The present application claims priority from Japanese Patent Application No. 2011-187867, which was filed on Aug. 30, 2011, and 2011-187864, which was filed on Aug. 30, 2011, the disclosures of which are incorporated herein by reference in its entirety.
1. Field
The present disclosure relates to a printer that performs desired printing on a print-receiving medium.
2. Description of the Related Art
There is disclosed a first prior art of a printer that provides a medium storage chamber that stores a print-receiving medium in the interior of a housing. In this printer, the medium storage chamber can be opened to the outside using an opening/closing lid (printer cover) provided to the housing (printer case). With this arrangement, the operator can easily insert the print-receiving medium (rolled paper) into the medium storage chamber and replace the print-receiving medium with a new print-receiving medium by setting the opening/closing lid into an open position and exposing the medium storage chamber to the outside. Note that the opening/closing operation of the opening/closing lid is detected by a sensor (cover open detector).
Further, for example, a second prior art is disclosed, comprising a printer that is battery powered and configured to perform a printing operation using the electromotive force of a battery. This printer comprises a medium storage chamber (paper supply cassette) that stores a sheet-shaped print-receiving medium laid flat, a print processing mechanism comprising a platen roller and a thermal head, and a control substrate, in the interior of the housing (main body cover). Further, a battery storage part (battery) is provided in a detachable manner behind the housing. The print processing mechanism uses the power supplied from the battery stored in the battery storage part, and performs desired printing on the print-receiving medium based on the control executed by the control substrate.
According to the first prior art, the sensor that detects the opening/closing operation of the opening/closing lid is provided to the side where the opening/closing lid is opened to the outside. In this case, when the opening/closing lid changes to an open state and the housing interior is open to the outside, the possibility exists that spray from the outside, such as rain water, will adversely affect the control substrate of the housing interior. Nevertheless, according to the first prior art, such effects of spray in the housing interior in particular has not been specially considered.
In a printer such as that of the second prior art, a roll-shaped print-receiving medium is sometimes used, for example. When such a roll-shaped print-receiving medium is stored with the axial direction thereof horizontally set, the vertical dimension of the medium storage chamber becomes relatively large. On the other hand, the control substrate, in general, is often extended in the horizontal direction as in the prior art for the convenience of handling and assembly. As a result, the control substrate has a small vertical dimension but a relatively large horizontal dimension. Further, from the viewpoints of stability and the placement of the center of gravity, the battery is often stored horizontally. In such a case, as in the second prior art, the battery storage part has a small vertical dimension and a relatively large horizontal dimension.
It is possible to reduce the size of the housing by devising a layout of such a roll-shaped print-receiving medium, control substrate, and battery storage part within the apparatus while considering the respective dimensional characteristics of the same. Nevertheless, according to the second prior art, consideration to such a point has not been made.
It is therefore a first object of the present disclosure to provide a printer capable of ensuring the waterproof characteristics of the housing interior.
It is a second object of the present disclosure to provide a printer capable of reducing the size of the overall housing.
To achieve the first and second objects, according to the present aspect, there is provided a printer configured to perform desired printing on a print-receiving medium wound around a predetermined axis into a roll shape, comprising a substantially box-shaped housing that constitutes a printer contour, a partition wall that partitions an internal structure of the housing into a first area positioned on a first side along a first direction orthogonal to the axis, and a second area positioned on a second side opposite to the first side along the first direction, a control substrate provided to the first area, a medium storage chamber configured to store the print-receiving medium and provided to the second area, an opening/closing lid configured to expose the medium storage chamber to the outside and provided to the housing and configured to open and close between an open position and a closed position, and a print processing mechanism configured to perform desired printing while feeding the print-receiving medium supplied from the medium storage chamber based on control by the control substrate.
According to the printer of the present disclosure, a medium storage chamber configured to store a print-receiving medium is provided to the interior of the housing, and this medium storage chamber is opened to the outside using an opening/closing lid provided to the housing. With this arrangement, the operator can easily insert the print-receiving medium into the medium storage chamber and replace the print-receiving medium with a new print-receiving medium by setting the opening/closing lid into an open position and exposing the medium storage chamber to the outside.
