The present application claims priority from Japanese Patent Application No. 2014-039853, which was filed on Feb. 28, 2014, the disclosure of which is incorporated herein by reference in its entirety.
Field
The present disclosure relates to a printer that performs desired printing on a recording medium.
Description of the Related Art
There are already known techniques in which, during printing by a printer, so-called cooling is executed as a result of a temperature rise in a thermal head, for example, thereby stopping current conduction to heating elements and suspending printing.
In the prior art described above, while current conduction is stopped as a result of the execution of cooling, a pseudo-printing section is formed on the recording medium by the remaining heat in the thermal head that is high in temperature (even though current conduction is stopped), resulting in the possibility of smudges and thus a loss in aesthetics.
It is therefore an object of the present disclosure to provide a printer capable of reducing the appearance of smudges formed while current conduction is stopped, thereby improving aesthetics.
In order to achieve the above-described object, according to the first aspect of the present application, there is provided a printer comprising a feeder configured to feed a recording medium along a predetermined feeding path, a thermal head comprising heating elements that face the predetermined feeding path, a conducting device configured to conduct current to the heating elements, and a first control portion configured to control the feeder and the conducting device to perform printing on the recording medium, the first control portion executing a first processing for performing printing on the recording medium while feeding the recording medium to a forward direction along the predetermined feeding path, based on first print data, a second processing for performing printing on a first predetermined section of the recording medium while continuously feeding the recording medium to the forward direction along the predetermined feeding path, based on second print data that differs from the first print data, triggered by receipt of a print stop instruction from an external source in the middle of the first processing, and a third processing for feeding the recording medium to a reverse direction opposite the forward direction along the feeding path and, with current conduction to the heating elements stopped, making the heating elements face the first predetermined section of the recording medium for a first predetermined amount of time, after the second processing.
In order to achieve the above-described object, according to the second aspect of the present application, there is provided a printer comprising a feeder configured to feed a recording medium along a predetermined feeding path, a thermal head comprising heating elements that face the predetermined feeding path, a conducting device configured to conduct current to the heating elements, and a second control portion configured to control the feeder and the conducting device to perform printing on the recording medium, the second control portion executing a fifth processing for performing printing on the recording medium while feeding the recording medium to a forward direction along the predetermined feeding path, based on third print data, a sixth processing for making the heating elements face a second predetermined section of the recording medium for a second predetermined amount of time with current conduction to the heating elements stopped, triggered by receipt of a print stop instruction from an external source in the middle of the fifth processing, a seventh processing for feeding the recording medium to a reverse direction opposite the forward direction along the feeding path, after the sixth processing, and an eighth processing for performing printing on the second predetermined section of the recording medium based on fourth print data that differs from the third print data, while feeding the recording medium to the forward direction along the feeding path, after the seventh processing.
During printing, current conduction is stopped if a print stop instruction is received for some reason or other (such as, for example, execution of so-called cooling as a result of a temperature rise in the thermal head or an emergency stop operation by the operator). In such a case, while current conduction is stopped, a pseudo-printing section is formed on the recording medium by the remaining heat in the thermal head that is high in temperature (even though current conduction is stopped), resulting in the possibility of smudges and thus a loss in aesthetics. Hence, in the present disclosure, when a print stop instruction is received, printing is performed on a first predetermined section and the heating elements to which current conduction has stopped are then made to face the first predetermined section for a first predetermined amount of time (or the heating elements to which current conduction has stopped are made to face a second predetermined section for a second predetermined amount of time, and then printing is performed on the second predetermined section), thereby reducing the appearance of smudges. With this arrangement, it is possible to improve aesthetics.
In order to achieve the above-described object, according to the third aspect of the present application, there is provided a printer comprising a feeder configured to feed a recording medium along a predetermined feeding path, a thermal head comprising heating elements that face the predetermined feeding path, a conducting device configured to conduct current to the heating elements, and a third control portion configured to control the feeder and the conducting device to perform printing on the recording medium, the third control portion executing a ninth processing for performing printing on the recording medium while feeding the recording medium to a forward direction along the predetermined feeding path, based on fifth print data, a tenth processing for performing printing on a third predetermined section of the recording medium while continuously feeding the recording medium to the forward direction along the predetermined feeding path, based on sixth print data that differs from the fifth print data, triggered by receipt of a print stop instruction from an external source in the middle of the ninth processing, an eleventh processing for making the heating elements face a fourth predetermined section adjacent to the third predetermined section of the recording medium for a third predetermined amount of time, with current conduction to the heating elements stopped, after the tenth processing, a twelfth processing for performing printing on a fifth predetermined section adjacent to the fourth predetermined section of the recording medium while feeding the recording medium to the forward direction along the feeding path, based on seventh print data that differs from the fifth print data, after the eleventh processing, and a thirteenth processing for performing printing on the recording medium while feeding the recording medium to the forward direction along the predetermined feeding path, based on the fifth print data, after the twelfth processing.
