Claims
- 1. In a sheet handling method for correcting the skew of sequential image substrate sheets to be moved downstream in a process direction in a sheet transport path for a reproduction apparatus, in which selected said image substrate sheets are deskewed by being partially rotated by a sheet deskewing system, the improvement for increasing the operative range of effective deskewing of image substrate sheets of different lengths in said process direction, from a preset short sheet length to a very much greater sheet length, comprising:obtaining a control signal proportional to said sheet length in said process direction of an image substrate sheet in said sheet transport path, providing a plurality of spaced apart sheet feeding nip sets of plural sheet feeding nips upstream from said sheet deskewing system in said sheet transport path, said plurality of spaced apart sheet feeding nip sets being spaced apart from one another and from said sheet deskewing system in said process direction by less than said preset short sheet length so as to be capable of providing positive sheet feeding of said preset short sheet lengths as well as longer sheet lengths in said process direction, sequentially positively feeding all of said image substrate sheets in said process direction downstream in said sheet transport path into said sheet deskewing system with said plurality of spaced apart sheet feeding nip sets, said plurality of spaced apart sheet feeding nip sets being selectably individually disengageable from an image substrate sheet moving in said process direction in said sheet transport path by opening said sheet feeding nips thereof, and automatically disengaging a selected plural number of said plurality of spaced apart upstream sheet feeding nip sets in response to said control signal proportional to said sheet length of said image substrate sheet moving in said process direction in said sheet transport path when said image substrate sheet is in said sheet deskewing system and before said image substrate sheet is deskewed by being partially rotated by said sheet deskewing system so that said upstream sheet feeding nip sets are disengaged from said image substrate sheet as said image substrate sheet is being deskewed, even for an image substrate sheet of said much greater sheet length, while a subsequent image substrate sheet moving in said process direction in said sheet transport path may be positively fed by at least one of said plurality of spaced apart sheet feeding nip sets.
- 2. The sheet handling method of claim 1, wherein all of said image substrate sheets are deskewed by being partially rotated while substantially planar.
- 3. The sheet handling method of claim 1, wherein said plural sheet feeding nips of said sheet feeding nip sets comprise plural drive wheels and plural mating idlers disengageable by plural rotatable cams, and wherein said automatic disengagement of said sheet feeding nip sets is provided by automatically selectable rotation of said rotatable cams of selected said sheet feeding nip sets.
- 4. The sheet handling method of claim 2, wherein said automatic disengagement of said sheet feeding nips is provided by a controlled partial rotation of a stepper motor rotating a cam shaft for rotating said cams.
- 5. In a sheet handling system for a sheet transport path of a reproduction apparatus, said sheet transport path having a sheet transport system and a skew correction system for deskewing image substrate sheets moving in a process direction in said sheet transport path by partially rotating selected said sheets for said deskewing thereof, said skew correction system being fed said sheets in said process direction by said sheet transport system in said sheet transport path, and wherein said image substrate sheets have a range of different sheet lengths in said process direction, the improvement in said sheet handling system for increasing said range of different sheet lengths which can be effectively deskewed by said skew correction system wherein:said sheet transport system comprises a plurality of sheet transport units spaced apart in said process direction from one another and from said skew correction system, said plurality of separate sheet transport units being independently engageable with a sheet being fed in said process direction in said sheet transport path for positively feeding said sheet from one said sheet transport unit to another and to said skew correction system, and being independently disengageable from said sheet for releasing said sheet; a plurality of selectable engagement systems operatively associated with respective said sheet transport units for independently selectably engaging and disengaging selected said sheet transport units; a sheet length signal generation system providing a sheet length control signal proportional to said length of said sheet in said sheet transport path; and a control system for automatically actuating a selected plurality of said selectable engagement systems to automatically disengage a selected plurality of said separate sheet transport units in response to said sheet length control signal when said sheet is in said skew correction system; wherein the number of said separate sheet transport units automatically disengaged in response to said sheet length control signal when said sheet is in said skew correction system is automatically increased in proportion to an increase in said sheet length.
- 6. The sheet handling system of claim 5, wherein said sheet transport path is substantially planar.
- 7. The sheet handling system of claim 5, wherein said plural separate sheet transport units are structurally identical to one another.
- 8. The sheet handling system of claim 5, wherein said sheet transport path is substantially planar and larger than the largest said sheet to be fed in said sheet transport path.
- 9. The sheet handling system of claim 5, wherein said skew correction system comprises a transversely spaced pair of independently driven steering nips engaging said sheet in said sheet path to rotate said sheet relative to said process direction for deskewing said sheet when no said sheet transport unit is engaging said sheet.
- 10. The sheet handling system of claim 5, wherein each said separate sheet transport unit comprises plural transversely spaced sheet feeding nips, and wherein each said selectable engagement system for each said sheet transport unit comprises a single integral sheet feeding nips opening and closing system for all of said sheet feeding nips of said sheet transport unit.
- 11. The sheet handling system of claim 10, wherein each said selectable engagement system for each said sheet transport unit comprises a single stepper motor and a single cam shaft rotatable by said stepper motor, said cam shaft having plural transversely spaced rotatable cams positioned to selectably operably engage said plural sheet feeding nips of said sheet transport unit by rotation of said cam shaft by said stepper motor.
Parent Case Info
Cross-referenced, with a similar disclosure, is an inventor-related U.S. patent application Ser. No. 09/312,675 by the same assignee, filed on the same date as this application, and entitled “PRINTER SHEET DESKEWING SYSTEM WITH AUTOMATIC VARIABLE NIP LATERAL SPACING FOR DIFFERENT SHEET SIZES”.
US Referenced Citations (9)