1. Field of the Invention
The present invention relates to a printer that discharges a sheet of paper having continuous pages to a postprocessor that disconnects this paper into sheets of paper in page units, and stores the disconnected sheets of paper in a stack. Particularly, the invention relates to a printer that switches print sides of the sheets based on presence or absence of an inversion mechanism that inverts the front and back sides of the sheets in the postprocessor.
2. Description of the Related Art
There are printers that can print on both sides of a sheet of paper having continues pages. The sheet of paper printed by the printer is stored into a body stacker that is incorporated in the printer main body or into a stacker of a postprocessor (for example, a Burster Trimmer Stacker) (hereinafter referred to as a “BTS stacker”) that receives the sheet of paper discharged from the printer, disconnects the printed paper into sheets of paper in page units by cutting or by bursting, and stores the disconnected sheets of paper in a stack.
When sheets of paper printed on both sides of the paper are stored into the BTS stacker 6 of the postprocessor 5, the following problems arise.
On the other hand, some postprocessor 5 has an inversion mechanism that inverts the front and back sides of the sheets of paper that are discharged from the printer. When the inversion mechanism is used, the page layout is reverse of the above, with the front side being an even page and the back side being an odd page, as shown in FIG. 8B. Therefore, when the sheet of paper is disconnected into sheets of paper in page units, and the disconnected sheets of paper are stacked on the BTS stacker 6, the page numbers appear as 1, 2, 3, 4, 5, and so on in this order from the bottom. Consequently, the page numbers are continuous in good order.
As explained above, when the postprocessor 5 has the inversion mechanism, the printed sheets of paper are stored in the BTS stacker 6 in a state in which the page numbers are continuous. However, when the postprocessor 5 does not have the inversion mechanism (that is, when the printed sheet of paper enters the postprocessor 5 in a state of being discharged from the printer 1, and when the paper disconnected into sheets of paper in page units are stored), the printed sheets of paper are stacked on the BTS stacker 6 in a state in which the page numbers are not continuous.
It is an object of the present invention to provide a printer that discharges a printed sheet of paper to a postprocessor for disconnecting the paper into sheets of paper in page units and storing the disconnected sheets of paper in a stack, wherein the postprocessor can stack the printed sheets of paper on a stacker of the postprocessor such that page numbers are in a continuous order regardless of presence or absence of an inversion mechanism that inverts the front and back sides of the sheets.
In order to achieve the above object, according to one aspect of the invention, there is provided a printer which is capable of printing on a front side and a back side of a sheet of paper having continuous pages, and discharging the paper to a postprocessor for disconnecting the paper in page units and storing the disconnected sheets of paper in a stack, the printer comprising: a first printing unit that prints a first side of the paper; a second printing unit that prints a second side of the paper; a deciding unit that determines whether the postprocessor has an inversion mechanism that inverts front and back sides of the paper that is discharged from the printer; and a control unit that determines which one of the first and second printing units prints a first print data portion for the first side of the paper and a second print data portion for the second side of the paper in the print data respectively, based on presence or absence of the inversion mechanism.
Specifically, when two-side printing is instructed, and when the postprocessor does not have the inversion mechanism, the control unit supplies the first print data portion of the print data for the first side of the paper to the second printing unit such that this print data portion is to be printed on the second side of the paper, and supplies the second print data portion for the second side of the paper to the first printing unit such that this print data portion is to be printed on the first side of the paper. When the postprocessor has the inversion mechanism, the control unit supplies the first print data portion to the first printing unit such that this print data portion is to be printed on the first side of the paper, and supplies the second print data portion to the second printing unit such that this print data portion is to be printed on the second side of the paper.
As explained above, when the postprocessor that is connected to the printer does not have the inversion mechanism, the print data for the first side (i.e., the first print data portion) is printed on the second side of the paper, and the print data for the second side (i.e., the second print data portion) is printed on the first side of the paper. With this arrangement, the paper that is disconnected into page units by the postprocessor can be stacked in the order of page numbers.
Further, when one-side printing is instructed, and when the postprocessor does not have the inversion mechanism, the control unit supplies the first print data portion to the second printing unit such that this print data portion is to be printed on the second side of the paper, and supplies white paper data to the first printing unit such that this data is to be printed on the first side of the paper thereby enabling the first printing unit and the second printing unit to execute two-side printing.
