 performs the main processing repeatedly until the power supply is turned off.
As explained above, in the present embodiment, the tape printer 1 includes the thermal head 10. The thermal head 10 includes the plurality of the heating elements 71. The plurality of the heating elements 71 are arrayed at a specified pitch in the main scanning direction. Each of the heating elements 71 has a rectangular shape in a plan view. The length of each of the heating elements 71 in the sub-scanning direction is shorter than the length of each of the heating elements 71 in the main scanning direction. The heat generation efficiency of the heating element 71 can therefore be improved. The electric power that is consumed can be conserved accordingly. It is unnecessary to raise the temperature of the heating elements 71 above what is required. Problems such as sticking and the like, for example, can therefore be prevented.
In the embodiment that is described above, with the control patterns A to D, printing is performed by applying at least two heating pulses for the printing of a single dot within the printing cycle t. The two heating pulses may be the heating pulse P1 and the heating pulse P2, for example. The print density in the auxiliary scanning direction can therefore be increased, so high-density printing is possible. The magnitudes of the heating pulses P1, P2 and the ratio of the magnitudes of the heating pulses P1, P2 may be varied according to data on the area around the printed dot, for example. Electric power can therefore be consumed appropriately, and better energy efficiency can be achieved.
The present disclosure is not limited to the embodiment that is described above, and various types of modifications may be made. For example, in the embodiment that is described above, in the control pattern E, only the heating pulse P1 for the first part of the printing cycle is applied, and the heating pulse P2 for the second part of the printing cycle is not applied. It is acceptable to apply only the heating pulse P2 for the second part, without applying the heating pulse P1 for the first part. In the embodiment that is described above, the current application control patterns include the control pattern A to the control pattern E, but it is acceptable to include only the control pattern A to the control pattern D and to omit the control pattern E. In that case, Step S30 in
In the embodiment that is described above, one of one and two heating pulses are applied within the printing cycle t. However, more than two heating pulses may be applied within the printing cycle t.
In the embodiment that is described above, the printing speed is constant from the start of printing until the end of printing, such that the printing cycle is 8 milliseconds, for example. However, the printing cycle is not limited to 8 milliseconds, and the printing speed may be faster or slower. In a case where the printing speed is faster, for example, at Step S81 in the control constant update processing that is shown in
The present disclosure can be applied in a case where the printing speed varies from the start of printing until the end of printing. For example, the present disclosure can be applied to printing control in which the printing speed is slow immediately after the printing starts, and then the printing speed is increased gradually, such that the printing speed is fast while the printing is in progress, and then the printing speed is gradually decreased shortly before the printing ends, until at the end, the printing speed is slow and the printing terminates. The present disclosure can be applied in a case where, during printing at a high printing speed, the printing speed is varied in accordance with the print density.
In the embodiment that is described above, the current application control pattern is set based on the information about the dots in the area around the print dot. The current application control pattern may be set by additionally taking into consideration the temperature of the heating element, for example. A modified example in which the temperature of the heating element is taken into consideration will be explained with reference to
A temperature compensation table 9551 will be explained with reference to
The modified example of the control constant update processing will be explained with reference to the flowchart in
After reading the decimal data item C(V) (Step S82), the CPU 91 reads K(t), which is a compensation value (Step S91). For example, in a case where the temperature A/D value is 173, the temperature compensation table 9551 shows that the temperature is 10 degrees Celsius and the compensation value K(t) is 0.910 corresponding to the temperature A/D value of 173. The CPU 91 multiplies the decimal data item C(V) by the compensation value K(t) (Step S92). The CPU 91 takes the decimal data item C(V) that has been multiplied by the compensation value K(t) and subtracts the decimal data item C(V) from each of the control constants (Step S83). In this manner, in the modified example, the current application control patterns can be set by taking the temperature of the heating element into consideration, in addition to the information about the dots in the area around the print dot. For example, if the temperature of the heating element is an extremely high temperature, the compensation value K(t) becomes greater, so the decimal data item C(V) also becomes greater. The times by which the individual control constants become not greater than zero therefore come sooner, and the application duration for the heating pulse becomes shorter. It therefore becomes possible to perform heating control that is in accordance with the heat accumulation circumstances in the area around the thermal head 10.
In the case of the modified example, if a tape printer is used that is not provided with the heating element temperature sensor 28, the ambient temperature sensor 27 may be used as a substitute. In that case, it would be sufficient as long as a temperature compensation table is available for setting the compensation value that corresponds to the temperature that is detected by the ambient temperature sensor 27.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2012-079184 | Mar 2012 | JP | national |