The present invention relates a printer, for example, a printer having a function that prints desired information, such as a character, a sign, a diagram, a barcode, or similar information, on a print medium such as a label.
A label printer is a printer having a function that, for example, in the middle of unwinding a rolled continuous paper in a sheet-shape to feed the continuous paper along a feed path, prints desired information on each of a plurality of labels adhered temporarily on a long liner sheet, which constitutes the continuous paper.
At the label printer, between a paper sheet supply unit, which supplies the continuous paper, and a thermal head, which prints desired information on the label of the continuous paper, a damper portion, which gives tension to the continuous paper, is installed, and the continuous paper unwound from the paper sheet supply unit is fed to the thermal head via the damper portion.
It should be noted that, for example, JP2007-301869A discloses a printer that has such label printing function.
However, because the above-described damper portion is installed at the proximity of a bottom surface of a chassis of the printer, the continuous paper extracted from the paper sheet supply unit has to be passed through below the damper portion at the proximity of the bottom surface of the chassis where an operation is difficult. Since a gap passing the continuous paper, that is, a gap between the damper portion and the bottom surface of the chassis of the printer is narrow, passing the continuous paper is difficult. Furthermore, because on a back side of the damper portion (opposite side of the bottom surface of the chassis of the printer), a width adjustment guiding portion, which adjusts a width of the continuous paper, is mounted, when inserting the continuous paper, the continuous paper may be hooked on the width adjustment guiding portion. By these reasons, an operation inserting the continuous paper into the feed path of the printer is difficult.
The present invention has been made in view of the above-described technical background, and it is an object of the present invention to provide a printer that ensures the facilitated operation for inserting a print medium into a medium feed path of the printer.
To solve the above-described problem, a printer according to a first aspect of the present invention includes a medium supply unit configured to supply a print medium, feeding means configured to feed the print medium supplied from the medium supply unit along a medium feed path, a printing head portion disposed in the medium feed path, the printing head being configured to open/close, printing means disposed at the printing head portion to print on the print medium fed along the medium feed path, and a damper portion disposed between the medium supply unit and the printing head portion in the medium feed path, the damper portion being configured to swing in order to give tension to the print medium, the damper portion being disposed to open above when the printing head portion opens.
A printer according to a second aspect of the present invention, in the printer according to the above-described first aspect, the damper portion is disposed to close below when the printing head portion closes.
A printer according to a third aspect of the present invention includes, at the printer according to the above-described first or second aspect, a first support body configured to support the printing head portion, the printing head portion being configured to open/close, a second support body configured to support the damper portion, the damper portion being configured to open/close, a spring configured to bias the second support body in an opening direction, a suppression portion disposed at the first support body, the suppression portion being configured to suppress an opening operation of the second support body against biasing force of the spring in a closed state of the printing head portion, and an induction portion disposed at the second support body, the induction portion being configured to guide the suppression portion to the suppression release position in an opening operation of the printing head portion and guide the suppression portion to the suppression position in a closing operation of the printing head portion.
A printer according to a fourth aspect of the present invention, in the printer according to any of the above-described first to third aspects, the damper portion is constituted of a transparent material.
A printer according to a fifth aspect of the present invention, in the printer according to any of the above-described first to fourth aspects, the damper portion includes a guide piece that contacts at least one side edge of the print medium to guide a feed of the print medium, and an operating portion coupled to the guide piece, the operating portion being configured to operate a lock and a lock release of the guide piece by turning.
According to the first aspect, since the damper portion opens in conjunction with the opening operation of the printing head portion, the operation inserting the print medium into the medium feed path of the printer can be facilitated.
According to the second aspect, since the damper portion closes in conjunction with the closing operation of the printing head portion, after inserting the print medium into the medium feed path of the printer, the damper portion can be prevented from being failed to close.
According to the third aspect, with a simple structure, the operation inserting the print medium into the medium feed path of the printer can be facilitated.
According to the fourth aspect, since visibility of the print medium at the damper portion can be improved, the operation inserting the print medium into the medium feed path of the printer can be further facilitated.
According to the fifth aspect, with a simple structure and a simple operation, a position of the guide piece can be set.