During printing, current conduction is stopped if a print stop instruction is received for some reason or other (such as, for example, execution of so-called cooling as a result of a temperature rise in the thermal head or an emergency stop operation by the operator). In such a case, while current conduction is stopped, a pseudo-printing section is formed on the recording medium by the remaining heat in the thermal head that is high in temperature (even though current conduction is stopped), resulting in the possibility of smudges and thus a loss in aesthetics. Hence, in the present disclosure, when the print stop instruction is received, printing is performed on a third predetermined section, the heating elements to which current conduction has stopped are then made to face a fourth predetermined section adjacent to the third predetermined section for a third predetermined amount of time, and subsequently printing is performed on a fifth predetermined section adjacent to the fourth predetermined section, thereby reducing the appearance of smudges. With this arrangement, it is possible to improve aesthetics.
In the following, embodiments of the present disclosure will be described with reference to the accompanying drawings. Note that, in a case where “Front,” “Rear,” “Left,” “Right,” “Up,” and “Down” are denoted in the drawings, the terms “Frontward (Front),” “Rearward (Rear),” “Leftward (Left),” “Rightward (Right),” “Upward (Up),” and “Downward (Down)” in the explanations of the description refer to the denoted directions.
General Configuration of Tape Printer
First, the general configuration of the tape printer related to embodiment 1 of the present disclosure will be described with reference to
Housing
In
The housing main body 2a comprises a first storage part 3 disposed on the rearward side, and a second storage part 5 and a third storage part 4 disposed on the frontward side.
The rearward-side opening/closing part 8 is connected to an upper area of the rearward side of the housing main body 2a in an openable and closeable manner. This rearward-side opening/closing part 8 is capable of opening and closing the area above the first storage part 3 by pivoting. The rearward-side opening/closing part 8 comprises a first opening/closing cover 8a and a second opening/closing cover 8b.
The first opening/closing cover 8a is capable of opening and closing the area above the frontward side of the first storage part 3 by pivoting around a predetermined pivot axis K1 disposed in the upper area of the rearward side of the housing main body 2a. Specifically, the first opening/closing cover 8a is capable of pivoting from a closed position (the states in
A head holding body 10 is disposed in the interior of the first opening/closing cover 8a (refer to
The second opening/closing cover 8b is disposed further on the rearward side than the above described first opening/closing cover 8a, and is capable of opening and closing the area above the rearward side of the first storage part 3 separately from the opening and closing of the above described first opening/closing cover 8a by pivoting around a predetermined pivot axis K2 disposed on the upper end of the rearward side of the housing main body 2a. Specifically, the second opening/closing cover 8b is capable of pivoting from a closed position (the states in
Then, the first opening/closing cover 8a and the second opening/closing cover 8b are configured so that, when each is closed, an outer circumference part 18 of the first opening/closing cover 8a and an edge part 19 of the second opening/closing cover 8b substantially contact each other and cover almost the entire area above the first storage part 3.
The frontward-side opening/closing cover 9 is connected to the upper area of the frontward side of the housing main body 2a in an openable and closeable manner. The frontward-side opening/closing cover 9 is capable of opening and closing the area above the third storage part 4 by pivoting around a predetermined pivot axis K3 disposed on the upper end of the frontward side of the housing main body 2a. Specifically, the frontward-side opening/closing cover 9 is capable of pivoting from a closed position (the states in
Print-Receiving Tape Roll and Surrounding Area Thereof
At this time, as shown in
That is, the tape cartridge TK comprises the print-receiving tape roll R1 and a connecting arm 16, as shown in
The first bracket parts 20, 20 are set so as to sandwich the above described print-receiving tape roll R1 from both the left and right sides along the axis O1 via a left and right pair of substantially circular roll flange parts f1, f2, holding the print-receiving tape roll R1 rotatably around the axis O1 with the tape cartridge TK mounted to the housing main body 2a. These first bracket parts 20, 20 are connected by a first connecting part 22 that is extended substantially along the left-right direction on the upper end, avoiding interference with the outer diameter of the print-receiving tape roll R1.
The print-receiving tape roll R1 is rotatable when the tape cartridge TK is mounted in the interior of the housing main body 2a. The print-receiving tape roll R1 winds a print-receiving tape 150 (comprising a print-receiving layer 154, a base layer 153, an adhesive layer 152, and a separation material layer 151 described later; refer to the enlarged view in
The print-receiving tape roll R1 is received in the first storage part 3 from above by the mounting of the above described tape cartridge TK and stored with the axis O1 of the winding of the print-receiving tape 150 in the left-right direction. Then, the print-receiving tape roll R1, stored in the first storage part 3 (with the tape cartridge TK mounted), rotates in a predetermined rotating direction (a direction A in
This embodiment illustrates a case where a print-receiving tape 150 comprising adhesive is used. That is, the print-receiving tape 150 is layered in the order of the print-receiving layer 154, the base layer 153, the adhesive layer 152, and the separation material layer 151, from one side in the thickness direction (upward side in
Feeding Roller and Printing Head
Returning to
Further, the above described head holding part 10 disposed on the first opening/closing cover 8a comprises the above described printing head 11. The printing head 11, as described above, is capable of moving relatively closer to or farther away from the feeding roller 12 by the pivoting of the first opening/closing cover 8a around the pivot axis K1. That is, the printing head 11 moves closer to the feeding roller 12 when the first opening/closing cover 8a is closed, and farther away from the feeding roller 12 when the first opening/closing cover 8a is opened. This printing head 11 is disposed in a position of the head holding part 10 that faces the area above the feeding roller 12, with the first opening/closing cover 8a closed, sandwiching the print-receiving tape 150 fed by the feeding roller 12 in coordination with the feeding roller 12. Accordingly, when the first opening/closing cover 8a is closed, the printing head 11 and the feeding roller 12 are disposed facing each other in the up-down direction. Then, the printing head 11 forms the above described print part 155 on the print-receiving layer 154 of the print-receiving tape 150 sandwiched between the printing head 11 and the feeding roller 12 using an ink ribbon IB of an ink ribbon cartridge RK described later, thereby forming a tape 150′ with print.
