A printer may include a print media transport to move and/or route print media through the printer. Routing of the print media through the printer may produce airborne particles which may contribute to print defects and/or printer malfunction.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure.
Printhead assembly 12 includes one or more printheads or fluid ejection devices which eject drops of ink or fluid through a plurality of orifices or nozzles 13. In one example, the drops are directed toward a medium, such as print media 19, so as to print onto print media 19. Print media 19 includes any type of suitable sheet material, such as paper, card stock, transparencies, Mylar, fabric, and the like. Typically, nozzles 13 are arranged in one or more columns or arrays such that properly sequenced ejection of ink from nozzles 13 causes characters, symbols, and/or other graphics or images to be printed upon print media 19 as printhead assembly 12 and print media 19 are moved relative to each other.
Ink supply assembly 14 supplies ink to printhead assembly 12 and includes a reservoir 15 for storing ink. As such, in one example, ink flows from reservoir 15 to printhead assembly 12. In one example, printhead assembly 12 and ink supply assembly 14 are housed together in an inkjet or fluid-jet print cartridge or pen. In another example, ink supply assembly 14 is separate from printhead assembly 12 and supplies ink to printhead assembly 12 through an interface connection, such as a supply tube.
Carriage assembly 16 positions printhead assembly 12 relative to print media transport assembly 18 and print media transport assembly 18 positions print media 19 relative to printhead assembly 12. Thus, a print zone 17 is defined adjacent to nozzles 13 in an area between printhead assembly 12 and print media 19. In one example, printhead assembly 12 is a scanning type printhead assembly such that carriage assembly 16 moves printhead assembly 12 relative to print media transport assembly 18. In another example, printhead assembly 12 is a non-scanning type printhead assembly such that carriage assembly 16 fixes printhead assembly 12 at a prescribed position relative to print media transport assembly 18.
Service station assembly 20 provides for spitting, wiping, capping, and/or priming of printhead assembly 12 in order to maintain a functionality of printhead assembly 12 and, more specifically, nozzles 13. For example, service station assembly 20 may include a rubber blade or wiper which is periodically passed over printhead assembly 12 to wipe and clean nozzles 13 of excess ink. In addition, service station assembly 20 may include a cap which covers printhead assembly 12 to protect nozzles 13 from drying out during periods of non-use. In addition, service station assembly 20 may include a spittoon into which printhead assembly 12 ejects ink to insure that reservoir 15 maintains an appropriate level of pressure and fluidity, and insure that nozzles 13 do not clog or weep. Functions of service station assembly 20 may include relative motion between service station assembly 20 and printhead assembly 12.
Electronic controller 22 communicates with printhead assembly 12, carriage assembly 16, print media transport assembly 18, and service station assembly 20. Thus, in one example, when printhead assembly 12 is mounted in carriage assembly 16, electronic controller 22 and printhead assembly 12 communicate via carriage assembly 16. Electronic controller 22 also communicates with ink supply assembly 14 such that, in one implementation, a new (or used) ink supply may be detected, and a level of ink in the ink supply may be detected.
Electronic controller 22 receives data 23 from a host system, such as a computer, and may include memory for temporarily storing data 23. Data 23 may be sent to inkjet printing system 10 along an electronic, infrared, optical or other information transfer path. Data 23 represents, for example, a document and/or file to be printed. As such, data 23 forms a print job for inkjet printing system 10 and includes one or more print job commands and/or command parameters.
In one example, electronic controller 22 provides control of printhead assembly 12 including timing control for ejection of ink drops from nozzles 13. As such, electronic controller 22 defines a pattern of ejected ink drops which form characters, symbols, and/or other graphics or images on print media 19. Timing control and, therefore, the pattern of ejected ink drops, is determined by the print job commands and/or command parameters. In one example, logic and drive circuitry forming a portion of electronic controller 22 is located on printhead assembly 12. In another example, logic and drive circuitry forming a portion of electronic controller 22 is located off printhead assembly 12.