The following describes an embodiment as an example of the present invention in detail based on drawings. It should be noted that in the drawings to describe the embodiment, an identical reference numeral is basically attached to an identical component, and its repeated description is omitted.
A feed direction for printing a continuous paper (print medium), specifically a direction feeding the continuous paper from a paper sheet supply unit to a thermal head portion, is referred to as a printing direction, and if there is no specific description, an upstream in the feed direction is referred to as an upstream side in the printing direction, and a downstream in the feed direction is referred to as a downstream side in the printing direction.
A printer 1 according to the embodiment has a label printing function, which prints information such as a character, a sign, a diagram, a barcode, or similar information, for example, on a label adhered temporarily on a liner sheet.
On a front cover portion 2 at a front of the printer 1, an operational panel unit 3, a power switch 4, and an issue port (medium discharge port) 5 are disposed.
On the operational panel unit 3, an LCD (liquid crystal display), which displays a message or similar information, a plurality of keys (line key, feed key, function key, direction indicating key, cancel key, and similar keys), which operate an operation of the printer 1, and a plurality of LEDs (Light Emitting Diodes), which indicate a state of the printer 1, are disposed.
On one side surface of the printer 1, an open cover portion 6 is openably/closably mounted in a vertical direction by hinge portions 7 at two sites.
Next, an internal structure of the printer 1 will be described in reference to
Inside the printer 1, a paper sheet supply unit (medium supply unit) 10, which is disposed on its rear, a printing unit 11, which is disposed on its front, and an ink ribbon portion 12, which is disposed on its upper side, are installed.
The paper sheet supply unit 10, which is a configuration unit that supplies a continuous paper (print medium) P to the printing unit 11, includes a support shaft 10a and a roll guiding portion 10b, which is installed at one end of the support shaft 10a.
The support shaft 10a is a configuration portion that rotatably supports the continuous paper P rolled up in a rolled shape. The roll guiding portion 10b, which is a configuration portion that fixes the rolled continuous paper P, is movably installed along an axial direction of the support shaft 10a to be able to change its position corresponding to a width of the continuous paper P.
The continuous paper P includes, for example, a long liner sheet and a plurality of labels adhered temporarily at every predetermined interval along a longitudinal direction of the liner sheet. On a surface where an adhesive surface of the label contacts on the liner sheet, a releasing agent such as silicone or similar material is coated, and this ensures the label to be peeled off easily. On a surface where the label is not applied on the liner sheet, position detection marks, which indicate a position of the label, are formed at every predetermined interval along the longitudinal direction. For the label, there is a case where a thermal paper is used and a case where a plain paper is used. In the case of the thermal paper, on its surface, a thermal coloring layer, which develops a specific color (such as black or red) when reaching a predetermined temperature region, is formed.
There are two types of continuous papers P: an outside wound label and an inside wound label. The outside wound label is wound in a state where the label of the continuous paper P is positioned on an outer peripheral surface of the rolled continuous paper P, and as shown in
The above-described printing unit 11, which is a configuration unit that prints on the label of continuous paper P or a similar print medium, includes a printing head portion 13, a supporting stand 14, which is disposed below the printing head portion 13, and a damper portion 15, which is disposed on a rear (upstream of feed of the continuous paper P at a printing process) of them.
The printing head portion 13 is, as described below, openably/closably installed inside the printer 1. When the printing head portion 13 is in a closed state, between the printing head portion 13 and the supporting stand 14, the paper passing route (medium feed path) is formed. Then, this paper passing route is coupled to the above-described issue port 5 (see
On the supporting stand 14, a head lock lever portion 16, which maintains the closed state of the printing head portion 13, is installed. Operating this head lock lever portion 16 releases the closed state of the printing head portion 13 and then a front portion of the printing head portion 13 is lifted to open the printing head portion 13 (the printing head portion 13 separates from a platen roller portion 23).
The damper portion 15 is a configuration portion that gives tension to the continuous paper P. According to the embodiment, the damper portion 15, which includes an outer damper portion 15a and an inner damper portion 15b, moves in the vertical direction (opens and closes) in conjunction with an opening and closing of the printing head portion 13. However, in the closed state of the printing head portion 13, the outer damper portion 15a and the inner damper portion 15b are swingably installed such that each can give tension to the continuous paper P.
