This application claims the benefit of priority to Japanese Patent Application No. 2019-14651 filed on Jan. 30, 2019. The entire contents of this application are hereby incorporated herein by reference.
The present invention relates to a printer. More specifically, the present invention relates to a printer including a medium temporary placement support on which a roll medium is temporarily placed before being attached to a medium supplier.
Conventionally, a printer, which uses a roll medium including a supply shaft and a belt-shaped medium wound around the supply shaft for printing on the medium unwound from the supply shaft, has been known. In association with this, for example, a printer disclosed in JP-A-2012-153456 includes a holder that has a shaft support section supporting the supply shaft of the roll medium in such a manner as to allow rotation thereof; a temporary placement section that includes two bars located below the holder and provided parallel with each other in an axial direction of the supply shaft; and a roll medium lifting device having a placement section that is supported by the temporary placement section in a freely slidable manner and on which the roll medium is placed before being attached to the holder, and lifts the roll medium placed on the placement section, so as to assist in attachment of the supply shaft to the holder.
A printer that includes an ink head for discharging ink onto a medium on a platen, and a cutting head for cutting the medium on the platen is available. In such a printer, the printing operation is performed while the medium moves toward a downstream side in a conveyance direction. Thereafter, a large portion of the medium is fed backward to an upstream side in the conveyance direction, and a cutting operation is then performed thereon. At this time, in the case in which the large portion of the medium is fed backward to an upstream side, the medium possibly sags to the upstream side from the platen, and possibly hangs down to a side of or below the roll medium. As a result, in the printer disclosed in JP-A-2012-153456, there is a case in which the medium, which is fed backward, is stuck by the placement section, and is thereby folded or twisted.
Preferred embodiments of the present invention provide printers that significantly reduce or prevent a medium fed backward from being folded or twisted.
According to a preferred embodiment of the present invention, a printer is provided for printing on a roll medium that includes a supply shaft and a medium wound around the supply shaft. This printer includes a medium supplier including a shaft support, to which the supply shaft of the roll medium is detachably attached, and that rotatably supports the roll medium; a medium temporary placement support located below the shaft support of the medium supplier and that receives and supports the roll medium prior to the roll medium being attached to the medium supplier; and a conveyor that conveys a medium in a conveyance direction that is perpendicular or substantially perpendicular to an axial direction of the supply shaft, the medium being unwound from the supply shaft. The medium temporary placement support includes at least one support bar that extends in the axial direction, and a placement seat supported by the at least one support bar. The placement seat includes a placement surface on which the roll medium is placed and that extends in the conveyance direction and a curved portion that includes a convex curve in an upstream end portion of the placement surface in the conveyance direction.
According to a preferred embodiment of the present invention, the placement seat of the medium temporary placement support includes the curved portion in the upstream end portion. Accordingly, the medium, which is fed backward, is guided along the curved portion of the placement seat and thus is unlikely to be stuck by an upstream portion of the placement seat. Thus, even when a large portion of the medium is fed backward to the upstream side in the conveyance direction, it is possible to significantly reduce or prevent the medium from being folded or twisted.
Preferred embodiments of the present invention provide printers that are able to significantly reduce or prevent a medium, which is fed backward, from being folded or twisted.
Description will hereinafter be made of printers according to preferred embodiments of the present invention with reference to the drawings. The preferred embodiments, which will be described herein, represent examples of the present invention for merely illustrative purposes, and the present invention is not limited to matters disclosed in the following preferred embodiments. Members and portions having the same operational effects will be denoted by the same reference numerals, and an overlapping description thereon will appropriately be omitted or simplified. In the present specification, the “printer” is a term including an inkjet printer, a laser printer, a dot impact printer, a thermal printer, a thermal-transfer printer, and the like.
In the present specification, the “inkjet printer” includes any printer that uses a printing method using a conventionally known inkjet technique, for example, a continuous method such as a two-valued deflection method or a continuous deflection method, a thermal method, or any of various on-demand methods including a piezo element method. In addition, in the present specification, “cut” and “cutting” include a case in which the entire medium 5A is cut in a thickness direction (for example, a case in which both of a mat board and a paper liner of a sealing material are cut), and a case in which a portion of the medium 5A is cut in the thickness direction (for example, a case in which the mat board of the sealing material is not cut but only the paper liner is cut).