Ink Ribbon Cartridge
As shown in
As shown in
The feed-out roll storage part 81 is configured by combining a substantially semi-cylindrical upper part 81a and lower part 81b. The ribbon feed-out roll R4 is rotatably supported inside the feed-out roll storage part 81, and rotates in a predetermined rotating direction (a direction D in
The take-up roll storage part 82 is configured by combining a substantially semi-cylindrical upper part 82a and lower part 82b. The ribbon take-up roll R5 is rotatably supported inside the take-up roll storage part 82 and rotates in a predetermined rotating direction (a direction E in
That is, in
Separation Material Roll and Surrounding Area Thereof
As shown in
The tape cartridge TK, as shown in
At this time, as shown in
Further,
Tape Roll with Print and Surrounding Area Thereof
On the other hand, as shown in
Cutter Mechanism 30
Further, as shown in
The cutter mechanism 30, while not shown in detail, comprises a movable blade and a carriage that supports the movable blade and is capable of travelling in the tape-width direction (in other words, the left-right direction). Then, the carriage travels by the driving of a cutter motor MC (refer to
Overview of Operation of Tape Printer
Next, an overview of the operation of the tape printer 1 with the above described configuration will be described.
That is, when the tape cartridge TK is mounted in the above described first predetermined position 13, the print-receiving tape roll R1 is stored in the first storage part 3 positioned on the rearward side of the housing main body 2a, and the axis O3 side that forms the separation material roll R3 is stored in the second storage part 5 positioned on the frontward side of the housing main body 2a. Further, the take-up mechanism 40 for forming the tape roll R2 with print is stored in the third storage part 4 positioned on the frontward side of the housing main body 2a.
In this state, the user manually peels the separation material layer 151 from the print-receiving tape 150 (printing has not yet begun at this point in time), and attaches the tip end of the tape made of the base layer 153 and the adhesive layer 152 to the winding core 41 of the above described take-up mechanism 40. Then, when the feeding roller 12 is driven, the print-receiving tape 150 fed out by the rotation of the print-receiving tape roll R1 stored in the first storage part 3 is fed to the frontward side. Then, the above described print part 155 (specifically configured by an image IM, a blackened region Q, and the like described later) is formed by the printing head 11 on the print-receiving layer 154 of the fed print-receiving tape 150, forming a tape 150′ with print. When the tape 150′ with print on which print was formed is further fed to the frontward side and fed to the peeling part 17, the separation material layer 151 is peeled at the peeling part 17, forming the tape 150″ with print. The peeled separation material layer 151 is fed to the downward side, introduced to and wound inside the second storage part 5, forming the separation material roll R3.
On the other hand, the tape 150″ with print from which the separation material layer 151 has been peeled is further fed to the frontward side, introduced to the third storage part 4, and wound around the outer circumference side of the winding core 41 of the take-up mechanism 40 inside the third storage part 4, thereby forming the tape roll R2 with print. At this time, the cutter mechanism 30 disposed on the transport direction downstream side (that is, the frontward side) cuts the tape 150″ with print. With this arrangement, the tape 150″ with print wound around the tape roll R2 with print can be cut based on a timing preferred by the user and the tape roll R2 with print can be removed from the third storage part 4 after cutting.
Note that, at this time, although not explained by illustration, a non-adhesive tape (one without the above described adhesive layer 152 and separation material layer 151) may be wound around the print-receiving tape roll R1. In this case as well, the print-receiving tape roll R1 which winds the non-adhesive tape is received in the first storage part 3 from above by the mounting of the tape cartridge TK and stored with the axis O1 of the winding of the non-adhesive tape in the left-right direction. Then, the print-receiving tape roll R1, stored in the first storage part 3 (with the tape cartridge TK mounted), rotates in a predetermined rotating direction (the direction A in
Further, at this time, a shoot 15 (refer to
Control System
Next, the control system of the tape printer 1 will be described using
Further, the CPU 212 is connected to a motor driving circuit 218 that controls the driving of the above described feeding motor M1 that drives the above described feeding roller 12, a motor driving circuit 219 that controls the driving of the above described adhesive take-up motor M2 that drives the winding core 41 of the above described take-up mechanism 40, a motor driving circuit 220 that controls the driving of the above described separation sheet take-up motor M3 that drives the above described separation material roll R3, a printing head control circuit 221 that controls the current conduction of the heating elements (not shown) of the above described printing head 11, a motor driving circuit 222 that controls the driving of the cutter motor MC that causes the carriage comprising the above described movable blade to travel, a display part 215 that performs suitable displays, and an operation part 216 that permits suitable operation input by the user. Further, while the CPU 212 is connected to a PC 217 serving as an external terminal in this example, the CPU 212 does not need to be connected in a case where the tape printer 1 operates alone (a so-called all-in-one type).