The above-described ink ribbon portion 12, which is a configuration portion that supplies and rolls up an ink ribbon where printing ink is applied, includes a ribbon supply unit 12a and a ribbon roll up unit 12b, which is disposed on a lateral of a front of the ribbon supply unit 12a. The ribbon supply unit 12a is a configuration unit that rotatably supports the ink ribbon rolled up in a rolled-shape. The ribbon roll up unit 12b is a configuration unit that rolls up and recovers the already printed ink ribbon RB. It should be noted that when using the ink ribbon, the ink ribbon extracted from the ribbon supply unit 12a is passed through below the printing head portion 13, and then rolled up by the ribbon roll up unit 12b.
According to such printer 1, the continuous paper P (Ps, Pb), which is unwound from the paper sheet supply unit 10 in a sheet-shape, is fed to the paper passing route between the printing head portion 13 and the supporting stand 14 via the damper portion 15, and in the middle of this, a printing processing is executed on the label of the continuous paper P or a similar print medium. After that, the continuous paper P is discharged outside the printer 1 from the issue port 5.
Next, a configuration of the above-described printing unit 11 will be described in reference to
The printing head portion 13 includes the front portion, which is swingably in the vertical direction (that is, openably and closably) supported by a head support plate (first support body) 17 on one side surface of the printing head portion 13 around a rotary shaft S1 (see
On an inferior surface (surface facing the paper passing route) of the printing head portion 13, a thermal head portion 18 (see
On an inferior surface of a front side of the printing head portion 13, depressed claw portions 19, 19 (see
While such printing head portion 13 is biased in the opening direction by a torsion spring 21 mounted on the rotary shaft S1 (see
In the closed state of the printing head portion 13, while a printing surface of the thermal head portion 18 is presses to the platen roller portion 23 (see
The platen roller portion 23 is feeding means that feeds the continuous paper P unwound from the paper sheet supply unit 10 to the issue port 5 (see
According to the embodiment, on an end portion on the damper portion 15 side on the head support plate 17, which supports the printing head portion 13, a suppression portion 17a (see
It should be noted that in the paper passing route of the printing unit 11, between the thermal head portion 18 and the damper portion 15, a paper-sheet-position detecting sensor (not illustrated) is disposed. This paper-sheet-position detecting sensor, which is a sensor that detects a label position of the continuous paper P by detecting the position detection mark disposed on the continuous paper P or a liner sheet part between adjacent labels, for example, is constituted of a light reflection type or light transmission type sensor.
At the printing process, the continuous paper P is fed by rotating the platen roller portion 23 in a state where the continuous paper is sandwiched between the thermal head portion 18 and the platen roller portion 23. Then, based on information detected by the paper-sheet-position detecting sensor, a printing timing is determined, and the heating resistors of the printing line 18L are selectively heated by a printing signal transmitted to the thermal head portion 18. Thus, desired information, such as a character, a sign, a diagram, a barcode, or similar information, is printed on the label of the continuous paper P.
On the other hand, the outer damper portion 15a of the damper portion 15, when viewing a side surface of the printing unit 11, extends obliquely downward from a front side to a rear side, and is supported by a damper supporting member (second support body) 25 around a rotary shaft S3 of the front side (see
The inner damper portion 15b of the damper portion 15, when viewing the side surface of the printing unit 11, extends obliquely downward from the rear side to the front side in contrast to the outer damper portion 15a, and is supported by the rear portion of the outer damper portion 15a around a rotary shaft S4 (see
At the printing process, a paper sheet contact portion of the inner damper portion 15b is positioned on a downstream of feed of the continuous paper P with respect to a paper sheet contact portion of the outer damper portion 15a. That is, the paper sheet contact portion of the inner damper portion 15b is disposed between the printing head portion 13 and the paper sheet contact portion of the outer damper portion 15a.
At a phase before passing through the paper, a height of the paper sheet contact portion of the inner damper portion 15b is disposed at a lower position than a height of the paper sheet contact portion of the outer damper portion 15a. That is, the height of the paper sheet contact portion of the inner damper portion 15b is disposed between the paper sheet contact portion of the outer damper portion 15a and a bottom surface inside the printer 1. It should be noted that configurations of the outer damper portion 15a and the inner damper portion 15b will be described later in detail.