Print engine 120 can be a laser print engine, an inkjet print engine, or any other type of print engine. In one implementation, a print area or print zone 122 is defined in which printing on print media 102 by print engine 120 occurs. In one example, printer 100 is implemented as an inkjet printing system, such as inkjet printing system 10, and print engine 120 includes, for example, printhead assembly 12. When print engine 120 is implemented as an example of printhead assembly 12, print zone 122 includes print zone 17 as defined between printhead assembly 12 and print media 19 (
In one example, waste ink collection system 130 includes a spittoon 132 into which printhead assembly 12, as an example of print engine 120, ejects ink to insure that an associated reservoir, such as reservoir 15, maintains an appropriate level of pressure and fluidity, and to insure that associated nozzles, such as nozzles 13, do not clog or weep. In one implementation, an opening 112 is formed through platen 110 such that printhead assembly 12, as an example of print engine 120, ejects ink into spittoon 132 through opening 112 and, therefore, through platen 110.
In one example, waste ink collection system 130 includes an airflow source, such as a fan 134, to draw ink aerosol away from print zone 122 to help prevent ink aerosol from spreading throughout printer 100. Ink aerosol includes, for example, a mist or fog of suspended ink droplets resulting from operation of printhead assembly 12, as an example of print engine 120. In one implementation, fan 134 generates a vacuum, partial vacuum or zone of reduced pressure within printer 100 to draw air, including ink aerosol, from print zone 122 through opening 112 in platen 110, as represented by arrow 135.
Print media transport 140 may include a variety of guides, rollers, wheels, etc. for the handling and/or routing of print media 102 through printer 100. In one example, print media transport 140 includes a feed roller assembly 142 and an output roller assembly 146. As such, feed roller assembly 142 transports, guides, and/or directs print media 102 to print zone 122, and output roller assembly 146 transports, guides, and/or directs print media 102 away from print zone 122. In one implementation, feed roller assembly 142 includes a feed roller 143 and a pinch roller 145. In one example, feed roller 143 is rotatably mounted for rotation and driven in the direction indicated, and pinch roller 145 is mounted in an opposing relationship to feed roller 143 such that a nip is formed between feed roller 143 and pinch roller 145. In one implementation, output roller assembly 146 includes an output roller 147 and a roller or starwheel 149. In one example, output roller 147 is mounted for rotation and driven in the direction indicated, and starwheel 149 is mounted in an opposing relationship to output roller 147 such that starwheel 149 is in contact with output roller 147.
In one implementation, printer 100 includes a particle diverter 150 to divert particles present or generated by and/or within printer 100. For example, operation of print media transport 140 may generate or produce particles within printer 100 during the transport of print media 102 through and/or within printer 100. More specifically, operation of feed roller assembly 142 and/or operation of output roller assembly 146 may generate or produce particles within printer 100. The particles may include fibrous particles of print media 102 and/or other dust particles present or generated by and/or within printer 100. In one example, the particles are suspended in air within printer 100 so as to form airborne particles, including airborne fibrous particles or dust laden air.
Accordingly, and as further described below, particle diverter 150 helps to prevent particles from settling or collecting on components of printer 100. For example, particle diverter 150 diverts or draws particles away from print zone 122 so as to help prevent particles from settling or collecting on components within printer 100 including, for example, settling or collecting on print engine 120. For example, with printhead assembly 12 representing an example of print engine 120, particle diverter 150 helps to prevent particles from settling or collecting on a face or surface of printhead assembly 12 in which nozzles 13 are formed. Such particles, for example, may potentially block (wholly or partially) nozzles 13 and, therefore, may cause degradation or malfunction of nozzles 13 thereby resulting in print defects and/or printer malfunction.
In one example, particle diverter 150 diverts or draws particles from an input or upstream side of platen 110, and diverts or draws particles from an output or downstream side of platen 110. In one example, and as further described below, particle diverter 150 diverts or draws particles from areas of printer 100 where particles may be generated. In one implementation, particle diverter 150 diverts or draws particles from an area or areas of printer 100 which include components of print media transport 140 including, for example, a region or regions adjacent or in a vicinity of print media transport 140. In one example, particle diverter 150 diverts or draws particles from areas of feed roller assembly 142 and/or output roller assembly 146, as represented by arrows 155 and 157.
In one implementation, particle diverter 150 includes an airflow source to divert or draw particles away from print zone 122. In one example, the airflow source includes fan 134, as also used to draw ink aerosol away from print zone 122.
