This disclosure relates to a vacuum conveyor for printing systems that has an adjustable active area.
Vacuum conveyor systems for inkjet printing applications flatten, secure, and convey substrates to ensure images are printed correctly on the substrates. Inkjet printing applications in particular are more sensitive to the flatness of the substrate than other printing techniques because ink is deposited without contact between the ink deposition system and the substrate. These conveyor systems typically have a perforated belt over a vacuum table with openings that allow it to apply adhesion forces between the substrate and the belt.
In certain conditions, the substrate may not cover the entire width and length of the vacuum table area. For example, a system may need to accommodate substrates with varying width, length and spacing distances between them, and with varying number of substrates loaded into the system. The openings that are not covered—referred to herein as a leakage area of the vacuum conveyor system—cause inefficient usage of the fan power that is used to create the vacuum. The vacuum source may also be unable to maintain the vacuum pressure at a sufficiently high level, reducing substrate flattening performance. To improve performance of the vacuum conveyor systems, it is desirable to limit the leakage area. However, designing a conveyor system that performs efficiently in variable working conditions can be challenging due to the associated complexity and cost.
References in this description to “an embodiment,” “one embodiment,” or the like, mean that the particular feature, function, structure, or characteristic being described is included in at least one embodiment of the present disclosure. Occurrences of such phrases in this specification do not necessarily all refer to the same embodiment. On the other hand, the embodiments referred to are also not necessarily mutually exclusive.
Described herein are embodiments of a printing system that applies vacuum to flatten media for printing. The printing system includes actuators that can close or open openings in a vacuum chamber cover to limit an area over which the vacuum is applied. The ability to control the active vacuum area is particularly beneficial under variable working conditions of the printing system, where substrates of different widths and lengths may be loaded into the printer with possibly varying distances between the working pieces of media. Since these different-sized pieces and different spacing cause varying degrees of coverage of the vacuum table, the vacuum conveyor system is more efficient if the system can dynamically adjust the area of the vacuum table over which vacuum is applied.
In some embodiments, the printing system with adjustable vacuum application area includes one or more print heads, a driving belt configured to drive media through the printing system relative to the print heads, and a vacuum conveyor system. The vacuum conveyor system can include a vacuum chamber cover having a first surface and a second surface opposite the first surface. The vacuum chamber cover can have a plurality of openings through the cover from the first surface to the second surface that are repeated along the longitudinal direction of the vacuum chamber cover. A seal can be disposed substantially below each of the regions with openings. Each seal extends along the length of the vacuum chamber cover and is drivable by an actuator to open or close the openings. A vacuum chamber below the second surface of the vacuum chamber cover is configured to apply vacuum to the lower surface of the media through one or more of the openings that are open. The applied vacuum constrains the media on the driving belt by flattening the media against the driving belt.
The vacuum conveyor system described herein therefore applies a vacuum to media through a vacuum chamber cover, flattening the media as it is driven through the printing system to ensure that images are printed correctly on the media. The seals of the vacuum conveyor system can be used to close openings of the vacuum chamber cover that are not covered by the media, reducing vacuum leakage. Various embodiments described herein reduce cost, complexity, and number of actuators required to implement two-dimensional segmentation of the vacuum chamber cover. For example, a typical two-dimensional array of actuators (i.e., across the length and width of the vacuum chamber) that can regulate both the active length and width of the vacuum table area is costly to build and complex to control due to the required number of actuators. To alleviate these defects, it is advantageous to have a system that does not require one actuator per addressable region.
Each of the print bars 120 includes one or more print heads 122. In some embodiments, the print bars 120 are fixedly locked with respect to other components of the printing system 100, while the print heads 122 are movable with respect to the print bars 120. As the media 115 is transported in relation to the print bars 120, the print heads 122 deposit ink 117 on the media 115. The ink 117 can be deposited according to any text, images, patterns, or other specified data, and the media can include any substrate including, for example, paper, film, cardboard, tile, or cloth.