The ROM 214 stores control programs for executing predetermined control processing (including programs that execute the flow processing in
Cooling
Hence, in this embodiment, so-called cooling is executed in order to suppress the overheating of the printing head 11 resulting from continuous movement, pausing print formation. That is, as shown in
Processing Content of Cooling Control
In step S130, the cooling control portion 212B determines whether or not a temperature T of the printing head 11 is at least the above described print stop temperature T1 (if T≧T1), based on the detection result of the above described temperature sensor SR. During the period T<T1, the condition of step S130 is not satisfied (S130: NO), and the flow loops back and enters a standby state. Once T≧T1, the condition of step S130 is satisfied (S130: YES), and the flow proceeds to step S140.
In step S140, the cooling control portion 212B outputs the aforementioned pause instruction signal to the print control portion 212A. As a result, pause control of tape feeding and print formation by the print control portion 212A is performed.
Subsequently, in step S150, the cooling control portion 212B determines whether or not the temperature T of the printing head 11 is the above described restart temperature T2 or less (if T≦T2), based on the detection result of the above described temperature sensor SR. During the period T>T2, the condition of step S150 is not satisfied (S150: NO), and the flow loops back and enters a standby state. Once T≦T2, the condition of step S150 is satisfied (S150: YES), and the flow proceeds to step S160.
In step S160, the cooling control portion 212B outputs a production restart instruction signal (details described later) to the print control portion 212A. As a result, as described later, control that restarts the tape feeding and print formation by the print control portion 212A is performed. Subsequently, this process terminates here.
Special Characteristic of Embodiment 1
The special characteristic of this embodiment configured as described above lies in the technique for reducing the appearance of smudges (a pseudo-printing section G described later) that may occur on the print-receiving tape 150 by the remaining heat in the printing head 11 when the print formation movement is stopped by execution of the above described cooling during printing movement. The following specifically describes the details while using a comparison example.
Comparison Example
The following describes in detail the behavior by which the above described smudges occur using the comparison example shown in
When the feeding of the print-receiving tape 150 (in other words, the feeding of the tapes 150′, 150″ with print; hereinafter suitably simply referred to as “the feeding of the print-receiving tape 150”) further advances from this state at a predetermined constant speed, the print-receiving tape 150 arrives at the position of the printing head 11, and print formation of the above described image IM (specifically, a first image IM1) is started (refer to
Pausing of Feeding and Printing Due to Cooling
Hence, if cooling has been executed due to the high temperature of the printing head 11 as described above, the feeding of the print-receiving tape 150 by the above described feeding roller 12 and the print formation on the print-receiving tape 150 by the printing head 11 are paused (under the premise of subsequent restarting). In the example shown, execution of the above described cooling is started in the state shown in
Subsequently, when the cooling is canceled by a temperature decrease in the printing head 11 after a predetermined amount of time has passed, the feeding of the above described print-receiving tape 150 and the above described print formation are restarted (refer to
In this comparison example, when cooling is performed and feeding and print formation are stopped as described above, with current conduction stopped as shown in the above described
Details of Technique of Embodiment 1
The following describes the technique of this embodiment for resolving the above, using
According to the above described behavior, at the time cooling is canceled and feeding and print formation are restarted, the pseudo-printing section G that occurs on the tape 150″ with print when feeding is stopped due to cooling is embedded in the above described blackened region Q, as shown in
Note that while, in this example, after print formation of the image IM2 has been completed after the above described deceleration, feeding is stopped while the blackened region Q is formed into print in the border area with the following image IM3 to be formed next, the present disclosure is not limited thereto. That is, the feeding may be stopped by the above described deceleration while the blackened region Q is formed into print in the middle of print formation of the image IM2 (the same holds true for embodiment 2 and each modification described later as well).
Further, while the blackened region Q is a print region resulting from so-called full dot printing in the above described example, the color is not limited to black and may be a color other than black as long as the pseudo-printing section G can be embedded. Further, the printing is not limited to full dot printing and may be shaded printing, a zebra pattern, a checkered pattern, a hatch pattern, or the like in which the number of dots is thinned to a certain extent, and further may be a technique that conceals the pseudo-printing section G by a listing of a great number of text characters, logos, or visual objects, or the like (the same holds true for embodiment 2 and each modification described later as well).
Content of Control Processing
The following describes the processing content executed by the print control portion 212A of the CPU 212 for achieving the above described technique, using the flow in
First, in step S202, the print control portion 212A determines whether or not a production start instruction signal for the above described tape 150″ with print corresponding to a production start operation of the operation part 216 (or the above described PC 217) by the user has been input. If the above described production start instruction signal corresponding to the production start intention of the user has not been input, the condition of step S202 is not satisfied (S202: NO), and the flow loops back and enters a standby state. If the above described production start instruction signal has been input, the condition of step S202 is satisfied (S202: YES), and the flow proceeds to step S203.
In step S203, the print control portion 212A determines whether or not total length data indicating the total length along the transport direction of the above described tape 150″ with print to be produced, corresponding to an operation of the operation part 216 (or the above described PC 217) by the user, has been input. If the above described total length data corresponding to the tape total length intended by the user has not been input, the condition of step S203 is not satisfied (S203: NO), the flow returns to the above described step S202, and the same procedure is repeated. If the above described total length data has been input, the condition of step S203 is satisfied (S203: YES), and the flow proceeds to step S204.
