This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2021-182092, filed on Nov. 8, 2021, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a printer.
In a related art, a printer that prints while conveying a strip-shaped sheet was used. As such a printer, for example, there is a receipt printer. In addition, some such printers enable both a full cut that completely cuts the ejected sheet in the width direction and a partial cut that leaves a partial area of the width direction (for example, the central portion). Further, some such printers convey and eject the sheet upwards.
Some printers that eject sheet upward as described above have been devised as disclosed in JP-A-2007-076134. That is, to prevent the inconvenience that the fully cut sheet falls below the cut position, the ribs provided at the sheet ejection port hold the sheet by alternately pressing the sheet from the front and back.
Here, the structure for holding the full-cut sheet as described above does not correspond to the ejection of the partially cut sheet. In the case of full cut, the cut sheet held by the ribs overlaps with the sheet to be conveyed next, and thus, a frictional force acts between the sheets. As a result, the cut sheet also moves between the ribs together with the next sheet. However, since the partially cut sheet does not overlap with the next sheet in the thickness direction, the sheet is not conveyed by the frictional force between the sheets as described above. In the case of partial cut, the conveying force is transmitted from the rear sheet to the front sheet only at the connected part. Thus, if the sheet holding force of the ribs is too strong, the sheet is broken at the connected part of the front and rear sheet and a sheet jam occurs. Further, if the ribs are simply lowered or the number of ribs is reduced to weaken the sheet holding force of the ribs, the originally required function of holding the fully cut sheet becomes uncertain depending on the degree of the ribs.
Embodiments of the present disclosure provide a printer having a structure capable of holding a full-cut sheet ejected upward and having a structure in which jam of a partial-cut sheet is unlikely to occur.
In general, according to one embodiment, a printer includes a printing unit configured to print on a strip-shaped sheet, a housing configured to house the sheet and the printing unit and provided with a sheet ejection port for ejecting the sheet that passed through the printing unit upward, a cutting unit arranged between the printing unit and the sheet ejection port and configured to cut the sheet by either a first method of cutting the sheet in the entire width direction or a second method of leaving the central portion of the sheet in the width direction, first protrusions protruding from the inner periphery of the sheet ejection port, and provided at a plurality of locations along the width direction of the sheet to face a first surface, which is the surface of the sheet on the side to be printed, and second protrusions protruding from the inner periphery of the sheet ejection port, provided at a plurality of locations along the width direction of the sheet at positions deviated from the first protrusions in the sheet width direction to face a second surface, which is the back surface of the first surface of the sheet, and configured to bend the sheet in an undulating shape in the width direction between the first protrusion and the second protrusion, in which a protrusion height of at least one of the first protrusions and the second protrusions in a predetermined region of the central portion of the sheet in the width direction is lower than protrusion heights of the first protrusions and the second protrusions in other regions.
The embodiment will be described with reference to the drawings.
The printer 1 is, for example, a thermal printer that prints information such as characters and figures on a sheet. The printer 1 is connected to, for example, a POS (Point of Sales) terminal (not shown), receives commodity information and sales information related to commodities sold to customers at a store from the POS terminal, prints the information on the sheet, and dispenses the sheet as a receipt (discharge of the sheet, sheet ejection).
The printer 1 includes a housing 2, a storage unit 3, a sheet ejection port 4, a printing unit 5, and a cutting unit 6.
The housing 2 includes a main body portion 21 and a lid portion 22. The main body portion 21 is a container having an opening on one side and includes the storage unit 3 for storing a roll sheet 9 inside. One side of the lid portion 22 is rotatably supported near the edge of the opening of the main body portion 21. With the rotation of the lid portion 22, the opening of the main body portion 21 is opened and closed, whereby the storage unit 3 is opened and closed. The roll sheet 9 is taken in and out of the main body portion 21 with the lid portion 22 open.
The roll sheet 9 is a roll of a strip-shaped sheet (for example, heat sensitive paper) 91, and the sheet 91 is pulled out from the outer peripheral portion at the end of the roll. The outer diameter of the roll sheet 9 gradually decreases as the sheet 91 is pulled out.
The printer 1 prints information on the sheet 91 pulled out from the roll sheet 9 stored in the storage unit 3 and ejects the sheet 91 that passed through the printing unit 5 from the sheet ejection port 4.
The sheet ejection port 4 is formed between the end of the lid portion 22 on the opposite side of the rotating end and the main body portion 21. The sheet ejection port 4 is a gap (slit) between a surface 41 facing the printing surface of the sheet 91 and a surface 42 facing the back surface of the printing surface of the sheet 91. The surface 41 is a part of the main body portion 21 and the surface 42 is a part of the lid portion 22. The sheet ejection port 4 is open upward and the printer 1 ejects the sheet 91 that passed through the printing unit 5 upward.
The printing unit 5 includes a printing head 51 and a platen 52.
