Printers may be connected to an electrical supply network, and draw power therefrom.
When electrical equipment draws a current, it can impact power quality in the local electrical supply. One effect is generally known as ‘flicker’ as it can cause an appreciable change in brightness of incandescent light bulbs. Such flicker can be irritating, and the varying power supply can cause issues for other sensitive equipment. Therefore, power quality standards, such as the International Electrotechnical Commission (IEC) 61000-3-3 flicker standard, have been developed. A related standard, IEC-61000-4-15, provides functional and design specifications for flicker measuring apparatus to evaluate flicker severity. Such apparatus records voltage and/or power fluctuations and derives one or both of a short-term and a long term flicker indication, which can then be compared to predetermined values to see whether equipment under test meets a desired standard. The IEC standards mentioned above are incorporated by reference to the fullest extent allowable.
Due to the nature of operation, the power consumption by at least some of the subsystems in a printer tends to be cyclical, and a number of subsystems within a printer may draw significant power (e.g. greater than about 100 W). Both of these factors may contribute to the chances of causing flicker. However, determining flicker according to IEC analysis requires a complicated algorithm beyond the processing capabilities of some printers. In addition, if the voltage of the various subsystems is to be monitored directly, this can require voltmeters and other apparatus, adding to the complexity of a printer.
In block 104, the print instruction is used to determine a power usage for at least one printer component in carrying out the print instruction. The power usage is determined for each of a plurality of time intervals, the time intervals corresponding to portions of the time taken to carry out the printing task. In block 106, the number of occasions on which the power usage in a time interval exceeds a threshold power usage level within a time period is determined.
One method of determining the power usages as mentioned in relation to block 104 is further described in relation to the flowchart of
Such a printer 400 may further comprise additional components not illustrated for the sake of simplicity. Such components may for example comprise drum(s), cleaners to clean the drum(s), heaters, rollers or other conveyers for conveying the substrate, a supply of substrates, user interfaces, and the like. The power usage of any or all such components may be assessed, either using processes as set out herein, or using alternative methods. Where the power requirements of a component are low or steady and/or they are unlikely to have a significant effect on network power quality by causing flicker or the like, the effect of such components on power quality may be ignored.
In this example, the effect of two printer components (specifically, in this example, the printhead assembly 404 and the printer motor 406) on the network power quality is modeled by the processor 408, which may, for example, carry out the processes set out in
The number of drops of ink that are to be ejected in a given time interval will vary throughout the printing task, in accordance with the image portion that is to be printed onto the substrate over a given interval. The power usage for a printhead assembly 404 of an inkjet printer 400 for each time interval may be determined based on the number of ink drops ejected in that time interval. Indeed, in this example, each ink drop of a given color is taken to correspond to a given amount of power utilized by the inkjet-printing mechanism, such that the total power utilized is related to the number and color of drops (i.e. in this example, a drop of a particular color may relate to a higher power consumption than a drop of a different color). This information is supplied as part of a print instruction, which may comprise, for example, a computer readable file such as a pdf or TIFF file, and can be related to power consumption of the component for example via a look up table, or computed on the fly.
Therefore, in order to determine the power usage in a time interval ti, first, the number of ink drops of each color to be ejected onto substrate in the time interval is determined by reference to the print instruction (block 202). In this example, the time interval ti is less than the time taken to complete the printing job, T. In one particular example, T may be about 2 seconds. In other examples, this could be any predetermined value. The number n of intervals (and therefore the length of ti) depends on the plot length and other factors.
The power required to eject the drops in each time interval is determined (block 204), as shown in
In this example, the time intervals ti are of equal duration but this need not be the case.
Next, the power usage of the motor 406 is considered. Based on the print instructions, which may include, for example, how many pages are to be printed (in the example of
The total of the printhead assembly power and the motor power is then summed for each time interval (block 208). This can also be seen in the bar chart 308 of
This value, for each ti, is stored in the memory 410 (block 210).
Also shown in
Flicker is an effect experienced by other equipment connected to the electrical power supply network 414. For example, light bulbs in the same or nearby rooms may noticeably dim as the power drawn by the printer 400 exceeds a threshold. In addition, flicker reduces the power quality and can damage some electrical equipment.