On a lower portion of the outer damper portion 15a, a width adjustment guiding portion 27 is movably installed along an axial direction of the rotary shafts S3 and S4. The width adjustment guiding portion 27 is a configuration portion that abuts on both ends of the width direction of the continuous paper P fed from the paper sheet supply unit 10, and guides the feed of the continuous paper P. This width adjustment guiding portion 27 is coupled to the guide operating portion 28 on a back side of the outer damper portion 15a. This guide operating portion 28 is a tab for, while moving the width adjustment guiding portion 27 according to the width of the continuous paper P, fixing a position of the width adjustment guiding portion 27.
According to the embodiment, on the bottom surface inside the printer 1 below the damper portion 15, a depression portion 29 (see
A damper supporting member 25, which supports the outer damper portion 15a of such damper portion 15, is supported within the printer 1 around of a rotary shaft S5 (see
On an upper portion of this damper supporting member 25, a long groove portion (induction portion) 25a (see
The damper supporting member 25 includes the rear portion, which while being biased in a direction opening above (direction where the entire damper portion 15 rises) around the rotary shaft S5 (see
Next, an opening and closing operations of the damper portion 15 will be described in reference to
According to the embodiment, as shown in
When opening the printing head portion 13 and passing the continuous paper P through the paper passing route as a preparing phase for a printing operation, if the damper portion 15 remains to be fixed, since the damper portion 15 is installed at a proximity of a bottom surface of a chassis of the printer 1, the continuous paper P extracted from the paper sheet supply unit 10 has to be passed through below the damper portion 15 at the proximity of the bottom surface of the chassis where an operation is difficult. Since a gap between the damper portion 15 and the bottom surface of the chassis of the printer 1 is narrow, passing the continuous paper P is difficult. Furthermore, since on a lower portion of the damper portion 15, the width adjustment guiding portion 27 is mounted, when inserting the continuous paper P, the continuous paper P may be hooked on the width adjustment guiding portion 27. By these reason, there is a problem that an operation inserting the continuous paper P into the paper passing route of the printer 1 is difficult. In contrast, according to the embodiment, since opening the printing head portion 13 causes the damper portion 15 to rise, a width inserting the continuous paper P is enlarged to improve visibility of the lower portion of the damper portion 15. This, without hooking the continuous paper P extracted from the paper sheet supply unit 10 on the width adjustment guiding portion 27, can easily pass the continuous paper P through below the damper portion 15. Accordingly, the operation inserting the continuous paper P into the paper passing route of the printer 1 can be facilitated.
Although there is a case disposing another mechanism opening the damper portion 15 manually, in this case, a trouble may occur such that since the printing head portion 13 has been closed with failing to close the damper portion 15, printing is executed in a state where enough tension is not gave to the continuous paper P. In contrast, according to the embodiment, closing the printing head portion 13 causes the damper portion 15 to decreased to return to the original first height. That is, since this can prevent the damper portion 15 from being failed to close, the trouble that printing is executed in a state where tension is not gave to the continuous paper P can be prevented. A sequence of inserting operation of the continuous paper P can be simplified.
Next, a coupled mechanism of the printing head portion 13 and the damper portion 15 will be described in reference to
As shown a two-dot chain line in
Here, as shown a solid line in
On the other hand, if the front portion of the head support plate 17 (printing head portion 13) closes downward (direction closing to the platen roller portion 23), the suppression portion 17a of the head support plate 17 moves in an opposite direction of the moving direction of the front portion of the head support plate 17. That is, the pin 17b of the suppression portion 17a separates from the suppression release position of the other end side of the long groove portion 25a of the damper supporting member 25, and then returns automatically to the suppression position of the one end side of the long groove portion 25a along the long groove portion 25a. Thus, since the rear portion of the damper supporting member 25 is decreased against the biasing force of the torsion spring 30, in accordance with this, as shown in
The opening and closing mechanism of the damper portion 15 is not limited to the above-described configuration, but, for example, may be as follows. That is, the rear portion of the damper supporting member 25 may be biased in a direction closing around the rotary shaft S5 by the torsion spring 30 mounted on the rotary shaft S5 (direction where the entire damper portion 15 is decreased). In this case, if the printing head portion 13 opens, as the suppression portion 17a moves from the suppression position to the suppression release position along the long groove portion 25a, the rear portion of the damper supporting member 25 is pulled to rise. Thus, the rear portion of the damper portion 15 opens in conjunction with an opening operation of the printing head portion 13. On the other hand, if the printing head portion 13 closes, as the suppression portion 17a moves from the suppression release position to the suppression position along the long groove portion 25a, the rear portion of the damper supporting member 25 is decreased by an action of the torsion spring 30. Thus, the rear portion of the damper portion 15 closes in conjunction with a closing operation of the printing head portion 13. In this case, the biasing force of the torsion spring 21 on a side of the printing head portion 13 is configured to be larger than the biasing force of the torsion spring 30 on a side of the damper supporting member 25.