At that time, because the housing interior is open to the outside, there is a need to consider the waterproof characteristics of the control substrate in the housing interior. According to the present disclosure, a partition wall is provided to the housing interior, partitioning the interior into a first area on a first side and a second area on a second side, with the medium storage chamber that is configured to open and close by the opening/closing lid provided in the second area and the control substrate provided in the first area. With this arrangement, it is possible to ensure the waterproof characteristics of the control substrate.
Further, according to the printer of the present disclosure, the housing is divided into a first area of a first side and a second area of a second side along a first direction, as previously described. Then, the control substrate is disposed in the first area, and the medium storage chamber is disposed in the second area. With this arrangement, it is possible to dispose the battery storage part vertically with the control substrate in the first area, and thus provide the medium storage chamber alone in the second area. In this case, it is possible to suppress an increase in the vertical dimension of the housing compared to a case where the control substrate and battery storage part are provided above and below the medium storage chamber. Further, the battery storage part and control substrate are vertically layered and disposed in the first area on a side opposite to the medium storage chamber, making it possible to suppress an increase in the horizontal dimension of the housing compared to a case where these are disposed side by side in the horizontal direction. As a result, the size of the overall housing can be reduced.
The following describes one embodiment of the present disclosure with reference to accompanying drawings.
General Configuration of Printer
The following describes the overall configuration of a printer 1 of one embodiment of the present disclosure, using
The printer 1 prints print data received from an external device (not shown) such as a PC terminal, cellular telephone, or the like onto a rolled paper S, for example. This printer 1 can be driven using a battery (not shown) as a power source.
The printer 1 comprises a substantially box-shaped housing 100 which constitutes the contour of the printer and is made of a resin material, for example. This housing 100 comprises a top cover 101 that constitutes the upper part of the printer contour, and an undercover 102 that constitutes the lower part of the printer contour. The top cover 101 comprises a fixing part 101A and an opening/closing lid 101B.
The end part of the undercover 102 is equipped with a pair of left and right insertion parts 102a. A strap SP (refer to
A roll storage part 161 is provided below the opening/closing lid 101B of the top cover 101 (in the interior of the housing 100; refer to
Further, a discharging exit 107 for discharging the rolled paper S after printing is provided to the substantial center of the top cover 101 in the front-rear direction (the section where the fixing part 101A and the opening/closing lid 101B meet according to this example; refer to
A platen roller 111 is rotatably supported by a front end part 101C of the opening/closing lid 101B (refer to
Mechanical Unit and Periphery
On the other hand, a mechanical unit MU comprising a main chassis member 150 is provided near the center of the interior of the housing 100 in the front-rear direction.
Further, the substantially cylindrical motor casing 21 that forms the contour of the drive motor that generates driving power for rotationally driving the platen roller 111, and a gear mechanism 132 comprising a plurality of gears and configured to transmit the driving power of the above described drive motor to the platen roller 111 by being operatively connected to the platen roller 111 with the opening/closing lid 101B in a closed state, are provided to the mechanical unit MU, as shown in
Further, the above described motor casing 21 is provided below the above described discharging exit 107, in the interior of the housing 100 (refer to
Further, the area below the control substrate 170 within the housing 100 is equipped with a battery storage part 163 (see
General Operation of Printer
With the above described configuration, the print data is sent to the printer 1 via wireless communication (or wired or infrared communication) from an external device such as a PC terminal or cellular telephone at the time of printing. Further, the rolled paper S is fed out from the roll storage part 161 by the rotation of the platen roller 111 based on the driving power of the motor. The fed out rolled paper S is guided to a pressing part of the platen roller 111 and the thermal line head 112 by a guide member 120 provided below the discharging exit 107. Then, the thermal line head 112 performs printing in a desired form based on the print data onto the rolled paper S inserted between the thermal line head 112 and the platen roller 111. The rolled paper S after printing is discharged from the discharging exit 107 to outside the housing 100. At this time, a fixed tooth 160 is installed to the main chassis member 150, along and inside the discharging exit 107. Upon completion of the printing above, the operator can manually cut the end part of the rolled paper S discharged from the discharging exit 107 using this fixed tooth 160.