An example of an acceptable level of voltage variation has been specified by the IEC, although other levels may be appropriate in other circumstances. The IEC standards evaluate of two categories of flicker severity: short-term (over a 10 minute period) and long-term (over a longer period, related to the duty cycle of the apparatus causing the flicker, typically 2 hours). These are evaluated by the parameters PST and PLT respectively. If a machine (as may be the case for a printer) has a short duty cycle, the long-term severity can be computed by measuring the shot-term severity value while it is working and the rest as if the printer is in stand-by mode, which means that the power consumption is very little.
Due to their relatively short duty cycle, short-term evaluation of flicker severity, PST, may be the more relevant measure for printers (although long term flicker severity, PLT, or any other quality measure, may also be considered). As defined by the IEC, the determination of flicker severity considers the proportion of time for which various power thresholds are exceeded.
In this example, the proportion of time intervals for which the various power thresholds defined by the IEC standards are used to determine PST. The value of these thresholds will depend on the power usage levels determined for the time period. However, in other examples, different thresholds may be used. For example, a difference in power levels within a predetermined number of time intervals may be considered. This is because relatively large changes in power consumption over relatively short periods of time contribute to the risk of flicker. For example, if there is change in power consumption of a predetermined amount (for example, of about 400 W), and this change is seen within a predetermined number of time intervals (for example, within 5 time intervals), then this may be indicative of the risk of flicker. In some examples, therefore, the threshold(s) may depend on other data collected in the time period.
The IEC standard level for ‘non-objectionable’ flicker is set at PST≤51.0, PLT≤0.65, although other standards may be applied.
In step 502, the power usage levels for a time interval ti stored in the memory 410 are retrieved and compared by the processor 408 to at least one threshold level, for all the time intervals in a time period T. As the measure being considered in this example is PST, the time period is 10 minutes, but other time periods may be used. In this example, in order to evaluate PST, the methods set out standard IEC 61000-4-15 are used. This comprises the determination of the proportions of time intervals for which various threshold are exceeded, which proportions are combined to provide PST.
Evaluating flicker can comprise monitoring a voltage signal directly, which can comprise using voltmeters, filters, demodulators and the like to separate the modulating signal from the main voltage signal. Use of demodulators usually results in unwanted artefacts in the data, which are generally removed with a further processing step. This data is then used to create a probability density function. However, in the examples set out herein, the actual voltage signal may not be acquired (or may not be acquired for all subsystems or components contributing to the change in voltage quality).
In the example of
In one example, the printer 400 may have further demands on the power supply network 414. For example, the printer 400 may comprise at least one component or subsystem which have a power usage profile which is not modelled as part of the process outlined herein.
In this example, the printer 400 comprises a dryer 416, which is self regulating through use of an embedded resistor switching algorithm to a threshold contribution to flicker of PST<0.3. Therefore a reasonable threshold for the contribution from the motors and the printhead assembly is set as PST<0.5. Of course, other thresholds may be applied depending for example on any other equipment affecting or affected by power quality in the connected supply network 414.
Returning to
If PST>0.5, i.e. the adverse effect on the power quality due to the considered printer components does or would exceed acceptable levels for that period, the possible degradation to power quality is considered to be significant and the power usage of the printer 400 is reduced (block 510). In this example, this comprises operating the printer at a reduced speed. This therefore results in a reduction of the power requirements in each time interval ti, reducing any (or any possible) detrimental effect of the printer on power quality in the network 414. In another example, the power usage may be reduced by pausing the printer for time, for example a few seconds.
The printer 400 may for example enter a ‘flicker control mode’, in which a predetermined speed reduction, or else a reduction in speed to a predetermined level, is employed. A first stage reduction may be implemented and, if this proves insufficient to reduce the adverse effects of the printer, a further reduction, which may include pausing the printer 400, may be implemented. The pause may be, for example, one to a few seconds in length. In addition, the reduction in printer speed may result in a change of the timing of repetitive power use patterns, which could also have benefits in reducing the effects of flicker.
Such a speed reduction or pause decreases the throughput of the printer 400, which may be contrary to a user's preferences. Therefore, the threshold/printer 400 may be arranged such that the threshold is exceeded only rarely, such that such a decrease in throughput is not unduly troublesome. Indeed, it may be that power quality issues are only seen when printing images with certain print patterns, producing ink consumption at characteristic frequencies, and therefore may occur relatively rarely.