The printer 10 prints on the medium 5A unwound from the roll medium 5. As shown in
As shown in
As shown in
As shown in
The platen 20 supports the medium 5A from below when printing on or cutting of the medium 5A is performed. At least a portion of the platen 20 is provided in the casing 12. As shown in
As shown in
As shown in
As shown in
The cutting head 28 is located above U the platen 20. Although not shown, the cutting head 28 includes a cutter that cuts the medium 5A. When the carriage 26 moves in the lateral direction Y, the cutting head 28 also moves in the lateral direction Y. The cutting head 28 cuts the medium 5A on the platen 20 while moving in the lateral direction Y. Note that, although the ink head 27 and the cutting head 28 are mounted on the same carriage 26 in the present preferred embodiment, the ink head 27 and the cutting head 28 may separately mounted on different carriages and may move independently from each other. In addition, the cutting head 28 is not an essential component, and thus may not be provided in other preferred embodiments of the present invention. Furthermore, in addition to the ink head 27 and the cutting head 28, an irradiation device that emits light (for example, ultraviolet rays) may be mounted on the carriage 26.
The medium supplier 30 axially supports the roll medium 5 before printing, and supplies the medium 5A. As shown in
As shown in
Each of the holders 33, 34 is provided in a slidable manner on the slide bars 51, 52. A position of each of the holders 33, 34 in the lateral direction Y is able to be changed along the slide bars 51, 52. The holders 33, 34 move in such a manner as to approach or separate from each other along the slide bars 51, 52 in accordance with a width of the roll medium 5 in the lateral direction Y, for example. In this way, a distance in the lateral direction Y between the first holder 33 and the second holder 34 is adjusted. In the present preferred embodiment, the printer 10 does not include a motor that causes the supply shaft 32 to rotate. Accordingly, when the grit roller 22 conveys the medium 5A to the downstream side in the conveyance direction, the medium 5A is unwound from the supply shaft 32 and is fed toward the platen 20. Although the medium supplier 30 of the present preferred embodiment does not include the motor that causes the supply shaft 32 to rotate, the medium supplier 30 may include such a motor in other preferred embodiments of the present invention.
The medium winding device 40 winds the printed medium 5A in the roll shape. As shown in
As shown in
The medium temporary placement support 50 receives and supports the roll medium 5 prior to the roll medium 5 being attached to the medium supplier 30. As shown in
As shown in
In the following description, the slide bar that is located on the upstream side in the conveyance direction (at the rear Rr in the longitudinal direction X), in other words, located on a relatively far side from the platen 20 will also be referred to as the “upstream slide bar 51”. In addition, the slide bar that is located on the downstream side in the conveyance direction (at the front F in the longitudinal direction X), in other words, located on a relatively near side of the platen 20 will also be referred to as the “downstream slide bar 52”. As shown in
Each of the placement seats 60 temporarily receives the roll medium 5, that is, a seat which receives and supports the roll medium 5 prior to the roll medium 5 being attached to the medium supplier 30. As shown in
The placement seat 60 is divided into an upstream portion 61 that is engaged with the upstream slide bar 51; a downstream portion 63 that is engaged with the downstream slide bar 52; and an intermediate portion 62 that couples the upstream portion 61 and the downstream portion 63. In the present preferred embodiment, when the placement seat 60 is divided into two in the longitudinal direction X, the upstream portion 61 and the intermediate portion 62 correspond to a first portion that is relatively located on the upstream side, and the downstream portion 63 corresponds to a second portion that is relatively located on the downstream side. The placement seat 60 preferably has an asymmetrical shape in the longitudinal direction X. Accordingly, it is possible to prevent erroneous assembly of the placement seat 60 in the longitudinal direction X during manufacturing of the printer 10, for example. The placement seat 60 may be assembled to the printer 10 in such a manner as to disallow detachment thereof.