A controller 140 controllably powers components of the printing system 100, such as the print bars 120 and drive mechanism 130. The controller 140 can include one or more processors 142 and a storage device 144 (such as memory). In some embodiments, the controller 140 is configured to control any movements and operations in the printing system 100, such as movement of the driving belt 112 through the drive mechanism 130, feeding of media 115 through a feed system (not shown), or the coordinated operations of the printheads 122.
An encoder 160 measures movement of the media 115 through the printing system 100 and generates a signal such as to provide accurate controlled movement of the transfer belt 112 through the drive mechanism 130. In some embodiments, the encoder 160 provides feedback to the controller 140 to control the drive mechanism 130, the feed system, or the printheads 122 based on the signal output by the encoder 160.
In some embodiments, to print content onto the media 115, the controller 140 receives a print job (e.g., a tagged image file format (TIFF) file). The controller 140 may then produce a raster image that can be divided into separations that are sent to the print bars 120. Based on the separations, a controller or slave computer of each print bar 120 can control its respective print head 122 to print respective colors or other coatings on the media 115.
As shown in
The controller 140 may be configured, such as through the one or more processors 142, to provide integral printer management capabilities, and/or to optimize the printer's capabilities across its options. The controller 140 and processors 142 may be remotely updatable, such as through the communications link 150, which enables a user to handle all the elements quickly and intuitively.
The printing system 100 further includes a vacuum source 170 that applies a vacuum to a vacuum chamber 172. A vacuum chamber cover 174 covers the vacuum chamber 172, such that the vacuum chamber 172 can apply a vacuum to a bottom side of the vacuum chamber cover 174. The vacuum source 170 may apply a continuous vacuum to the vacuum chamber 172 while the printing system 100 is operated, for example maintaining a pressure in the vacuum chamber 172 below a specified threshold. Alternatively, the vacuum source 170 may apply a vacuum only at specified times, or may increase or decrease the pressure in the vacuum chamber 172 based on needs of the printing system 100. The vacuum chamber cover 174 has a plurality of openings allowing airflow to the interior of the vacuum chamber 172 from a top surface of the vacuum chamber cover 174. The aperture of each of the openings is regulated by seals that can be actuated to open or close a respective region. By closing or opening the openings, the seals dynamically change the area of the vacuum table over which vacuum is applied. Thus, the vacuum area can be changed for varying-sized pieces of media to improve efficiency of the vacuum system. The vacuum source 170, vacuum chamber 172, and vacuum chamber cover 174, collectively referred to herein as a vacuum conveyor system, are described further with respect to
In some embodiments, the printing system 100 can include additional features, such as any of a tone adjustment system (TAS), calculated linearization capabilities, and/or calculated ink consumption capabilities. The TAS may be based on an intuitive interface, such as through display 146, which guides a user through the process of study and application of changes in tone or intensity, to apply to a model. This feature enables adjustments or variations on existing models in the illustrative printing system 100, without use of external additional software or extensive knowledge in color management.
In some embodiments, the electronic design of the printing system 100 can be based on a modular distribution of components, thus facilitating future upgrades and allowing full accessibility. Furthermore, in some embodiments, the electronic system of the printing system 100 can deliver high performance by using the controller 140 to upload image files (print jobs) and slave computers in the print bars 120 to manage the printing of image files. The result is increased graphical variability and nonstop manufacturing. The enhanced electronics design makes it possible to choose from various printing options and simultaneously use different printheads 122 in the same printing system. For example, some printheads 122 can be used to jet graphic designs onto the media 115, while others apply an undercoating, a primer, an overcoating, or an effect.
The driving belt 112 can contact the first surface 202 of the vacuum chamber cover 174. As shown in
Each opening 206 of the vacuum chamber cover 174 can be opened or closed by a seal disposed in the cover.
