The present application is based upon and claims the benefit of priority of Japanese Patent Application No. 2016-153188, filed on Aug. 3, 2016, the entire contents of which are incorporated herein by reference.
An aspect of this disclosure relates to a printer.
Printers are widely used, for example, for cash registers in shops, automated teller machines (ATM), and cash dispensers (CD). In a type of printer, a roll of recording paper is used. The recording paper is placed between a print head and a platen roller, and information is printed while feeding the recording paper by rotating the platen roller.
Such a printer includes a sensor for detecting the recording paper being fed (see, for example, Japanese Patent No. 2585769, Japanese Laid-Open Patent Publication No. 2000-86012, and Japanese Laid-Open Patent Publication No. 2003-246104).
Recording papers for printers come in various widths such as two inches, three inches, and four inches. If printer mechanisms are produced for respective recording papers with different widths, types of printers increase and the costs of printers also increase.
There exists, a recording paper on which a black mark is printed beforehand to enable a printer to detect a printing start position. However, the related-art printer cannot detect black marks printed on recording papers with different widths.
In an aspect of this disclosure, there is provided a printer for printing information on a recording medium. The printer includes a guide that guides the recording medium being fed and includes multiple holes, a sensor for detecting the recording medium, and a board that includes multiple terminals. The sensor is mounted on at least one of the terminals such that the sensor is exposed through one of the holes.
An aspect of this disclosure provides a printer that can detect black marks printed on recording media with different widths.
Embodiments of the present invention are described below with reference to the accompanying drawings. The same reference number is assigned to the same component, and repeated descriptions of the same component are omitted.
A printer according to a comparative example is described. The printer supports recording media with widths of two inches, three inches, and four inches (which are hereafter referred to as “two-inch medium”, “three-inch medium”, and “four-inch medium”). The widths of recording media are not limited to these examples.
The printer of the comparative example includes a printer mechanism illustrated in
In the comparative example, a detection of a black mark printed on each of a two-inch medium, a three-inch medium, and a four-inch medium with the printer that supports these recording media and includes the printing mechanism supporting the four-inch medium shall be discussed. If the black mark is printed in the center of each recording medium, the printable area of the recording medium is reduced. Therefore, the black mark is printed at an edge of each recording medium in the width direction.
There are two methods to enable the same printer mechanism to use the four-inch medium, the three-inch medium, and the two-inch medium. A first method is to align the edges of the recording media with an end of a guide 40 as illustrated in
The sensor 50, an optical sensor for example, detects whether a recording medium is present and whether a black mark is present on the recording medium. A light-emitting element of the sensor 50 emits light. When a recording medium is present, the light is reflected by the recording medium. When no recording medium is present, the light is not reflected. Further, a portion of the recording medium where a black mark is printed and a portion of the recording medium where no black mark is printed have different reflectances. For these reasons, a first threshold and a second threshold greater than the first threshold are set for the sensor 50. When the sensor 50 detects light with intensity greater than or equal to the first threshold, the sensor 50 determines that a recording medium is present. When the intensity of the detected light is less than the first threshold, the sensor 50 determines that no recording medium is present. When the intensity of the detected light is greater than or equal to the first threshold and less than or equal to the second threshold, the sensor 50 determines that a black mark is detected. When the intensity of the detected light is greater than the second threshold, the sensor 50 determines that a portion of the recording medium where no black mark is printed is detected.
As illustrated in
This problem may be prevented by aligning the four-inch medium, the three-inch medium, and the two-inch medium at their centers as illustrated in
A printer according to a first embodiment is described below.
The printer of the first embodiment can be adapted to detect black marks on recording media with different widths using one sensor even when the recording media are aligned at the centers.
In the first embodiment, as illustrated in
As illustrated in
In the first embodiment, a sensor is mounted on one of the first terminal 161 and the second terminal 162. To configure the printer to support the four-inch medium, a sensor 50 is mounted on the first terminal 161 as illustrated in
To configure the printer to support the two-inch medium, the sensor 50 is mounted on the second terminal 162 as illustrated in
As described above, in the first embodiment, the first hole 141 and the second hole 142 for exposing the sensor 50 are formed in the guide 140, the first terminal 161 and the second terminal 162 are provided on the board 160, and the sensor 50 is mounted on one of the first terminal 161 and the second terminal 162. Therefore, the sensor 50 can be exposed through one of the first hole 141 and the second hole 142 selected depending on the width of a recording medium used. In other words, a multiple types of printers capable of supporting recording media with different widths can be produced by using the same printer mechanism. Also, because only one sensor 50 is mounted on the board 160, it is possible to produce multiple types of printers with low costs. The guide 140 may be formed of, for example, a resin such as an acrylonitrile butadiene styrene (ABS) resin, a sheet metal such as a stainless steel sheet, or a die-cast metal such as die-cast zinc (Zn).
In the printer described above, one of the first terminal 161 and the second terminal 162 which the sensor 50 is not mounted is exposed. When, for example, a metal object contacts the exposed terminal, it may cause a malfunction or failure.