In a state of being supported by the slide bars 51, 52, the upstream portion 61 and the downstream portion 63 of the placement seat 60 are located at higher positions in the vertical direction Z than the intermediate portion 62 from the slide bars 51, 52. Accordingly, when the roll medium 5 is placed on an upper surface of the placement seat 60, a position of the roll medium 5 is stabilized. In the vertical direction Z, the highest position of the upstream portion 61 is lower than the highest position of the downstream portion 63. The highest position of the placement seat 60 is located in the downstream portion 63. In addition, in the vertical direction Z, a perpendicular length L1Z from the highest position of the upstream portion 61 to a center line of the upstream slide bar 51 in the vertical direction Z is shorter than a perpendicular length L3Z from the highest position of the downstream portion 63 to a center line of the downstream slide bar 52. That is, L1Z<L3Z. In this way, the movement of the medium 5A, which is fed backward, is further unlikely to be hindered by the placement seat 60. Although not particularly limited, the perpendicular length L1Z and/or the perpendicular length L3Z described above may be longer than the diameter R of each of the slide bars 51, 52. Accordingly, the position of the roll medium 5 is further stabilized by preventing teetering of the roll medium 5 on the placement seat 60.
As shown in
The upstream-side placement surface 61U includes an inclined surface 61S that extends obliquely upwards to the rear from an upstream end portion of the intermediate portion 62 in a state of being supported by the slide bars 51, 52, and the curved portion 61C that extends from an upstream end portion of the inclined surface 61S and is curved to the upward portion U. On the inclined surface 61S, the position in the vertical direction Z is gradually elevated from the upstream end portion of the intermediate portion 62 toward the curved portion 61C. A length of the inclined surface 61S in the longitudinal direction X is set based on an outer shape of the roll medium 5. The length of the inclined surface 61S in the longitudinal direction X is set such that a length that prevents rolling of the roll medium 5 is secured in addition to a length required to stably hold the largest roll medium 5 to be estimated (the length of the inclined surface 61S, which will be described below). In this way, the position of the roll medium 5 is further stabilized. In addition, when an area that is able to contact the roll medium 5 is increased and the roll medium 5 is placed, teetering of the roll medium 5 is further prevented.
The curved portion 61C is curved gently in comparison with the corner portion 63C, which will be described below. Curvature of the curved portion 61C is preferably equal to or smaller than a curvature of the upstream slide bar 51. The curved portion 61C is connected to an upstream end surface 61E. The upstream-side placement surface 61U does not include a convex portion (for example, a portion that is projected at an acute angle from the upper surface).
The downstream-side placement surface 63U includes an inclined surface 63S that extends obliquely upwards to the front from a downstream end portion of the intermediate portion 62 in a state of being supported by the slide bars 51, 52, and the corner portion 63C that extends from a downstream end portion of the inclined surface 63S and is projected to the upward portion U. The corner portion 63C functions as a weir that prevents rolling of the roll medium 5 to the front F. On the inclined surface 63S, the position in the vertical direction Z is gradually elevated from the downstream end portion of the intermediate portion 62 toward the corner portion 63C. Here, an absolute inclination angle (an inclination from a horizon) of the inclined surface 63S is equal to an absolute inclination angle of the inclined surface 61S. A length of the inclined surface 63S in the longitudinal direction X is set based on the outer shape of the roll medium 5. The length of the inclined surface 63S in the longitudinal direction X is set in consideration of a length required to stably hold the largest roll medium 5 to be estimated. In this way, the position of the roll medium 5 is further stabilized. In addition, when the area that is able to contact the roll medium 5 is increased and the roll medium 5 is placed, teetering of the roll medium 5 is prevented.
The corner portion 63C has a specified bent angle θ. The bent angle θ is defined by the inclined surface 63S and a downstream end surface 63E of the placement seat 60. Although not particularly limited, the bent angle θ is perpendicular or substantially perpendicular (about 90°). However, the bent angle θ may be an obtuse angle (90°<θ<180°), for example. The corner portion 63C is connected to the downstream end surface 63E. The downstream end surface 63E is inclined obliquely downwards to the front from the corner portion 63C. The downstream end surface 63E has a draft angle for the purpose of integral shaping of the placement seat 60.