As described above, when disposing another mechanism portion opening the damper portion 15 manually, there is a problem that, since a structure is complicated, and the number of components increases, a cost of the printer 1 increases, and a downsizing of the printer 1 is inhibited. In contrast, according to the embodiment, since the other mechanism portion opening the damper portion 15 manually is not disposed, and an opening mechanism portion and a closing mechanism portion of the damper portion 15 are double as one another, the structure can be simplified, and the number of components can be reduced. In view of this, the cost of the printer 1 can be reduced, and the downsizing of the printer 1 can be proceeded.
Next, a configuration of the damper supporting member 25 and a coupling relationship with the damper portion 15 and the damper supporting member 25 will be described in reference to
On one end side in the longitudinal direction of the damper supporting member 25, a bearing hole portion 25b, which passes through both side surfaces of the damper supporting member 25, is formed. Into this bearing hole portion 25b, the rotary shaft S5 is inserted in a fixed state not to rotate, and screwed by a screw 35a (see
On the other end side in the longitudinal direction of the damper supporting member 25, a hole portion 25c, which passes through between both side surfaces of the damper supporting member 25, is formed. In this hole portion 25c, a protrusion 36, which is formed on a side surface of the outer damper portion 15a, is projected. The hole portion 25c is formed so that a margin at predetermined dimensions is generated around the protrusion 36.
The outer surface of the damper supporting member 25 is formed to be depressed in a thickness direction. On this outer surface of the damper supporting member 25, at a proximity of the hole portion 25c, a protrusion 25d is formed. Between this protrusion 25d of the damper supporting member 25 and the protrusion 36 of the outer damper portion 15a, the coil spring 26 is installed to be bridged. This coil spring 26 is biased to pull the protrusion 36 of the outer damper portion 15a in a direction of the protrusion 25d of the damper supporting member 25. Thus, the outer damper portion 15a, while being firmly supported along an axial direction of the rotary shaft S3 and suppressed not to go excessively to an upper side, is swingably supported so as to give tension to the continuous paper P.
Furthermore, on a upper portion of the internal surface of the damper supporting member 25, at a proximity of a center in a longitudinal direction, a bearing hole portion 25e (see
Next, a configuration of the damper portion 15 will be described in reference to
On one end side (upper end portion side) in the longitudinal direction where the outer damper portion 15a is viewed from the side surface, a bearing hole portion 37 is formed. Into this bearing hole portion 37, the rotary shaft S3 is inserted. Thus, the outer damper portion 15a is rotatably journaled around the rotary shaft S3. That is, the outer damper portion 15a is swingably journaled in a vertical direction around the rotary shaft S3 so that its other end part (lower end portion) in the longitudinal direction can give tension to the continuous paper P.
On a back surface of the outer damper portion 15a, a slide hole portion 38 is formed along the axial direction of the rotary shaft S3. Into this slide hole portion 38, shaft portions of two guide operating portions 28 are inserted. To this shaft portion of the guide operating portion 28, the width adjustment guiding portion 27 is coupled by a pin 39 (see
The paper sheet contact portion, where the continuous paper P contacts, on the other end side (lower end portion side) in the longitudinal direction where the outer damper portion 15a is viewed from the side surface, is formed in the arc-shape where the outer damper portion 15a is viewed from the side surface side. This can decrease contact resistance of the outer damper portion 15a and the continuous paper P to make a flow of the continuous paper P smooth.