The seals 310 can be independently actuated. In some embodiments, the seals 310 are actuated by pressurized gas from a pressurized gas source. The supply or release of pressurized gas causes the seal 310 to respectively expand or contract. A valve placed upstream of the seal 310 can be used to regulate the flow of gas into or out of the seal 310. Although air is the most common gas for this purpose, any gas may be used to actuate the seals 310. Each seal 310 can be independently actuated, allowing airflow through each opening 206 to be regulated independently of the airflow through other openings. Each seal 310 can include an enclosed cavity that can be filled or emptied. Each cavity can be pneumatically isolated from the cavities of other seals, for example to prevent pneumatic communication between the seals 310.
Pneumatic actuation can be simpler than other types of actuation because the openings 206 can be regulated using only an airtight seal, a valve for controlling expansion and retraction of the seals, and a supply of pressurized air. Furthermore, the seals are more robust to contamination and degradation than actuation methods that rely on relative sliding between components because the pneumatic actuation acts perpendicular to the faces of the seals 310. However, in other embodiments, the seals 310 can be actuated to open or close the openings 206 by any of a variety of other types of actuators, such as piezoelectric actuators or servomotors.
The seals 310 can be actuated by a controller, such as the controller 140. The seals 310 can be actuated according to a width of the media 115 passing through the printer. If a given seal 310 is outside an area covered by the media 115 during the printing process, the seal can be actuated to close the corresponding opening 206. In some embodiments, the seals 310 can be actuated based on an input received from an operator of the printer. In other embodiments, the seals 310 are automatically actuated. For example, the controller 140 can receive a measurement of the width of the media 115 from the user of the printer or from a sensor, such as one or more optical sensors, and select a number of seals 310 to close such that the active width of the vacuum table area is approximately equal to the width of the media 115. As another example, a flow sensor can be positioned below each opening 206 and coupled to the controller 140. If the controller 140 detects, based on the flow sensors, that an opening is not covered by the media 115 (e.g., by detecting that the flow through the opening is greater than a specified threshold), the controller 140 can actuate the seal 310 corresponding to the opening in order to close the opening. In still another example, one or more optical sensors configured to detect a positioning of the media 115 are coupled to the controller 140. The controller 140 determines an area of the vacuum table that is covered by the media 115 and closes any seals 310 corresponding to openings positioned outside the covered area. The optical sensors can include, for example, a light source (such as an LED) positioned in an opening 206 and a photoelectric sensor above the vacuum chamber cover 174. The photoelectric sensor outputs a first signal if the sensor detects light from the LED and a second signal if the sensor does not detect the light from the LED. If the controller 140 determines that the photoelectric sensor is outputting the first signal, the corresponding opening is not covered by the media 115 and should therefore be closed. Other types of optical sensors can be used to detect the position of the media 115 instead of the photoelectric sensor.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3592334 | Fleischauer | Jul 1971 | A |
5779236 | Duncan et al. | Jul 1998 | A |
6254090 | Rhodes et al. | Jul 2001 | B1 |
6254092 | Yraceburu et al. | Jul 2001 | B1 |
6270074 | Rasmussen et al. | Aug 2001 | B1 |
6371430 | Vernackt | Apr 2002 | B1 |
6443443 | Hirth et al. | Sep 2002 | B1 |
6571702 | Wotton et al. | Jun 2003 | B2 |
6672720 | Smith | Jan 2004 | B2 |
6927841 | Hinojosa et al. | Aug 2005 | B2 |
9815303 | Herrmann et al. | Nov 2017 | B1 |
20020062750 | Wotton | May 2002 | A1 |
20020067403 | Smith | Jun 2002 | A1 |
20020110400 | Beehler et al. | Aug 2002 | A1 |
20050156376 | Kondratuk et al. | Jul 2005 | A1 |
20060043666 | Piccinino | Mar 2006 | A1 |
20100276879 | Bober | Nov 2010 | A1 |
20180170073 | Barberan Latorre | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
3118008 | Jan 2017 | EP |
2310490 | Nov 2009 | ES |
Number | Date | Country | |
---|---|---|---|
20210213759 A1 | Jul 2021 | US |