As it is understood from comparison between
As shown in
A length of the R portion 61D (a length in the longitudinal direction X of an area of the R portion 61D covering the slide bar) is preferably equal to or longer than πR/4 when the diameter of the upstream slide bar 51 is set as R. In this way, when the roll medium 5 is placed on the placement seat 60, the position of the roll medium 5 is further stabilized. On the contrary, as the length of the R portion 61D is increased, a projection amount of the upstream portion 61 to the rear Rr is increased. As a result, the upstream portion 61 is likely to interfere with a medium path at the time when the medium 5A is fed backward. The R portion 61D may cover less than about half of the outer circumference of the upstream slide bar 51 at the maximum, and preferably covers slightly more than about one-fourth of the outer circumference of the upstream slide bar 51. Accordingly, the path of the medium 5A, which is fed backward, is appropriately secured.
The downstream portion 63 includes the through hole 63D. The through hole 63D has a diameter that is equal to or larger than an outer diameter of the downstream slide bar 52, and penetrates the downstream portion 63 in the lateral direction Y. The through hole 63D surrounds the entire circumference of the downstream slide bar 52. An upper half of the through hole 63D is in contact with the downstream slide bar 52. The through hole 63D contacts the highest position 52T of the downstream slide bar 52. The downstream slide bar 52 penetrates the through hole 63D in a freely slidable manner. The placement seat 60 is rotatable about the downstream slide bar 52 in the longitudinal direction X. Note that the through hole 63D may not surround the entire circumference of the downstream slide bar 52 and, for example, may only cover an upper half or a portion of the upper half and a lower half of the downstream slide bar 52.
As shown in
In the case in which the roll medium 5 is attached to the medium supplier 30 by using the placement seats 60, the user first lifts the roll medium 5 and temporarily places the roll medium 5 on the placement seats 60 of the medium temporary placement support 50 (see
Note that, in the case in which an extra-large roll medium with a medium diameter that is prominently large (irregular), and the extra-large roll medium is temporarily placed on the placement seat 60, a height of a supply shaft of the extra-large roll medium possibly becomes higher than the height of each of the holders 33, 34 of the medium supplier 30. In such a case, before the extra-large roll medium is temporarily placed on the medium temporary placement support 50, as shown in
The controller 80 controls operation of each element of the printer 10. The controller 80 is electrically connected to the carriage motor 17 for the carriage 26, the feed motor for the grit roller 22, the ink head 27, the cutting head 28, and the winding motor 44 of the medium winding device 40, and controls these components. As shown in
The printing controller 81 is configured or programmed to control the printing operation on the medium 5A. The printing controller 81 controls driving of the carriage motor 17 so as to control the movement of the ink head 27 in the lateral direction Y. The printing controller 81 controls driving of the feed motor so as to control the movement of the medium 5A in the conveyance direction (for example, to the front F and the rear Rr in the longitudinal direction X). The printing controller 81 controls a timing at which the ink head 27 discharges the ink onto the medium 5A and a discharge amount of the ink. The printing controller 81 controls driving of the winding motor 44 so as to cause the winding shaft 41 to rotate and wind the medium 5A around the winding shaft 41.
The cutting controller 82 is configured or programmed to control the cutting operation of the medium 5A. The cutting controller 82 controls driving of the carriage motor 17 so as to control the movement of the cutting head 28 in the lateral direction Y. The cutting controller 82 controls driving of the feed motor so as to control the movement of the medium 5A in the conveyance direction (for example, to the front F and the rear Rr in the longitudinal direction X). The cutting controller 82 controls the movement of the cutting head 28 in the vertical direction Z and a pressure of the cutter. The cutting controller 82 controls driving of the winding motor 44 so as to cause the winding shaft 41 to rotate and wind the medium 5A around the winding shaft 41.
The backward feeder 83 controls driving of the feed motor at the timing such as before the operation of the printing controller 81, after the operation of the printing controller 81, before the operation of the cutting controller 82, or after the operation of the cutting controller 82, so as to cause the medium 5A, which is conveyed to the downstream side in conjunction with the operation of the printing controller 81, to move to the upstream side in the conveyance direction (the rear Rr in the longitudinal direction X).