A power monitor 600; 700, or the modules 602, 604, 606, 702 thereof, may be a general purpose processing apparatus programmed to carry out the functions of the modules mentioned above. A processor 408, 804 may comprise a power monitor 600, 700. A processor 408, 804 may comprise a printer management module, arranged to carry out and control printing tasks. In one example the processing carried out by the modules 602, 604, 606, 702 is carried out by an Field Programmable Gate Array (FPGA) integrated circuit or chip, which may also or alternatively provide a processor 408, 804 in some examples.
It will be appreciated that the print instruction may be available before the printing task effected thereby is performed. To that end, it is possible to use the methods set out herein to predict the future flicker that could be caused to a power network 414, and, in some examples, to take steps to avoid this. In this way, in some examples, the printer 400, 800 may be controlled such that it stays within desirable limits in relation to power quality (for example, the limits set by the IEC) by controlling the printer 400, 800 appropriately. This avoids any need to make arrangements to protect the power network 414 from the adverse effects that the printer 400, 800 may otherwise cause, and allows for ease of connection of even high-speed printing apparatus into any suitable power network 414, including in some examples a domestic, or relatively low power, network outlet.
Examples in the present disclosure can be provided as methods, systems or machine readable instructions, such as any combination of software, hardware, firmware or the like. Such machine readable instructions may be included on a computer readable storage medium (including but is not limited to disc storage, CD-ROM, optical storage, etc.) having computer readable program codes therein or thereon.
The present disclosure is described with reference to flow charts and/or block diagrams of the method, devices and systems according to examples of the present disclosure. It shall be understood that each flow and/or block in the flow charts and/or block diagrams, as well as combinations of the flows and/or diagrams in the flow charts and/or block diagrams can be realized by machine readable instructions.
The machine readable instructions may, for example, be executed by a general purpose computer, a special purpose computer, an embedded processor or processors of other programmable data processing devices to realize the functions described in the description and diagrams. In particular, a processor or processing apparatus may execute the machine readable instructions. Thus the functional modules or functional units of the apparatus and devices may be implemented by a processor executing machine readable instructions stored in a memory, or a processor operating in accordance with instructions embedded in logic circuitry. The term ‘processor’ is to be interpreted broadly to include a CPU, processing unit, ASIC, logic unit, or programmable gate array etc. The methods and functional modules may all be performed by a single processor or divided amongst several processors.
Such machine readable instructions may also be stored in a computer readable storage that can guide the computer or other programmable data processing devices to operate in a specific mode.
Such machine readable instructions may also be loaded onto a computer or other programmable data processing devices, so that the computer or other programmable data processing devices perform a series of operation steps to produce computer-implemented processing, thus the instructions executed on the computer or other programmable devices provide a step for realizing functions specified by flow(s) in the flow charts and/or block(s) in the block diagrams.
Further, the teachings herein may be implemented in the form of a computer software product, the computer software product being stored in a storage medium and comprising a plurality of instructions for making a computer device implement the methods recited in the examples of the present disclosure.
Although the flow diagrams described above show a specific order of execution, the order of execution may differ from that which is depicted. Blocks described in relation to one flow chart may be combined with those of another flow chart.
While the method, apparatus and related aspects have been described with reference to certain examples, various modifications, changes, omissions, and substitutions can be made without departing from the spirit of the present disclosure. It is intended, therefore, that the method, apparatus and related aspects be limited only by the scope of the following claims and their equivalents. The features of any dependent claim may be combined with the features of any of the independent claims or other dependent claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/061876 | 6/6/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/185163 | 12/10/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6891556 | Sasaki et al. | May 2005 | B2 |
6971731 | Brenner et al. | Dec 2005 | B2 |
20110304876 | Coffey | Dec 2011 | A1 |
20130093813 | Davis et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2010162742 | Jul 2010 | JP |
2010219621 | Sep 2010 | JP |
2011199627 | Oct 2011 | JP |
Entry |
---|
Minimizing the Power Consumption of IT Equipment, Author Unknown, http://www.physics.ox.ac.uk/it/general/powersaving.htm >. |
Number | Date | Country | |
---|---|---|---|
20170144432 A1 | May 2017 | US |