Note that when the operator opens the opening/closing lid 101B and stores the rolled paper S in the roll storage part 161 as described above, the operator inserts the end excess part of the rolled paper S extracted from the roll storage part 161 between the thermal line head 112 of the mechanical unit MU and the platen roller 111 provided to the opening/closing lid 101B side, and further inserts the end excess part through the discharging exit 107, exposing it to the outside of the housing 100, to smoothly achieve the feeding and printing operation during the subsequent printing operation as described above, and then needs to close the opening/closing lid 101B. Here, in this embodiment, a front end part 101C of the above described opening/closing lid 101B also serves as the edge part on the rear side (in other words, the roll storage part 161 side) of the discharging exit 107.
Further, in a case where a paper jam or the like occurs during printing, the platen roller 111 is released from the thermal line head 112 by opening the above described opening/closing lid 101B of the top cover 101, making it possible to easily pull out the rolled paper S.
First Special Characteristic of this Embodiment
In the above configuration, first, the first special characteristic of this embodiment lies in the configuration for detecting the opening and closing of the above described opening/closing lid 101B while improving the waterproof characteristics against spray. The following describes the details on the functions in order using
As previously described, according to the printer 1 of this embodiment, the roll storage part 161 can be opened to the outside using the opening/closing lid 101B. With this arrangement, it is possible for the operator to easily insert the rolled paper S into the roll storage part 161 and replace the rolled paper S with a new rolled paper S by setting the opening/closing lid 101B into an open position and exposing the roll storage part 161 to the outside. At this time, because the interior of the housing 100 is open to the outside, it is necessary to consider the waterproof characteristics of the control substrate 170 inside the housing 100.
Here, according to the printer 1 of this embodiment, as shown in
Second Special Characteristic of this Embodiment
Further, the second special characteristic of this embodiment lies in that the control substrate 170, the battery storage part 163, and the roll storage part 161 are disposed within the housing 100 as previously described. The following describes the details on the functions in order using the above described
As previously described, according to the printer 1 of this embodiment, the roll storage part 161, the mechanical unit MU comprising the thermal line head 112, the drive motor, the main chassis member 150, and the like, the battery storage part 163, and the control substrate 170 are provided within the housing 100.
At this time, when the rolled paper S is stored in the roll storage part 161 with the axis thereof horizontally set as in this embodiment, the vertical dimension of the roll storage part 161 becomes relatively large (see
Here, according to the printer 1 of this embodiment, as shown in
With the roll storage part 161 provided alone in the second area Q as described above, an increase in the vertical dimension of the housing 100 is suppressed compared to a case where the control substrate 170 and the battery storage part 163 are provided above and below the roll storage part 161. Further, the battery storage part 163 and the control substrate 170 are vertically layered and disposed in the first area P on the opposite side, suppressing an increase in the horizontal dimension of the housing 100 compared to a case where these are disposed side by side in the horizontal direction.
Protruding Shape of Control Substrate
In relation to the above described first special characteristic, as shown in
At this time, the above described discharging exit 107 is positioned above the protruding substrate part 170a (see
On the other hand, the second area Q inside the housing 100 comprises a second protruding area part Q2 neighboring the above described first protruding area part P2 in the left-right direction so as to correspond to the protruding shape of the first protruding area part P2. At this time, the second area Q comprises a second base area part Q1 disposed further rearward toward the roll storage part 161 side than the second protruding area part Q2, and this second base area part Q1 is disposed opposing the roll storage part 161 side (in other words, the rear side) of the above described first protruding area part P2. Note that both the left and right end sections of the above described mechanical unit MU are inserted and disposed in these two left and right second protruding area parts Q2. That is, the above described motor casing 21 and the gear mechanism 132 (refer to
Specific Configuration of Partition Wall
According to this embodiment, as shown in
At this time, the thermal line head 112 of the mechanical unit MU and the platen roller 111 disposed in an opposing manner thereto are disposed above the third partition part R3 (refer to
Sensor for Opening/Closing Detection
Here, according to the printer 1 of this embodiment, a sensor (motion detection sensor LS) for detecting the opening/closing operation of the opening/closing lid 101B is provided in the same manner as a regular printer having an opening/closing lid of this type. However, in a case where this sensor is provided to the second area Q, which is on the same side as the above described opening/closing lid 101B, concern arises regarding the waterproof characteristics of the sensor, as described above.
