The invention relates to the field of computer systems, and in particular, to printing software products.
Printers are common peripheral devices attached to computers. A printer allows a computer user to make a hard copy of documents that are created in a variety of applications and programs on a computer. To function properly, a channel of communication is established (e.g., via a network connection) between the printer and the computer to enable the printer to receive commands and information from the host computer. Once a connection is established between a workstation and the printer, printing software is implemented at a print server to manage a print job from order entry and management through the complete printing process.
The printing software often includes a graphical user interface (GUI) that enables users to control the printing process. In high-speed production printing environments, it would be advantageous to provide printing software that features visibility, automation and metrics for the efficient printing and finishing large amounts of orders in order to reduce wastes (e.g., time and paper waste). For instance, system operators often need to collect a group of jobs that either fills a roll of paper, or keeps the printer busy for some length of time (e.g., an 8-hour shift). Existing mechanisms require the operator to use manual calculations based on size of the jobs to determine which jobs should be in the group.
Accordingly, an automated roll management mechanism is desired.
In one embodiment, a method includes receiving a plurality of jobs at a printing environment, collecting a first set of the plurality jobs at a first filter based on one or more job properties and generating a first batch of one or more jobs to be processed by selecting jobs within the first set of jobs having a volume within a defined volume range.
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the following drawings, in which:
A printer roll management mechanism is described. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the present invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Network 106 may be a local area network (LAN) or any other network over which print requests may be submitted to a remote printer or print server. Communications link 104 may be in the form of a network adapter, docking station, or the like, and supports communications between data processing system 102 and network 106 employing a network communications protocol such as Ethernet, the AS/400 Network, or the like.
According to one embodiment, network 106 includes print server 108 that serve print requests over network 106 received via communications link 110. Print server 108 subsequently transmits the print requests via communications link 110 to one of printers 109 for printing, which are coupled to network 106 via communications links 111. In one embodiment, an operator at data processing system 102 may interact with print server 108 using a GUI 120 to submit requests for service to one or more of printers 109 over network 106.
Although described as separate entities, other embodiments may include a print server 108 being incorporated in one or more of the printers 109. Therefore, the data processing system network depicted in
According to one embodiment, print server 108 implements a printing software product that manages the processing (e.g., printing) of documents from data processing system 102 to one or more of printers 109. In other embodiments, the printing software manages printing of documents from multiple data processing systems 102 to printers 109.
According to one embodiment, the printing software product may be implemented using either TotalFlow Print Manager or TotalFlow Production Manager, although other types of printing software may be used instead. In a further embodiment, the print printing software product includes GUI 120 that enables a system administrator (or operator) to interact with the print printing software product at printer servers 108.
According to one embodiment, GUI 120 enables an operator to instantly view all jobs that meet specific job properties based on printing, finishing, paper and operator defined fields. In such an embodiment, a job may be defined as a unit of work (e.g., one or more files) to be processed at printer 109. In a further embodiment, GUI 120 includes filter and batch views that enable the operator to make decisions on volume metrics that are defined, and create filter scenarios for optimal efficiency. In such an embodiment, filters defined by an operator collect jobs with specific processing options in any order, while batches can be created (either manually or automatically) from these filters of jobs when a defined threshold or volume range is met.
In still a further embodiment, an operator may define a target sheet, feet or runtime value with a plus/minus (+/−) threshold for a batch of jobs. Subsequently, the print printing software product automatically calculates these values for the jobs in the batch and transmits the batch for printing when the target+/−the threshold is met.
According to one embodiment, filters area 202 provides a view of statistics (e.g., number of sheets, jobs, run time, etc,) of various operator defined filters. Filters area 202 simulates how jobs could be printed, finished or imposed together without altering files, thus providing the operator a choice or scenario of how to optimize the production process. Upon selection, jobs within a filter are displayed in jobs grid 204 along with various corresponding attributes (e.g., job name, sheets, copies, etc.). Based on filters shown in filter area 202, the operator may make decisions based on the results. For instance, the operator may automatically and/or manually batch work. Batched jobs are displayed in batching panel 206.
Referring back to
According to one embodiment, the operator configures a batch that collects jobs that are to be processed for a specific output device. During batch configuration, the operator may use a configured speed (e.g., in sheets per hour (CS) or feet per hour (CF)) of the target output device. Alternatively, the operator may override the configured speed. In a further embodiment, the operator selects sheet, feet or run time as the trigger, as well as the target and threshold values.
According to one embodiment, window 400 may be implemented to select secondary attributes and corresponding volume values.
Upon selection of the automation tab, automation level options are provided (e.g., No Automation, Auto-Batch, Auto-Batch-and-Send), along with attribute options (e.g., Target feet) for which to perform the batch along with an option to enter corresponding thresholds (Feet). Additionally, window 400 displays an output destination selection and the corresponding expected output speed for the output device, which may be overridden.
Upon selection of the Auto-Batch option, matching jobs are automatically batched upon reaching the entered threshold (plus/minus an entered amount). Upon selection of Auto-Batch-and-Send option, matching jobs are automatically batched and forwarded to a selected output destination upon reaching the entered threshold.
At decision block 520, a determination is made as to whether the addition of the job to the batch would cause the batch to exceed the maximum defined volume range. If so, the job is discarded at processing block 530. Subsequently, control is returned to processing block 510 where another job is selected for analysis.
If the volume range is not exceed the job is added to the batch, processing block 540. At processing block 550, the job is added to the batch. At processing block 560, the batch volume values are updated. At decision block 560, a determination is made as to whether the batch volume is within the defined range. If not, control is returned to processing block 510 where another job is selected for analysis. Otherwise the batch is completed.
As shown above, the printing software product implements a pick and choose algorithm to determine if any combination of jobs is within the target+/−threshold. If a combination is found, the batch of jobs is automatically forwarded to the output device.
Computer system 600 further comprises a random access memory (RAM) or other dynamic storage device 625 (referred to herein as main memory), coupled to bus 620 for storing information and instructions to be executed by processor 610. Main memory 625 also may be used for storing temporary variables or other intermediate information during execution of instructions by processor 610. Computer system 600 also may include a read only memory (ROM) and or other static storage device 626 coupled to bus 620 for storing static information and instructions used by processor 510.
A data storage device 625 such as a magnetic disk or optical disc and its corresponding drive may also be coupled to computer system 600 for storing information and instructions. Computer system 600 can also be coupled to a second I/O bus 650 via an I/O interface 630. A plurality of I/O devices may be coupled to I/O bus 650, including a display device 624, an input device (e.g., an alphanumeric input device 623 and or a cursor control device 622). The communication device 621 is for accessing other computers (servers or clients). The communication device 621 may comprise a modem, a network interface card, or other well-known interface device, such as those used for coupling to Ethernet, token ring, or other types of networks.
Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions. The instructions can be used to cause a general-purpose or special-purpose processor to perform certain steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer products, components and/or custom hardware components.
Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of media/machine-readable medium suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that any particular embodiment shown and described by way of illustration is in no way intended to be considered limiting. Therefore, references to details of various embodiments are not intended to limit the scope of the claims, which in themselves recite only those features regarded as essential to the invention.