In step S204, the print control portion 212A determines whether or not print data corresponding to one image IM (refer to
If the print data has not been input, the condition of step S204 is not satisfied (S204: NO), the flow returns to the above described step S202, and the same procedure is repeated. If the above described print data has been input, the condition of step S204 is satisfied (S204: YES), and the flow proceeds to step S205.
Subsequently, in step S205, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, starts the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3, and starts the feeding of the above described print-receiving tape 150, the tape 150′ with print, and the tape 150″ with print (hereinafter, suitably simply referred to as “tape feeding”) as well as the take-up of the above described tape 150″ with print.
Then, in step S215, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the corresponding print start position by a known technique, based on the print data acquired in the above described step S204. If the tape feeding has not arrived at the print start position, the condition is not satisfied (S215: NO), and the flow loops back and enters a standby state until this condition is satisfied. If the feeding has arrived at the print start position, the condition is satisfied (S215: YES), and the flow proceeds to step S220.
In step S220, the print control portion 212A outputs a control signal to the printing head control circuit 221, and current is conducted to the heating elements of the printing head 11, thereby starting the repeated print formation of the above described image IM (refer to
In step S224, the print control portion 212A determines whether or not the above described pause instruction signal from the above described cooling control portion 212B (refer to step S140 in the above described
In step S225, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220 based on the pause instruction signal input in the above described step S224, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3 in accordance with the above described deceleration pattern, and starts the deceleration of the above described tape feeding.
In step S230, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the start position (transport-direction downstream-side end) of the above described blackened region Q in the border area between the two adjacent images IM, IM by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the start position of the above described blackened region Q, the condition of step S230 is not satisfied (S230: NO), and the flow loops back and enters a standby state until the condition of step S230 is satisfied. If the feeding has arrived at the start position of the above described blackened region Q, the condition of step S230 is satisfied (S230: YES), and the flow proceeds to step S235.
In step S235, the print control portion 212A outputs a control signal to the printing head control circuit 221, and current is conducted to the heating elements of the printing head 11, thereby starting the print formation of the blackened region Q on the above described print-receiving tape 150. Note that the print data for forming the blackened region Q at this time is stored in the RAM 213 in advance, for example.
Subsequently, in step S240, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the center position of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the center position of the above described blackened region Q, the condition of step S240 is not satisfied (S240: NO), and the flow loops back and enters a standby state until the condition of step S240 is satisfied. Once the feeding has arrived at the center position of the above described blackened region Q, the condition of step S240 is satisfied (S240: YES), and the flow proceeds to step S245.
In step S245, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220 and the printing head control circuit 221, and stops the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3, thereby stopping the tape feeding and current conduction to the heating elements of the above described printing head 11 as well as print formation of the above described blackened region Q.
Subsequently, in step S250, the print control portion 212A determines whether or not the production restart instruction signal from the above described cooling control portion 212B (refer to step S160 in the above described
In step S255, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3 in accordance with the above described acceleration pattern, and restarts the above-described tape feeding and the take-up of the above described tape 150″ with print, accelerating the speed. Additionally, the print control portion 212A, similar to the above described step S235, outputs a control signal to the printing head control circuit 221, conducts current to the heating elements of the printing head 11, and restarts print formation of the above described blackened region Q. Note that the print data for forming the blackened region Q at this time is stored in the RAM 213 in advance, for example. Subsequently, the flow proceeds to step S260.
In step S260, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the end position (transport-direction upstream-side end) of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the end position of the above described blackened region Q, the condition of step S260 is not satisfied (S260: NO), and the flow loops back and enters a standby state until the condition of step S260 is satisfied. If the feeding has arrived at the end position of the above described blackened region Q, the condition of step S260 is satisfied (S260: YES), and the flow proceeds to step S265.
In step S265, the print control portion 212A, similar to the above described step S245, outputs a control signal to the printing head control circuit 221, and stops conducting current to the heating elements of the printing head 11 and print formation of the above described blackened region Q.
In step S300, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces an all print end position where print formation of all of the above described images IM ends by a known technique, based on the total length data acquired in the above described step S203 and the print data acquired in step S204. If the tape feeding has not arrived at the all print end position, the condition is not satisfied (S300: NO), the flow returns to the step S220, and the same procedure is repeated. As are result, the aforementioned formation of the image IM continues. On the other hand, if the tape feeding has arrived at the print end position, the condition is satisfied (S300: YES), and the flow proceeds to step S305.
In step S305, the print control portion 212A outputs a control signal to the printing head control circuit 221, and stops conducting current to the heating elements of the printing head 11 and print formation (formation of the print part 155) on the above described print-receiving tape 150. At this time, the tape feeding is continually performed. With this arrangement, a blank state where the print part 155 does not exist is thereafter formed on the tape 150′ with print. Subsequently, the flow proceeds to step S310.
In step S310, the print control portion 212A determines whether or not the above described tape feeding has arrived at the cutting position by the above described cutter mechanism 30 (a cutting position such as where the total length along the transport direction of the tape 150″ with print wound as the tape roll R2 with print on the winding core 41 becomes the length intended by the operator), in accordance with the total length data acquired in the above described step S203. If the feeding has not arrived at the cutting position, the condition is not satisfied (S310: NO), and the flow loops back and enters a standby state. If the feeding has arrived at the cutting position, the condition is satisfied (S310: YES), and the flow proceeds to step S315.