Here, in this embodiment, the motion detection sensor LS of a limit switch, etc., is provided to the first area P on a side opposite to the opening/closing lid 101B, for example (refer to
Detailed Configuration and Operation of the Motion Detection Sensor
As shown in
Here, the above described opening/closing lid 101B freely rotates with respect to the undercover 102 via the hinge H provided to a base end, as previously described. Then, on the end lower surface side of the opening/closing lid 101B, both end shafts of the platen roller 111 are supported by a cylindrical bearing 111A provided in an extending manner toward the opening/closing lid 101B. When this opening/closing lid 101B is rotated in the closing direction from the above described open position (refer to
On the other hand, at this time, the above described motion detection sensor LS is disposed further above the above described motion transmission mechanism 200 than the motion output part 203, on the left lateral surface of the main chassis member 150. Specifically, the motion detection sensor LS is equipped with a switch lever LS 1 that slants and protrudes downward toward the first area P side, and the above described motion output part 203 is disposed in an opposing manner below that switch lever LS 1.
That is, when the opening/closing lid 101B is closed as described above on the second area Q side, the above described motion input part 202 contacts the opening/closing lid 101B that lowers toward the closed position. With this arrangement, the motion input part 202 lowers, causing the motion transmission mechanism 200 to rock in the counterclockwise direction about the rocking shaft 201. With this rocking, the lowering motion of the motion input part 202 is mechanically transmitted to the motion output part 203 positioned in the first area P, causing the motion output part 203 to rise and press upward the switch lever LS1. That is, the lowering motion of the motion input part 202 is converted to and outputted as the rising motion of the motion output part 203. With this arrangement, the motion detection sensor LS turns ON, detecting the closed state of the opening/closing lid 101B.
As described above, in the printer 1 of this embodiment, the opening/closing operation of the opening/closing lid 101B of the second area Q that is to open to the outside is transmitted to the first area P side via the motion transmission mechanism 200 and detected by the motion detection sensor LS. With this arrangement, it is possible to detect the opening/closing while ensuring the waterproof characteristics of the motion detection sensor LS. As a result, the opening/closing detection performance of the opening/closing lid 101B can be favorably maintained.
Further, in particular, according to this embodiment, the mechanical unit MU is provided to the upper part of the partition wall R, thereby sufficiently shielding the spattering of the spray from the second area Q side to the first area P by the mechanical unit MU in coordination with the partition wall R, making it possible to ensure the waterproof characteristics of the motion detection sensor LS.
Further, in particular, according to this embodiment, the motion output part 203 in the motion transmission mechanism 200 converts the lowering motion of the motion input part 202 associated with the lowering of the opening/closing lid 101B to a rising motion, outputting the motion as a rising motion. Then, the motion detection sensor LS is positioned further upward than the motion output part 203, detecting the rising motion of the motion output part 203. With this arrangement, presuming the unlikely event that the spray from the motion input part 202 of the second area Q enters and travels to the surface of the motion transmission mechanism 200, manifesting in the first area P from the motion output part 203, the motion detection sensor LS is positioned further upward than the motion output part 203, keeping the manifested spray from ever reaching the motion detection sensor LS. As a result, it is possible to prevent the motion detection sensor LS from being exposed to spray.
Furthermore, as shown in
Further, in particular, according to this embodiment, the end part 101C of the opening/closing lid 101B conforms with the edge part of the discharging exit 107. With this arrangement, once the opening/closing lid 101B is set to an open state and the end excess part of the rolled paper S is exposed, insertion of the rolled paper S into the above described discharging exit 107 can be achieved by simply closing the opening/closing lid 101B. As a result, it is possible to simplify the preparation operation performed by the operator prior to printing, improving user-friendliness.