Accordingly, in one-side printing, even when the postprocessor does not have the inversion mechanism, when the print side of each sheet of paper stacked on the stacker of the postprocessor is faced upward, the sheets of paper can be stacked in correct order of pages starting from the first page.
Further, the deciding unit determines the presence or absence of the inversion mechanism based on flag information that is set by a predetermined setting unit and that indicates whether the postprocessor has the inversion mechanism.
In order to achieve the above object, according to another aspect of the invention, there is provided a printer which is capable of printing on a first side and a second side of a sheet of paper having continuous pages, the printer comprising: a first printing unit that prints on the first side of the paper; a second printing unit that prints on the second side of the paper; a postprocessing unit that disconnects a printed sheet of paper in page units, and stores the disconnected sheets of paper in a stack; a deciding unit that determines whether the postprocessing unit has an inversion mechanism that inverts front and back sides of the printed sheets of paper; and a control unit that determines which one of the first and second printing units prints a first print data portion for the first side of the paper and a second print data portion for the second side of the paper in the print data respectively, based on presence or absence of the inversion mechanism.
FIG. 3 and
The embodiment of the present invention will be explained below with reference to the drawings. However, the technical range of the invention is not limited by the embodiment.
The lever 2 can fold and store the paper that passes through the fixing sections 17F and 17B, into the body stacker 3 within the printer, or discharge this paper to the outside, by switching. The paper that is discharged to the outside is guided to the postprocessor (for example, the Burster Trimmer Stacker (BTS)) 5. The postprocessor 5 receives the paper discharged from the printer 1, disconnects the paper in page units, and stores the disconnected sheets of paper in a stack in the stacker within the postprocessor. The postprocessor may have an inversion mechanism that inverts the front and back sides of the paper discharged from the printer as described above.
The printer 1 has an operation panel 8 on which various kinds of print conditions can be set. A state set by the operation panel and a state of the lever 2 are stored in a predetermined memory of the control section 10.
The development processing section 102 transfers a destination for storing the print command and each page data within the memory 104 (i.e., a header address and a size) to the print processing section 105. The print processing section 105 issues a predetermined print request to the mechanical controller 120, and instructs the memory controller 110 to read the print data from the memory 104 and transfer the read print data to the mechanical controller 120. Specifically, the print processing section 105 notifies the memory controller 110 about read original information including the header address and the size of the memory domain in which each page data is stored, and transfer destination information (a front side print control section 123 or a back side print control section 124) corresponding to each page data, such that the page data is printed in page order. Further, as described later, the print processing section 105 according to the invention determines a transfer destination of the read print data based on presence or absence of the inversion mechanism of the postprocessor that is connected to the printer.
The memory controller 110 reads the page data from the memory domain that is assigned by the header address and the size, and transfers the read page data to the corresponding print control section (the front side print control section 123 or the back side print control section 124) in the mechanical controller 120. The memory controller 110 is a Direct Memory Access (DMA) controller, for example, and DMA transfers the data in the memory 104 to the mechanical controller 120. The DMA transfer is data transferred directly from the device to the memory or from the memory to the device without passing through a CPU (not shown) of the control section 10 thereby enabling high-speed data transfer.
The main control section 121 of the mechanical controller 120 notifies a conveyance control section 122 about a total size of the print data included in the print request from the print processing section 105. The conveyance control section 122 controls a paper conveyance mechanism such as the tractor section to drive over a predetermined distance. The main control section 121 drives only the front side print control section 123 or drives both the front side print control section 123 and the back side print control section 124, according to the one-side/both-side print information that is included in the print request. The front side print control section 123 or the back side print control section 124 controls the drive of the print mechanism such as the photosensitive drums 12F and 12B, the developing units 15F and 15B, and the fixing section 17F and 17B for the front side or the back side respectively shown in FIG. 1. As shown in
When two-side printing is carried out, the main control section 121 starts the delay section 125. The delay section 125 delays a print start timing signal that is input from the back side print control section 124 by a predetermined time, and outputs this signal to the front side print control section 123. The front side print control section 123 controls the printing in synchronism with the print start timing signal that is delayed by the delay section 125. With this arrangement, the front side print position coincides with the back side print position of the paper, at the time of two-side printing.