In step S315, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, and stops the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3. With this arrangement, the feeding of the above described print-receiving tape 150, the tape 150′ with print, and the tape 150″ with print (including the above described tape 150-0 as well) is stopped.
Subsequently, in step S320, the print control portion 212A outputs a control signal to the motor driving circuit 222, drives the above described cutter motor MC, and cuts the tape 150″ with print by the operation of the above described cutter mechanism 30.
Then, the flow proceeds to step S325 where the print control portion 212A outputs a control signal to the motor driving circuit 219, starts the driving of the adhesive take-up motor M2, and takes up the tape 150″ with print on the outer circumference part of the winding core 41 of the take-up mechanism 40.
Subsequently, in step S330, the print control portion 212A determines whether or not a predetermined amount of time has passed since the cutting operation of the cutter mechanism 30 in the above described step S320. If the predetermined amount of time has not passed, the condition is not satisfied (S330: NO), and the flow loops back and enters a standby state. This predetermined amount of time may be an amount of time for sufficiently taking up the tape 150″ with print on the winding core 41. If the predetermined amount of time has passed, this condition is satisfied (S330: YES), and the flow proceeds to step S335.
In step S335, the print control portion 212A outputs a control signal to the motor driving circuit 219 and stops the driving of the adhesive take-up motor M2. With this arrangement, it is possible to reliably take up the tape 150″ with print generated by the above described cutting on the tape roll R2 with print. This flow then terminates here.
According to this embodiment configured as described above, during cooling execution, the feeding of the tape is stopped while forming the blackened region Q, stopping the feeding with the printing head 11, to which current conduction is stopped, facing the inside of the blackened region Q. With this arrangement, even if the pseudo-printing section G occurs on the tape 150″ with print by the remaining heat in the printing head 11, it is possible to embed within the above described blackened region Q and reduce the appearance of the smudges. As a result, it is possible to improve aesthetics.
Further, in particular, according to this embodiment, formation of the blackened region Q by full dot printing is performed. In particular, current is conducted to the above described heating elements corresponding to the entire width-direction region of the ink ribbon IK, forming the blackened region Q across substantially the entire tape-width region. With this arrangement, the pseudo-printing section G is reliably embedded by the blackened region Q, making apparent elimination possible. As a result, it is possible to reliably improve aesthetics.
Further, in particular, according to this embodiment, cooling is executed if the temperature of the printing head 11 rises to the predetermined print stop temperature T1, making it possible to suppress a decrease in durability in the printing head 11.
Embodiment 2
Next, embodiment 2 of the present disclosure will be described based on
That is, according to this embodiment, the flow passes through the states respectively shown in
As described above, since the printing head 11 is positioned inside the blackened region Q at the time feeding and print formation are stopped due to cooling execution, when the cooling is canceled and feeding and print formation are then restarted, the pseudo-printing section G that occurs on the tape 150″ with print during the above described stopping is embedded in the blackened region Q that was first formed, reliably making the pseudo-printing section G no longer visible, as shown in
Content of Control Processing
The following describes the processing content executed by the print control portion 212A of the CPU 212 for achieving the above described technique in this embodiment, using the flow in
The flow shown in
That is, the flow passes through the same steps S202-S235 as described above and, in the newly disposed step S236, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the end position (transport-direction upstream-side end) of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the end position of the above described blackened region Q, the condition of step S236 is not satisfied (S236: NO), and the flow loops back and enters a standby state until the condition of step S236 is satisfied. If the feeding has arrived at the end position of the above described blackened region Q, the condition of step S236 is satisfied (S236: YES), and the flow proceeds to step S237. Note that the print data for forming the blackened region Q at this time is stored in the RAM 213 in advance, for example.
In step S237, the print control portion 212A, similar to the above described step S265, outputs a control signal to the printing head control circuit 221, controls the current conduction to the heating elements of the printing head 11, and stops print formation of the above described blackened region Q.
Subsequently, in step S238, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3, and starts tape feeding in the reverse direction. Subsequently, after the print control portion 212A has determined whether or not the tape feeding has arrived at the center position of the above described blackened region Q in the same step S240 as described above, the flow proceeds to the newly disposed step S249.
In step S249, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3, and stops the above described tape feeding. Subsequently, after the print control portion 212A has determined whether or not a production restart instruction signal from the cooling control portion 212B has been input in the same step S250 as described above, the flow proceeds to the newly disposed step S270.
In step S270, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3 in accordance with the aforementioned acceleration pattern, and restarts the above-described tape feeding in the forward direction and the take-up of the above described tape 150″ with print, accelerating the speed. Subsequently, the flow proceeds to step S300. The steps S300-S335 thereafter are the same as those in the above described
According to this modification as well, the same advantages as those of the above described embodiment 1 are achieved. That is, during cooling execution, after the blackened region Q is first formed, tape feeding is performed in the reverse direction and stopped when the printing head 11 is in the substantial center of the blackened region Q, stopping the feeding with the printing head 11, to which current conduction is stopped, facing the substantial center. With this arrangement, even if the pseudo-printing section G occurs on the tape 150″ with print by the remaining heat in the printing head 11, it is possible to embed within the above described blackened region Q previously formed and reduce the appearance of the smudges. As a result, it is possible to improve aesthetics.