Further, as described above, in the printer 1 of this embodiment, the control substrate 170 and the battery storage part 163 having large horizontal dimensions are layered and disposed vertically in the first area P, and the roll storage part 161 having a large vertical dimension is disposed alone in the second area Q. With this arrangement, the horizontal and vertical dimensions of the housing 100 are kept at the necessary minimum, making it possible to reliably reduce the overall size of the housing 100.
Further, in particular, according to this embodiment, the area between the second area Q, which can be opened to the outside, and the first area P, which has the control substrate 170, is sealed by the partition wall R and the mechanical unit MU. As a result, it is possible to improve the waterproof characteristics of the first area P wherein the control substrate 170 is disposed.
Further, in particular, according to this embodiment, the section of the second area Q that opposes the first protruding area part P2 of the first area P that protrudes rearward is established as the second base area part Q1 that recedes frontward. With this arrangement, it is possible to reduce the front-rear dimension of the housing 100 that is required when the first area P and the second area Q are disposed side by side in the front-rear direction. With this arrangement, it is possible to further reliably reduce the size of the housing 100.
Further, in particular, according to this embodiment, the thermal line head 112 and the platen roller 111 are provided above the partition wall R while the drive motor is disposed in the second protruding area part Q2 located to the side of the partition wall R, rather than above the partition wall R. With this arrangement, through coordination with the partition wall R, it is possible to fulfill the sealing function between the first area P and the second area Q while suppressing an increase in the vertical dimension of the housing 100 by the provision of the mechanical unit MU.
Further, in particular, according to this embodiment, the protruding substrate part 170a is disposed so that it enters below the main chassis member 150. With this arrangement, the protruding substrate part 170a is reliably isolated from the spray that can enter from the discharging exit 107, making it possible to improve waterproof characteristics.
Note that various modifications may be made according to the present embodiment without departing from the spirit and scope of the disclosure, in addition to the above-described embodiment.
Although other examples are not individually described herein, various changes and modifications can be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2011-187864 | Aug 2011 | JP | national |
2011-187867 | Aug 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5152623 | Yamada et al. | Oct 1992 | A |
5507583 | Beaty et al. | Apr 1996 | A |
RE35319 | Yamada et al. | Aug 1996 | E |
5833380 | Hosomi et al. | Nov 1998 | A |
6118469 | Hosomi | Sep 2000 | A |
6652170 | Arnold | Nov 2003 | B1 |
7011463 | Matsuse | Mar 2006 | B2 |
7073717 | Arnold et al. | Jul 2006 | B1 |
7553098 | Maekawa et al. | Jun 2009 | B2 |
20040066447 | Arnold | Apr 2004 | A1 |
20040234316 | Matsuse | Nov 2004 | A1 |
20060216098 | Lyman | Sep 2006 | A1 |
20070036604 | Maekawa et al. | Feb 2007 | A1 |
20070166092 | Liu et al. | Jul 2007 | A1 |
20110222951 | Yahata et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1159393 | Sep 1997 | CN |
1286173 | Mar 2001 | CN |
1530238 | Sep 2004 | CN |
1911671 | Feb 2007 | CN |
03-218872 | Sep 1991 | JP |
2000-094732 | Apr 2000 | JP |
2002-011908 | Jan 2002 | JP |
2002-178564 | Jun 2002 | JP |
2004-082432 | Mar 2004 | JP |
2009-029092 | Feb 2009 | JP |
9817475 | Apr 1998 | WO |
Entry |
---|
European Search Report issued in European Application No. 12182356 on Dec. 21, 2012. |
Chinese Office Action issued in Application No. 201210313392.8 on May 4, 2014. |
Chinese Office Action issued in Application No.: 201210313392.8 on Nov. 15, 2014. |
Number | Date | Country | |
---|---|---|---|
20130050385 A1 | Feb 2013 | US |