The controller 80 is not particularly limited. The controller 80 is typically a computer. The controller 80, for example, includes an interface (I/F) that receives printing data, cutting data, and the like from external equipment such as a host computer; a central processing unit (CPU) that executes commands of a control program; a read only memory (ROM) that stores the program to be executed by the CPU; a random access memory (RAM) that is used as a working area where the program is loaded; and a storage medium such as memory to store various types of data.
In the printer 10 of the present preferred embodiment, each of the placement seats 60 of the medium temporary placement support 50 has the asymmetrical shape in the conveyance direction, and the upstream end portion (the curved portion 61C) of the upstream-side placement surface 61U is curved in comparison with the downstream end portion (the corner portion 63C) of the downstream-side placement surface 63U. Unlike the corner portion 63C, the curved portion 61C has no pointing portion. Thus, the medium 5A is less likely to be stuck by the upstream portion 61. In the printer 10 of the present preferred embodiment, each of the placement seats 60 is not bulged to the upstream side in the conveyance direction from a tangent line T that contacts the upstream side of the outer circumferential surface of the supply shaft 32 and the upstream side of the outer circumferential surface of the upstream slide bar 51. Accordingly, the medium 5A, which is fed backward, is guided to the downstream side along the curvature of the curved portion 61C of each of the placement seats 60 without being folded. In addition, the curved portion 61C is curved. Thus, compared to the case in which the curved portion 61C is not curved, a projected amount of the curved portion 61C to the upstream side in the conveyance direction is reduced. In this way, the path of the medium 5A, which is fed backward, is unlikely to be blocked by the placement seats 60. Thus, it is possible to significantly reduce or prevent the medium 5A from being folded or twisted.
Note that
According to the present preferred embodiment, the upstream (rear Rr in the longitudinal direction X) portion and the downstream (the front F in the longitudinal direction X) portion of the placement seat 60 have different shapes. Accordingly, compared to the case in which the upstream portion and the downstream portion have the same shape, it is possible to prevent the erroneous assembly of the placement seat 60 in the longitudinal direction X during manufacturing of the printer 10.
According to a preferred embodiment of the present invention, each of the placement seats 60 includes the corner portion 63C, the height of which from the slide bars 51, 52 is higher than the height on the upstream side (at the rear Rr in the longitudinal direction X) thereof, in the downstream end (the front F in the longitudinal direction X) portion of the downstream-side placement surface 63U. In the present preferred embodiment, the upstream-side placement surface 61U includes the curved portion 61C. Thus, compared to the case in which the curved portion 61C is not provided, a movable range of the roll medium 5 on the upstream-side placement surface 61U is reduced. Accordingly, the roll medium 5 easily rolls to the downstream side (forward F in the longitudinal direction X). In addition, the corner portion 63C is provided on the downstream side (at the front F in the longitudinal direction X) in a rolling direction of the roll medium 5. Thus, the roll medium 5 is unlikely to roll when the roll medium 5 is placed on the placement seat 60. In this way, it is possible to reduce a risk that the roll medium 5 suddenly falls from the placement seat 60.
According to a preferred embodiment of the present invention, when seen in the axial direction of the supply shaft 32, the upstream (the rear Rr in the longitudinal direction X) end of the placement seat 60 is located on the downstream side (in the front F in the longitudinal direction X) of the upstream (the rear Rr in the longitudinal direction X) end of the upstream slide bar 51. Accordingly, the medium 5A, which is fed backward, is less likely to be stuck by the upstream portion 61 of the placement seat 60. Thus, the path of the medium 5A, which is fed backward, is appropriately secured.
According to a preferred embodiment of the present invention, the support bars are the slide bars 51, 52, each of which extends in parallel or substantially parallel with the supply shaft 32, and which are parallel or substantially parallel with each other. The slide bars 51, 52 include the upstream slide bar 51 located on an upstream side (the rearmost side Rr in the longitudinal direction X) of the downstream slide bar 52. The outer circumferential surface of the upstream slide bar 51 has a circular or substantially circular shape. When seen in the axial direction of the supply shaft 32, the curvature of the curved portion 61C in the placement seat 60 is equal or substantially equal to the curvature of the upstream slide bar 51. In this way, the medium 5A, which is fed backward, is guided to the upstream side such that a folded angle thereof becomes gentle. Accordingly, the medium 5A smoothly moves to the upstream side.