In one implementation, waste ink collection system 230 includes a spittoon 232, as an example of spittoon 132 (
In one example, print media transport 240 includes a feed roller assembly 242, with a feed roller 243 and an opposing pinch roller 245, and includes an output roller assembly 246, with an output roller 247 and an opposing roller or starwheel 249. As such, in one implementation, particle diverter 250 includes a passage, slot, or other type of opening formed or defined through platen 210 (or a portion extending from or supporting platen 210) in a region or regions adjacent or in a vicinity of feed roller assembly 242 and output roller assembly 246. For example, in one implementation, particle diverter 250 includes an opening 254 formed through platen 210 in a vicinity of feed roller assembly 242, and includes an opening 256 formed through platen 210 in a vicinity of output roller assembly 246.
In one example, platen 210 (or a portion extending from or supporting platen 210) includes a recessed area or areas to accommodate print media transport 240. For example, in one implementation, platen 210 includes a recessed area 214 to accommodate feed roller assembly 242 and includes a recessed area 216 to accommodate output roller assembly 246 such that, in one example, feed roller 243 rotates within recessed area 214 and output roller 247 rotates within recessed area 216. As such, in one implementation, opening 254 is formed through platen 210 within recessed area 214, and opening 256 is formed through platen 210 within recessed area 216. Accordingly, particle diverter 250 diverts or draws particles from an input or upstream side of platen 210 through opening 254, and diverts or draws particles from an output or downstream side of platen 210 through opening 256.
In one implementation, particle diverter 250 includes an airflow duct 258 and an airflow source, such as fan 134 (
In one implementation, waste ink collection system 330 includes a spittoon 332, as an example of spittoon 132 (
In one example, print media transport 340 includes a feed roller assembly 342, with a feed roller 343 and an opposing pinch roller 345, and includes an output roller assembly 346, with an output roller 347 and an opposing roller or starwheel 349. As such, in one implementation, particle diverter 350 includes a passage, slot, or other type of opening formed or defined through platen 310 (or a portion extending from or supporting platen 310) in a region or regions adjacent or in a vicinity of feed roller assembly 342 and output roller assembly 346. For example, in one implementation, particle diverter 350 includes an opening 354 formed through platen 310 in a vicinity of feed roller assembly 342, and includes an opening 356 formed through platen 310 in a vicinity of output roller assembly 346.
In one implementation, platen 310 (or a portion extending from or supporting platen 310) includes a recessed area or areas to accommodate print media transport 340. For example, platen 310 includes a recessed area 314 to accommodate feed roller assembly 342 such that, in one implementation, feed roller 343 rotates within recessed area 314 of platen 310. As such, in one implementation, opening 354 is formed through platen 310 within recessed area 314. In addition, in one implementation, opening 356 is formed through platen 310 in a vicinity of output roller assembly 346. Accordingly, particle diverter 350 diverts or draws particles from an input or upstream side of platen 310 through opening 354, and diverts or draws particles from an output or downstream side of platen 310 through opening 356.
In one implementation, particle diverter 350 includes an airflow duct 358 and an airflow source, such as fan 134 (
With method 400, at 402, print media, such as print media 102, is transported through a print zone relative to a platen, such as print zone 122 and platen 110, as schematically illustrated in the example of
As such, at 404, the airborne particles are diverted from the print zone from a region of the transporting through at least one opening formed through the platen. For example, as schematically illustrated in the example of
Although specific examples have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/028521 | 4/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/175833 | 11/3/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6318838 | Anderson et al. | Nov 2001 | B1 |
6328442 | Brinkly | Dec 2001 | B1 |
6561621 | Webster et al. | May 2003 | B2 |
7824008 | Barger et al. | Nov 2010 | B2 |
8764164 | Anderson | Jul 2014 | B1 |
20060023021 | Shimizu | Feb 2006 | A1 |
20090066976 | Uchida et al. | Mar 2009 | A1 |
20120218347 | Itogawa | Aug 2012 | A1 |
20120236497 | Watts et al. | Sep 2012 | A1 |
20140002542 | Chino | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
202186134 | Apr 2012 | CN |
Entry |
---|
Bohórquez, Jaime H. et al., “Laser-Comparable Inkjet Text Printing”, Hewlett-Packard Journal, Feb. 1994, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20180022100 A1 | Jan 2018 | US |