On the lower end portion of the outer damper portion 15a, a bearing hole portion 40 is formed. Into this bearing hole portion 40, the rotary shaft S4 is inserted in a fixed state not to rotate. The rotary shaft S4 is disposed parallel to the rotary shaft S3. To this rotary shaft S4, the inner damper portion 15b is journaled.
The inner damper portion 15b includes supporting portions 41a, 41a at two sites and a main body portion 41b, which is integrally formed on one end sides of them to bridge them. On one ends of the supporting portions 41a, 41a, a bearing hole portion 41c is formed each. Into these bearing hole portions 41c, 41c, the rotary shaft S4 is inserted. Thus, the inner damper portion 15b is rotatably journaled around the rotary shaft S4.
On one end side of the rotary shaft S4, a torsion spring 42 (see
On the other hand, a paper sheet contact portion side, where the continuous paper P contacts, on the main body portion 41b of the inner damper portion 15b is formed in the arc-shape where the inner damper portion 15b is viewed from the side surface. This can decrease contact resistance of the inner damper portion 15b and the continuous paper P to make the flow of the continuous paper P smooth.
On an opposite surface side of the paper sheet contact portion on the main body portion 41b, a depression portion 41d is formed. Within this depression portion 41d, a plurality of reinforcing plates 41e are disposed along the axial direction of the rotary shaft S4 at every predetermined interval. This, while ensuring strength of the inner damper portion 15b, can save weight of the inner damper portion 15b.
Although disposing a damper function completely separately is considered, in this case, due to the limited space near the damper portion 15, the printer 1 may be enlarged. In contrast, according to the embodiment, as the inner damper portion 15b is journaled to the outer damper portion 15a, without enlarging the printer 1, even in the case of the inside wound label, the damper function, which can give enough tension, can be added.
Furthermore, according to the embodiment, the outer damper portion 15a and the inner damper portion 15b as described above, for example, are constituted of a transparent resin. This can improve visibility of the continuous paper P at the damper portion 15 to more facilitate the operation inserting the continuous paper P into the paper passing route of the printer 1. From such aspect, transparent means that an opposite side of the member is viewable, and transparent material includes colored translucent material and uncolored translucent material as well as uncolored material.
It should be noted that between the main body portion 41b of the inner damper portion 15b and the outer damper portion 15a, a gap 43 (see
Next, an operational advantage by the damper portion 15 will be described in reference to
As shown in
On the other hand, in the case of the inside wound label, because the continuous paper P is unwound from around the bottom surface inside the printer 1 to be passed through below the damper portion 15, in a case where only the outer damper portion 15a is disposed (case without the inner damper portion 15b), the continuous paper P may be inserted into the paper passing route without enough tension being gave. In view of this, the continuous paper P may not be fed correctly to deteriorate the printing quality.
In contrast, according to the embodiment, as shown in
Next,
Next, the width adjustment guiding portion 27 and the guide operating portion 28 will be described in reference to
As shown in
As shown in
If the guide operating portion 28 is held to turn around the shaft portion 28a, the pin 39 also turns. Then, the two convex portions 39a, 39a of the pin 39 are pressed to the two guide rail portions 45 by a turning position of the pin 39. Thus, the guide rail portion 45 slacks, and the pin 39 is fixed. Thus, the guide operating portion 28 is locked. On the other hand, if the guide operating portion 28 is turned further 90 degree from a locked state, since the two convex portions 39a, 39a of the pin 39 separate from the two guide rail portions 45, the locked state of the guide operating portion 28 is released. Accordingly, according to the embodiment, with a simple structure and a simple operation, a position of the width adjustment guiding portion 27 can be set.
As shown in
Next, an operational advantage by disposing the depression portion 29 below the damper portion 15 will be described in reference to
In a case where the depression portion 29 does not exist below the damper portion 15 and the bottom surface inside the printer 1 is flat, if the continuous paper P is returned from the printing unit 11 to a paper sheet supply unit 10 side, what is called, back feeding is executed, the continuous paper P slacks to contact the bottom surface inside the printer 1. In this case, since the lower portion of the width adjustment guiding portion 27 of the damper portion 15 is positioned above the bottom surface inside the printer 1, the continuous paper is positioned below a lower end of the width adjustment guiding portion. Therefore, the continuous paper may get out of range determined by the width adjustment guiding portion. Thus, returning to the printing operation in this state causes the continuous paper to run on the width adjustment guiding portion and be fed in a state where the damper portion does not function. This results in a printing position displaced from a planned position, a thinned printing density, and ends up with a problem that printing quality is deteriorated. Especially in the case where a width of the continuous paper is short, the continuous paper often deviates from the width adjustment guiding portion. The rolled continuous paper loaded in a paper sheet supply unit may slack due to an inertia of rotation.