Note that the present disclosure is not limited to the above described embodiment, and various modifications may be made without deviating from the spirit and scope of the disclosure. The following describes such modifications one by one. Note that components identical to those in the above described embodiment are denoted using the same reference numerals, and descriptions thereof will be omitted or simplified as appropriate.
(1) When Feeding is Stopped at the Section That is to Become the Blackened Region and Then, Upon Return, the Blackened Region is Formed and Filled in the Forward Direction
In this modification, after the printing head 11 is made to face the substantial center of the region that is to become the above described blackened region Q and then stopped, feeding is turned back to the reverse direction, and then the blackened region Q is formed along the forward direction.
That is, according to this modification, the flow passes through the states respectively shown in
With the above, at the time feeding and print formation are stopped due to cooling execution, even if the pseudo-printing section G occurs on the tape 150″ with print, when feeding is performed in the reverse direction and further in the forward direction after cooling is canceled, overwriting is performed so that the pseudo-printing section G that occurs on the tape 150″ with print during the above described stopping is filled in by the blackened region Q formed during the above described through-up, making it possible to reliably make the pseudo-printing section G no longer visible, as shown in
Content of Control Processing
The following describes the processing content executed by the print control portion 212A of the CPU 212 for achieving the above described technique in this modification, using the flow in
The flow shown in
That is, after passing through the same steps S202-S225 as described above, the flow further passes through the same steps S240-S250 as described above and then proceeds to the newly disposed step S252. In step S252, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor Ml, the adhesive take-up motor M2, and the separation sheet take-up motor M3, and starts tape feeding in the reverse direction, in the same manner as in step S238 in the above described
Subsequently, in step S253, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the start position (transport-direction downstream-side end) of the above described blackened region Q in the border area between the two adjacent images IM, IM by a known technique, based on the print data acquired in the above described step S204, in the same manner as in step S230 in the above described
In step S254, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3 in accordance with the above described acceleration pattern, and restarts the above-described tape feeding and the take-up of the above described tape 150″ with print, accelerating the speed. Additionally, the print control portion 212A outputs a control signal to the printing head control circuit 221, conducts current to the heating elements of the printing head 11, and starts print formation of the above described blackened region Q. Note that the print data for forming the blackened region Q at this time is stored in the RAM 213 in advance, for example. Subsequently, the flow proceeds to step S260.
Subsequently, in the same step S260 as that in the above described
In this modification as well, the same advantages as those of the above described embodiment are achieved. That is, even if the pseudo-printing section G occurs during cooling execution, when feeding is performed in the reverse direction and further in the forward direction after cooling is canceled, overwriting is performed so that the pseudo-printing section G is filled in by the above described blackened region Q (full through-up printing), making it possible to reliably improve aesthetics.
(2) When a Blackened Region is Formed Both During Through-Down and Through-Up
In this modification, one-half of the above described blackened region Q is formed up to the substantial center, and feeding is further performed to an area corresponding to three-fourths of the transport-direction length of the blackened region Q while print formation is suspended, and then turned back to the reverse direction. Then, the printing head 11 is made to face the area corresponding to one-fourth of the transport-direction length of the blackened region Q and stopped, and then the blackened region Q is once again formed along the forward direction.
That is, in this modification, the flow passes through the states respectively shown in
With the above, at the time feeding and print formation are stopped due to cooling execution, even if the pseudo-printing section G occurs on the tape 150″ with print, the pseudo-printing section G is positioned within the above described blackened region Q previously formed during through-down in the forward direction and, when feeding is performed in the reverse direction and further in the forward direction after cooling is canceled, overwriting is performed so that the above described pseudo-printing section G is further filled in at the time of formation of the blackened region Q during through-up, as shown in
Content of Control Processing
The following describes the processing content executed by the print control portion 212A of the CPU 212 for achieving the above described technique in this modification, using the flow in
The flow shown in
That is, the flow passes through the same steps S202-S225 as described above, and proceeds to step S230. In step S230, similar to the above described
Subsequently, the flow proceeds to the newly disposed step S242. In step S242, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the position corresponding to one-half (the transport-direction center) of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the position corresponding to one-half of the above described blackened region Q, the condition of step S242 is not satisfied (S242: NO), and the flow loops back and enters a standby state until the condition of step S242 is satisfied. If the feeding has arrived at the position corresponding to one-half of the above described blackened region Q, the condition of step S242 is satisfied (S242: YES), and the flow proceeds to step S243.
In step S243, the print control portion 212A outputs a control signal to the printing head control circuit 221, and stops conducting current to the heating elements of the printing head 11 and print formation of the above described blackened region Q, in the same manner as in step S265 in the above described
Subsequently, in step S244, the print control portion 212A determines whether or not the above described tape feeding has arrived where the printing head 11 faces the position corresponding to three-fourths of the transport-direction length of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the position corresponding to three-fourths of the above described blackened region Q, the condition of step S244 is not satisfied (S244: NO), and the flow loops back and enters a standby state until the condition of step S244 is satisfied. If the feeding has arrived at the position corresponding to three-fourths of the above described blackened region Q, the condition of step S244 is satisfied (S244: YES), and the flow proceeds to step S247.