The print head 51 is provided at a substantially intermediate position between the storage unit 3 and the sheet ejection port 4 in the main body portion 21 and is provided in the middle of the conveyance path of the sheet 91 pulled out from the roll sheet 9. The print head 51 is a line thermal head in which a large number of heat-generating elements are arranged on the line. The print head 51 drives the heat generating elements corresponding to the print pattern among the heat generating elements aligned on one line to generate heat, thereby, heating the sheet 91 to print information. The printed sheet 91 is discharged from the sheet ejection port 4 to the outside of the housing 2.
The platen 52 is a cylindrical roller whose surface is formed of an elastic material at least and is rotatably attached to the lid portion 22. If the lid portion 22 closes the opening of the main body portion 21, the platen 52 is located at a position facing the print head 51 and presses the print head 51. In this state, the sheet 91 pulled out from the roll sheet 9 is sandwiched between the print head 51 and the platen 52. The platen 52 rotates by the driving force of a motor (not shown) being transmitted, pulls out the sheet 91 from the roll sheet 9, and conveys the sheet toward the sheet ejection port 4.
The cutting unit 6 is arranged between the printing unit 5 and the sheet ejection port 4 and cuts the sheet 91 along the width direction of the sheet 91. The sheet width direction, the sheet thickness direction, and the sheet conveyance direction are orthogonal to each other.
The cutting unit 6 is driven by selectively adopting one of the following two methods as the cutting method. A first method is a method also called full cut, which cuts the sheet 91 in the entire width direction. A second method is a method also called partial cut, which leaves the central portion of the sheet 91 in the width direction.
The cutting unit 6 includes, for example, a fixed blade 61 having a straight cutting edge and a movable blade 62 having a cutting edge having a V-shaped recess in the center. The movable blade 62 is driven by a drive unit such as a motor (not shown), so as to move in a direction in which the cutting edge of the movable blade 62 is close to and separated from the cutting edge of the fixed blade 61. The moving direction of the movable blade 62 substantially coincides with, for example, the sheet thickness direction. In such a structure, full cut and partial cut can be used properly depending on the moving distance of the movable blade 62 with respect to the fixed blade 61. That is, by stopping the movement of the movable blade 62 to the extent that the V-shaped valley of the movable blade 62 does not reach the cutting edge of the fixed blade 61 and is maintained in a slightly separated state, the central portion of the sheet 91 in the width direction can be left uncut, which makes a partial cut.
The first protrusions 7 (71 to 76) protrude from the surface 41 constituting the inner periphery of the sheet ejection port 4, are provided at a plurality of locations along the width direction of the sheet 91, and face the surface of the sheet 91 (printing surface, first surface) on the side to be printed. Similarly, the second protrusions 8 (81 to 83) protrude from the surface 42 constituting the inner periphery of the sheet ejection port 4, are provided at a plurality of locations along the width direction of the sheet 91, and face the back surface (second surface) of the printing surface of the sheet 91.
Each of the protrusions 71 to 76 and 81 to 83 has a plate shape and is provided side by side in the width direction of the sheet 91 with the plate thickness direction facing the width direction of the sheet 91.
Further, the protruding direction of each of the protrusions 7 and 8 is, for example, along the thickness direction of the sheet 91 conveyed at each position. As a result, each of the protrusions 7 and 8 changes the moving direction of the sheet 91 during conveyance in the thickness direction thereof.
The first protrusions 7 are composed of the protrusions 71 and 72 located at the central portion in the width direction of the sheet 91, the protrusions 73 and 74 provided at positions sandwiching the protrusions 71 and 72 in the sheet width direction, and the protrusions 75 and 76 further sandwiching the protrusions 71 to 74 in the sheet width direction. Further, the second protrusions 8 are composed of the protrusion 81 located at the central portion in the width direction of the sheet 91, and the protrusions 82 and 83 provided at positions sandwiching the protrusion 81 in the sheet width direction.
The second protrusions 8 are provided at positions deviated from the first protrusions 7 in the width direction of the sheet 91. As a result, each of the protrusions 7 and 8 is alternately located in the order of the first protrusion 75, the second protrusion 83, the first protrusions 73 and 71, the second protrusion 81, the first protrusions 72 and 74, the second protrusion 82, and the first protrusion 76 in the sheet width direction. Further, as a result, the sheet 91 is curved in an undulating shape (wavy shape) in the width direction between the first protrusion 7 and the second protrusion 8.
In the present embodiment, the protrusions 71 and 72 at the central portion in the sheet width direction are set to have a lower (smaller and shorter) protrusion height than the other protrusions 73 to 76. Further, in the present embodiment, the protrusions 73 to 76 are formed to have a constant protrusion height. Further, the protrusions 81 to 83 are formed to have a constant protrusion height in the present embodiment. As a result, in the predetermined region of the central portion of the sheet 91 in the width direction, the distance between the top of the first protrusion 7 and the top of the second protrusion 8 is wider (larger) than that in the other regions.