In contrast, according to the embodiment, so that the lower portion of the width adjustment guiding portion 27 of the damper portion 15 is positioned below the bottom surface inside the printer 1, the depression portion 29 is disposed on the bottom surface inside the printer 1. Thus, since the lower portion of the width adjustment guiding portion 27 of the damper portion 15 is positioned below a line on the bottom surface inside the printer 1, the continuous paper P does not get out of range determined by the width adjustment guiding portion 27. In view of this, when returning to the printing operation, since the continuous paper P also does not run on the width adjustment guiding portion 27, the function of the damper portion 15 is not also hindered. Accordingly, this avoids the trouble, such as the printing position displaced off from the planned position, and a thinned printing density, thus ensuring the printing quality of the printer 1.
A cross-sectional shape of the depression portion 29 is formed so that an incline of the rear (upstream of feed at the printing process) is more gradual than an incline of the front (downstream of feed at the printing process). An inner wall surface of the depression portion 29 may be approximately perpendicular to the bottom surface inside the printer 1.
On the bottom surface inside the printer 1 including the depression portion 29, a plurality of protrusions (not illustrated), which extend along the feed direction of the continuous paper P, may be disposed along the width direction of the continuous paper P at every predetermined interval. These can make the flow of the continuous paper P smooth at the back feeding to reduce or prevent a trouble that the continuous paper P jams below the damper portion 15.
Next, the operation inserting the continuous paper P into the paper passing route of the printer 1 will be described in reference to
First, pulling the head lock lever portion 16 of the printing unit 11 shown in
Subsequently, the continuous paper P unwound from the paper sheet supply unit 10 passes through below the damper portion 15, and then passes through between the printing head portion 13 and the supporting stand 14. In this respect, since the damper portion 15 has rose and is open, the operation inserting the continuous paper P can be facilitated.
Thereafter, as shown in
As described above, the invention made by the present inventor has been described specifically based on the embodiment. However, it should be understood that the embodiment disclosed herein is for illustrative purposes in all respects, and is not limited to the technique disclosed. That is, the technical scope of the present invention should not be construed in a restrictive manner based on the description in the embodiment, should be construed in accordance with the description in a range of the claim as a principle, and the technique identical to the technique disclosed in a range of the claim and all changes within the scope of the claim are included.
For example, according to the embodiment, a case that a continuous paper, which includes a plurality of labels adhered temporarily on a liner sheet, is used as a print medium has been described, but this should not be construed in a limiting sense; for example, a continuous label including an adhesive surface on one surface (label without liner sheet), a continuous sheet without an adhesive surface (continuous sheet), or, not limited to papers, a printable film by a thermal head or a similar film can be used as a print medium. The label without liner sheet, the continuous sheet, or the film can include a position detection mark. In the case where the label without liner sheet, where an adhesive is exposed, or a similar label is fed, a roller including silicone may be disposed while a non-adhesive coating is applied to a feed path.
In the above description, the present invention has been described in a case applying to a stand-alone type printer, where an input operation to the printer is executed without a personal computer, but this should not be construed in a limiting sense; for example, the present invention may also apply to an on-line type printer, where the input operation to the printer is executed via the personal computer.
This application claims the priority based on Patent Application No. 2013-268261 filed in the Japan Patent Office on Dec. 26, 2013, and every content of this application is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2013-268261 | Dec 2013 | JP | national |
This application is a division of U.S. application Ser. No. 15/106,481, filed Jun. 20, 2016, which is the National Stage Application of PCT/JP2014/ 084332, filed Dec. 25, 2014, which is based upon and claims the benefit of priority from the prior Japanese Application No. 2013-268261, filed on Dec. 26, 2013; the entire contents of all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15106481 | Jun 2016 | US |
Child | 15878900 | US |