The communication management section 101 of the command controller 100 receives the print command and the print data from the host unit via a predetermined interface (S107). The communication management section 101 transfers the received print command and print data to the development processing section 102. The development processing section 102 determines the one-side/two-side print information in the print command (S108). When the print command is two-side printing, the development processing section 102 stores the front side page data into the front side domain of the memory 104 (S109), and stores the back side page data into the back side domain of the memory 104 (S110). For example, the page data corresponding to the first page is stored into the front side domain of the memory 104, and the page data corresponding to the second page is stored into the back side domain. The page data is sequentially and alternately stored into the front side domain and the back side domain of the memory 104 as explained above.
In
The print processing section 105 issues a two-side print request to the main control section 121 of the mechanical controller 120 to drive both the front side print control section 123 and the back side print control section 124 (S115).
When the paper discharge destination is the body stacker 3 at step S111 in
In this case, as shown in
Further, when the development processing section 102 determines that the print command is one-side printing based on the one-side/two-side print information in the print command at step S108 in
The print processing section 105 determines a paper discharge destination based on the paper discharge destination flag (S121) whether the paper discharge destination is the postprocessor 5, and also whether the postprocessor has the inversion mechanism based on the inversion mechanism presence/absence flag (S122). When the postprocessor does not have the inversion mechanism, the print processing section 105 requests the memory controller 110 to output the page data in the front side domain within the memory 104 to the back side print control section 124 (S123), and output the white paper data in a predetermined domain within the memory 104 to the front side print control section 123 (S124).
As shown in
Referring back to
As explained above, while the print command from the host unit is one-side printing, the print processing section 105 needs to issue a two-side print request in order to drive the back side print control section 124. In this case, in order to have no printing on the front side, white paper data that is prepared in advance in the memory 104 is output to the front side print control section 123 thereby keeping the front side of the paper white (blank).
In the case of one-side printing, when the paper discharge destination is the body stacker at step S121 or when the paper discharge destination is the postprocessor but the postprocessor has the inversion mechanism at step S122, a normal print processing is carried out. In other words, the print processing section 105 requests the memory controller 110 to output the page data in the front side domain within the memory 104 to the front side print control section 123 (S126). Further, the print processing section 105 issues a one-side print request to the main control section 121 of the mechanical controller 120 to drive only the front side print control section 123 (S127).
In the above embodiment, in order to print the front side page data on the back side and to print the back side page data on the front side, the page data stored in the front side domain of the memory is output to the back side print control section, and the page data stored in the back side domain is output to the front side print control section. However, the means for inverting the print surface of the page data is not limited to this. For example, the page data for the front side may be stored into the back side domain of the memory, and the page data in the back side domain may be output to the back side print control section as usual. The page data for the back side may be stored into the front side domain of the memory, and the page data in the front side domain may be output to the front side print control section as usual.
As explained above, according to the invention, the front side page data is printed on the back side, and the back side page data is printed on the front side. With this arrangement, even when the postprocessor that is connected to the printer does not have the inversion mechanism, the sheets of paper obtained by disconnecting the paper in page units by the postprocessor can be stacked in the order of page numbers.
The protection range of the invention is not limited to the above embodiment, and extends to the invention described in the claims and their equivalents.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP01/06888 | 8/9/2001 | WO | 00 | 3/17/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/01700 | 2/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6118956 | Hirao | Sep 2000 | A |
6175715 | Hirao et al. | Jan 2001 | B1 |
6188853 | Ishida et al. | Feb 2001 | B1 |
6192213 | Wada et al. | Feb 2001 | B1 |
6292649 | Toyama et al. | Sep 2001 | B1 |
6317581 | Boehmer et al. | Nov 2001 | B1 |
6339692 | Yoshida et al. | Jan 2002 | B2 |
6466761 | Rene et al. | Oct 2002 | B1 |
6785488 | Katsuyama | Aug 2004 | B2 |
6823158 | Yamada et al. | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
A 63-212949 | Sep 1988 | JP |
A 3-235970 | Oct 1991 | JP |
A 8-104450 | Apr 1996 | JP |
A 10-166672 | Jun 1998 | JP |
A 11-352733 | Dec 1999 | JP |
A 2000-10369 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050031391 A1 | Feb 2005 | US |