For this reason, in the first embodiment, a lid 170 is provided to close the first hole 141 or the second hole 142. When the sensor 50 is mounted on the first terminal 161, the second hole 142 is closed by the lid 170 as illustrated in
When the sensor 50 is mounted on the second terminal 162 as illustrated in
As described above, by closing a hole with the lid 170, a malfunction or failure caused when, for example, a metal object contacts the terminal exposing through the hole can be prevented.
As a variation, the board 160 may be configured to include only one terminal onto which a sensor is mounted. In this case, the above-described effects of the first embodiment can be achieved by changing the position of a sensor according to the width of a recording medium.
Next, a second embodiment is described. As illustrated in
When the sensor 5:0 is mounted on the first terminal 161, the board 260 is disposed such that sensor 50 is exposed through the first hole 141 as illustrated in
When the sensor 50 is mounted on the second terminal 162, the board 260 is disposed such that sensor 50 is exposed through the second hole 142 as illustrated in
In the second embodiment, the pitch P2 between the first terminal 161 and the second terminal 162 is preferably shorter than the pitch P1 between the first hole 141 and the second hole 142 to prevent a problem where both of the first terminal 161 and the second terminal 162 are exposed through the first hole 141 and the second hole 142 due to, for example, a warp of the board 260. Also, reducing the pitch P2 between the first terminal 161 and the second terminal 162 can reduce the size of the board 160 and thereby reduce the costs of the printer.
The second embodiment can prevent a terminal onto which the sensor 50 is not mounted from being exposed through a hole, and prevent the terminal from being contacted by, for example, a metal object, without using a lid as in the first embodiment.
Other components and configurations of the printer of the second embodiment are substantially the same as those described in the first embodiment.
Next, a third embodiment is described. In the third embodiment as illustrated in
When the sensor 50 is mounted on the first terminal 161, the second protection part 362 is bent to cover the second terminal 162 as illustrated in
When the sensor 50 is mounted on the second terminal 162, the first protection part 361 is bent to cover the first terminal 161 as illustrated in
Thus, in the third embodiment, a terminal on which no sensor is mounted is covered by a protection part to prevent the terminal from being exposed. Because the protection part and the board are formed as a monolithic part, it is not necessary to provide a separate cover to prevent a terminal being exposed. That is, the third embodiment can prevent a terminal from being exposed through a hole, and prevent the terminal from being contacted by a metal object without using a lid as in the first embodiment or without making a pitch between the holes of a guide differ from a pitch between terminals as in the second embodiment. Other components and configurations of the printer of the third embodiment are substantially the same as those described in the first embodiment.
Next, a fourth embodiment is described. In the fourth embodiment as illustrated in
In the fourth embodiment, as illustrated in
In the fourth embodiment, the front protrusion 341 is disposed closer to the first hole 141 than the rear protrusion 441 such that the front protrusion 341 is positioned between the first hole 141 and the rear protrusion 441. Also, the front protrusion 342 is disposed closer to the second hole 142 than the rear protrusion 442 such that the front protrusion 342 is positioned between the second hole 142 and the rear protrusion 442. In this embodiment, a gap 341a is formed between the back surface 440a and the front protrusion 341, and a gap 441a is formed between the front protrusion 341 and the rear protrusion 441. Also, a gap 342a is formed between the back surface 440a and the front protrusion 342, and a gap 442a is formed between the front protrusion 342 and the rear protrusion 442.
As illustrated in
As illustrated in
Thus, according to the fourth embodiment, a portion of the board 160 on which the sensor 50 is mounted is placed between the back surface 440a and a front protrusion so that the sensor 50 is exposed through a hole, and another portion of the board 160 with a terminal is disposed between a front protrusion and a rear protrusion so that the terminal is not exposed through a hole. The gaps can also be used to fix the board 160 to the guide 440.
Next, a fifth embodiment is described. In the fifth embodiment, as illustrated in
For example, the first sensor 551 can detect marks on the four-inch medium, the second sensor 552 can detect marks on the three-inch medium, and the third sensor 553 can detect marks on the two-inch medium. In the fifth embodiment, multiple sensors corresponding to different recording medium widths are exposed through holes of a guide by default. In this embodiment, types of printers that need to be produced to support different recording medium widths can be reduced.
In the fifth embodiment where sensors are mounted on respective terminals and exposed through holes of a guide, a printer can detect recording media with various widths. Although sensors are mounted on all terminals in the above-described example, sensors may be selectively mounted on some of the terminals. Also, to prevent exposure of terminals on which no sensor is mounted, holes may be closed or the terminals may be covered as in the other embodiments.
According to an aspect of this disclosure, printers which support recording media with different widths and can detect black marks printed on the recording media can be produced by using the same printer mechanism.
Printers according to embodiments of the present invention are described above. However, the present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2016-153188 | Aug 2016 | JP | national |