According to a preferred embodiment of the present invention, when seen in the axial direction of the supply shaft 32, the placement seat 60 is located on the downstream side (in the front F in the longitudinal direction X) of the tangent line T that contacts the upstream side (the rear Rr in the longitudinal direction X) of the outer circumferential surface of the supply shaft 32 and the upstream side (the rear Rr in the longitudinal direction X) of the outer circumferential surface of the slide bar 51. In this way, the path of the medium 5A, which is fed backward, is appropriately secured. Thus, it is possible to significantly reduce or prevent the medium 5A from being folded or twisted.
According to a preferred embodiment of the present invention, the support bar includes the downstream slide bar 52 located on the downstream side (in the front F in the longitudinal direction X) of the slide bar 51. The supported portion of the placement seat 60 includes the through hole 63D that has the diameter equal to or larger than the outer diameter of the downstream slide bar 52 and extends through the supported portion in the axial direction. The downstream slide bar 52 extends through the through hole 63D. In this way, it is possible to prevent the placement seat 60 from separating or falling from the slide bars 51, 52 due to the momentum at the time when the roll medium 5 is placed on the placement seat 60.
According to a preferred embodiment of the present invention, the placement seat 60 is rotatably supported by the downstream slide bar 52. When the placement seat 60 rotates forward F with the downstream slide bar 52 being the axis, the placement seat 60 hangs down from the downstream slide bar 52 in the state in which the upstream end surface 61E is located below the through hole 63D. In this way, when the placement seat 60 is not used, for example, when the extra-large roll medium having the large medium diameter is used for printing, the placement seats 60 are able to be moved from the top of each of the slide bars 51, 52 without completely detaching the placement seats 60 from the printer 10. Accordingly, there is no need to worry about a place to keep the detached placement seat 60, and the placement seat 60 is not lost. In addition, when the placement seat 60 is used again, the placement seat 60 rotates toward the rear Rr with the downstream slide bar 52 as an axis. In this way, the placement seat 60 is easily returned onto the slide bars 51, 52.
According to a preferred embodiment of the present invention, the printer 10 further includes the platen 20 located on the downstream side (in the front F in the longitudinal direction X) of the medium supplier 30 and on which the medium 5A is placed during printing; and the cutting head 28 that cuts the medium 5A placed on the platen 20. In such a case, it is considered that a large portion of the medium 5A is fed backward, for example, when the printing operation is finished. Therefore, the effects of the technique disclosed herein are easily achieved.
The description has been made so far of the printers according to various preferred embodiments of the present invention. However, the printer 10 described above according to various preferred embodiments of the present invention are merely illustrative, and the present invention can be implemented in various other modes. The present invention can be implemented based on the contents disclosed in the present specification and common general technical knowledge in this field. The techniques described in the claims includes various modifications and changes that are made to the above-exemplified preferred embodiments. For example, one or more elements of the above preferred embodiments may be replaced with other modified aspects of the preferred embodiments, and the other modified aspects may be added to the above preferred embodiments. In addition, the above preferred embodiments and the modified aspects may appropriately be combined. Furthermore, when any of the technical features is not described as being essential, the technical feature(s) may be appropriately be eliminated.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-014651 | Jan 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4936079 | Skalsky | Jun 1990 | A |
8851412 | Tenpaku | Oct 2014 | B2 |
20120187233 | Tenpaku et al. | Jul 2012 | A1 |
20170165983 | Takahashi | Jun 2017 | A1 |
20200001629 | Takahashi | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
58-095947 | Jun 1983 | JP |
02-010343 | Jan 1990 | JP |
2006-096552 | Apr 2006 | JP |
2011-131434 | Jul 2011 | JP |
2012-153456 | Aug 2012 | JP |
2013-032206 | Feb 2013 | JP |
2013-047139 | Mar 2013 | JP |
2015-129030 | Jul 2015 | JP |
Entry |
---|
Machine translation of JP 2013-032206, published on Feb. 2013 (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20200238738 A1 | Jul 2020 | US |