In the present embodiment, the heights of the protrusions 71 to 76 and 81 to 83 are set as described above, but in the implementation, the protrusion height of at least one of the first protrusions 7 and the second protrusions 8 in a predetermined region in the central portion in the width direction of the sheet 91 may be set lower than the protrusion heights of the first protrusions 7 and the second protrusions 8 in the other regions.
As shown in
The side 753 is an edge portion of the first protrusion 75 on the downstream side in the sheet conveyance direction. The side 753 extends in a direction intersecting the sheet conveyance direction and the sheet width direction. Since such a side 753 is not parallel to the lower side of the fully cut sheet 91, the fully cut sheet 91 can be supported.
Further, the second protrusion 83 (the same applies to the second protrusions 81 and 82) has a mountain shape similar to that of the first protrusions 73 to 76. That is, the second protrusion 83 includes a top 831, a hypotenuse 832 rising diagonally from the inner peripheral surface 42 of the sheet ejection port 4 from the upstream side to the downstream side in the sheet conveyance direction to reach the top 831, and a side 833 descending from the top 831 to the inner peripheral surface 42.
Next, as shown in
Further, in the present embodiment, the first protrusions 7 and the second protrusions 8 are provided to be positioned to deviate from each other in the sheet conveyance direction. As a result, the shape of the sheet conveyance path seen from the sheet width direction includes S-shaped undulation instead of a straight line, as shown in
More specifically, the first protrusions 7 are arranged to be located above the second protrusions 8 (that is, on the downstream side in the sheet conveyance direction). Further, in the present embodiment, the first protrusions 7 (71 to 76) are provided more than the second protrusions 8 (81 to 83), and therefore, the distance between the first protrusions 7 (71 to 76) is narrow. As a result, the first protrusion 7 is suitable as a place where the fully cut sheet 91 is placed and stacked (accumulated).
Further, in the present embodiment, the first protrusions 7 and the second protrusions 8 are provided so that the hypotenuse 752 and the side 833 face each other through the gap when viewed from the sheet width direction. As a result, the first protrusions 7 and the second protrusions 8 do not overlap (are not superimposed) when viewed from the sheet width direction. This structure and the shape of the sheet conveyance path including the S-shaped undulation described above make it possible to realize a moderate holding of the sheet 91 in the sheet ejection port 4 of the present embodiment. Moderate holding here means that the fully cut sheet 91 can be held between the first protrusion 7 and the second protrusion 8 to the extent that jam does not occur between the first protrusion 7 and the second protrusion 8 while the cutting unit 6 is in a partial cut operation.
If the next sheet 91 is conveyed in the above-mentioned state, the sheet 91 partially overlaps with the cut sheet 92 in the thickness direction between the first protrusion 7 and the second protrusion 8. If the sheet 91 is further conveyed, a frictional force acts on the contact surface between the sheet 91 and the sheet 92, and the sheet 92 is conveyed together with the sheet 91. The sheet 92 that passed through the top 751 is stacked on the side 753 of the first protrusion 7.
Here,
As shown in
In the case of partial cut, the conveyed sheet 91 and the portion 94 do not overlap in the thickness direction, and thus, the sheet 91 pushes up the portion 94 only by the connected portion 93. Therefore, if the portion 94 is held too strongly by the protrusions 7 and 8, a jam will occur. As a countermeasure, in the printer 1 of the present embodiment, first, the distance between the first protrusion 7 and the second protrusion 8 in the central portion in the sheet width direction is wider than in other regions (both ends in the sheet width direction). As a result, the load applied to the connected portion 93 and its peripheral portion is smaller than that in the other regions.
Further, in the printer 1 of the present embodiment, the first protrusions 7 and the second protrusions 8 are arranged to face each other through a gap when viewed from the sheet width direction and not to overlap when viewed from the sheet width direction. According to such an embodiment, the inconvenience that the sheet 91 is held too strongly is eliminated.
Moreover, in the printer 1 of the present embodiment, the first protrusion 7 and the second protrusion 8 are positioned to deviate from each other in the sheet conveyance direction, whereby the sheet conveyance path seen from the sheet width direction has an undulating shape such as an S-shape. As a result, the fully cut sheet 92 is less likely to fall to the cutting unit 6, and the inconvenience that the sheet 92 is cut twice by the cutting unit 6 is less likely to occur.
If the sheet 91 is conveyed from the state of
As described above, according to the present embodiment, it is possible to provide the printer 1 having a structure in which the fully cut sheet 92 to be ejected upward can be held and the partially cut portion 94 is less likely to be jammed.
In the present embodiment, the protrusions 7 and 8 have a rib-like shape, and the holding force of the sheet 91 at the sheet ejection port 4 is adjusted depending on the number of ribs. At the time of implementation, the protrusions 7 and 8 may be configured, for example, by the coexistence of thick convex portions and thin convex portions in the sheet width direction.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2021-182092 | Nov 2021 | JP | national |