In step S247, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3, and starts tape feeding in the reverse direction, in the same manner as in step S252 in the above described
Subsequently, in step S248, the print control portion 212A determines whether or not the above described tape feeding in the reverse direction has arrived where the printing head 11 faces the position corresponding to one-fourth of the transport-direction length of the above described blackened region Q by a known technique, based on the print data acquired in the above described step S204. During the period in which the feeding has not arrived at the position corresponding to one-fourth of the above described blackened region Q, the condition of step S248 is not satisfied (S248: NO), and the flow loops back and enters a standby state until the condition of step S248 is satisfied. If the feeding has arrived at the position corresponding to one-fourth of the above described blackened region Q, the condition of step S248 is satisfied (S248: YES), and the flow proceeds to step S249.
In step S249, the tape feeding in the reverse direction is stopped in the same manner as in the above described
In step S256, the print control portion 212A outputs a control signal to the motor driving circuits 218, 219, 220, controls the driving of the feeding motor M1, the adhesive take-up motor M2, and the separation sheet take-up motor M3 in accordance with the above described acceleration pattern, and restarts the above-described tape feeding and the take-up of the above described tape 150″ with print, accelerating the speed. Additionally, the print control portion 212A outputs a control signal to the printing head control circuit 221, conducts current to the heating elements of the printing head 11, and starts print formation of the above described blackened region Q. Subsequently, the flow proceeds to step S260. The steps S260-S335 thereafter are the same as those in the above described
In this modification as well, the same advantages as those of the above described embodiment are achieved. That is, even if the pseudo-printing section G occurs at the time of cooling execution, the pseudo-printing section G is positioned within the above described blackened region Q previously formed during through-down, and overwriting is further performed so that the pseudo-printing section is filled in at the time of formation of the blackened region Q during the through-up after cooling is canceled. As a result, it is possible to reliably improve aesthetics.
(3) When Take-up Tension is Released Immediately Before Reverse Feeding
In this modification, if the blackened region is formed both during through-down and through-up as in the modification of the above described (2), take-up tension from the winding core 41 is released in order to more easily execute the aforementioned reverse-direction feeding. Note that components identical to those in the modification of the above described (2) are denoted using the same reference numerals, and descriptions thereof will be omitted or simplified as appropriate.
That is, in this modification, the flow passes through the state shown in
Content of Control Processing
The following describes the processing content executed by the print control portion 212A of the CPU 212 for achieving the technique in this modification, using the flow in
The flow shown in
That is, the flow passes through the same steps S202-S235 as described above, and proceeds to step S239. In step S239, the print control portion 212A, similar to step S248 in
In step S241, the print control portion 212A outputs a control signal to the motor driving circuits 219, 220, controls the driving of the adhesive take-up motor M2 and the separation sheet take-up motor M3, and stops the take-up of the tape 150″ with print on the outer circumference side of the winding core 41 and the take-up of the separation material layer 151 on the separation material roll R3. Subsequently, the flow proceeds to the above described step S242. Steps S242 and thereafter are the same as those in
In this modification, in the technique in the modification of the above described (2), when feeding in the reverse direction is performed, the region corresponding to one-fourth to one-half of the transport-direction length of the blackened region Q (that is, equivalent to one-fourth of the total length of the blackened region Q), equivalent to the reverse-direction length, is slackened. With this arrangement, when feeding is subsequently performed in the above described reverse direction, it is possible to smoothly perform reverse-direction feeding in a reasonable manner while sequentially extending the above described slackened section.
(4) Other
Note that while the above has described an illustrative scenario in which the print control portion 212A controls the stopping and restarting of tape feeding and print formation in accordance with a pause instruction signal output from the cooling control portion 212B during cooling execution, the present disclosure is not limited thereto. That is, for example, the above described technique may be applied in a case where a pause instruction signal output from the operation part 216 (or the above described PC 217) is input to the print control portion 212A based on an emergency stop operation of the operation part 216 (or the above described PC 217) by the user, and the stopping and restarting of the above described tape feeding and print formation are controlled in accordance thereto. In this case as well, the same advantages are achieved.
Note that, in the above, the arrows shown in
Also note that the present disclosure is not limited to the procedures shown in the above described flows of the flowcharts in
Further, other than that already stated above, techniques based on the above described embodiments and each of the modifications may be suitably utilized in combination as well.
Number | Date | Country | Kind |
---|---|---|---|
2014-039853 | Feb 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6132119 | Nakajima et al. | Oct 2000 | A |
20070086056 | Hsieh | Apr 2007 | A1 |
20110018918 | Kanda | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
H0538854 | Feb 1993 | JP |
H5-185673 | Jul 1993 | JP |
H6-155833 | Jun 1994 | JP |
H6-198988 | Jul 1994 | JP |
2002-254757 | Sep 2002 | JP |
2011-042160 | Mar 2011 | JP |
2011-230428 | Nov 2011 | JP |
2013-202950 | Oct 2013 | JP |
2013-233663 | Nov 2013 | JP |
Entry |
---|
Aug. 22, 2017—(JP) Notification of Reasons for Refusal—App 2014-039853. |
Number | Date | Country | |
---|---|---|---|
20150246567 A1 | Sep 2015 | US |