The present invention relates to printers and, more particularly, relates to printer spindle assemblies and methods for determining media width for controlling media tension.
Generally speaking, printers employ media on printer spindle assemblies. As used herein, “media” is any consumable product used in the printer (e.g., labels, receipts, ink ribbon, etc.). The term “media” includes “print media” on which the printer prints as well as the ink ribbon that may supply ink. Media of different widths have different torque requirements. Incorrect torque (i.e., media tension) may result in poor print quality, media wrinkles, print registration problems, black bending on printouts, and in some case, media rupture (collectively “printing problems”). Thus, it is important for the media tension to be set appropriate to the media width.
While systems exist to automatically sense the size of print media loaded into a printer by having an electrical feedback connected to the media size adjustment mechanism, such systems do not tell the printer or user anything about the proper torque values (i.e., media tension) to be used for any given printing job and for media other than print media.
Therefore, a need exists for printers, and printer spindle assemblies thereof and methods for automatically determining media width for controlling media tension.
Accordingly, in one aspect, the present invention embraces a printer spindle assembly comprising a media spindle having a first end and a second end, a commutator disposed circumferentially at the first end of the media spindle, at least two brushes in electrical contact with the commutator and connected to a voltage source, a plurality of electrically conductive springs serially disposed on the media spindle in electrical communication with the commutator, and a continuous electrically conductive path formed of electrically resistive material disposed along a longitudinal axis of the media spindle and configured to be in electrical contact with a first end of the one or more electrically conductive springs in the compressed state to form a series circuit. The voltage source, the at least two brushes, and the commutator form a closed electrical circuit. Each electrically conductive spring is configured to be in an uncompressed state in the absence of media on the media spindle and one or more of the electrically conductive springs is configured to be in a compressed state in the presence of the media on the media spindle.
In another aspect, the present invention embraces a printer comprising a spindle assembly and a processor. The spindle assembly comprises a media spindle having a first end and a second end, a commutator disposed circumferentially at the first end of the media spindle, at least two brushes in electrical contact with the commutator and connected to a voltage source, a plurality of electrically conductive springs serially disposed on the media spindle in electrical communication with the commutator, and a continuous electrically conductive path formed of electrically resistive material disposed along a longitudinal axis of the media spindle and configured to be in electrical contact with a first end of the one or more electrically conductive springs in the compressed state to form a series circuit. The voltage source, the at least two brushes, and the commutator form a closed electrical circuit. Each electrically conductive spring is configured to be in an uncompressed state in the absence of media on the media spindle and one or more of the conductive springs is configured to be in a compressed state in the presence of the media on the media spindle. The processor is configured to determine a width of the media loaded on the media spindle based on the resistance of the series circuit and is configured to adjust torsion on the media based upon the determined width of the media.
In another aspect, the present invention embraces a method comprising loading media on a media spindle of a printer spindle assembly. The media spindle has a first end and a second end and the printer spindle assembly comprises a commutator disposed circumferentially at the first end of the media spindle, at least two brushes in electrical contact with the commutator and connected to a voltage source, a plurality of electrically conductive springs serially disposed on the media spindle in electrical communication with the commutator, and a continuous electrically conductive path formed of electrically resistive material disposed along a longitudinal axis of the media spindle and configured to be in electrical contact with a first end of the one or more electrically conductive springs in the compressed state to form a series circuit. The voltage source, the at least two brushes, and the commutator form a closed electrical circuit. Each electrically conductive spring is configured to be in an uncompressed state in the absence of the media on the media spindle and one or more of the electrically conductive springs is configured to be in a compressed state in the presence of the media on the media spindle. At least two brushes are connected to a voltage source. An electrical resistance of the series circuit is determined. A width of the media loaded on the media spindle is determined from the electrical resistance.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces printers, and printer spindle assemblies thereof and methods for automatically determining media width for controlling media tension. Various embodiments provide an automatic system that can sense the width of media disposed on a printer spindle assembly and feedback this information to an onboard processor that can implement torque requirements to achieve correct media tension.
Various embodiments of the present invention will be described in relation to a thermal transfer printer such as depicted in
Referring now specifically to
In the case of a thermal transfer printer such as depicted in
The ribbon supply roll and the print media supply roll comprise exemplary “media rolls”. As hereinafter described, a media roll is configured to be disposed on a media spindle 24 of the printer spindle assembly 20. For example, the ribbon supply roll comprising ribbon (exemplary media) wound on a media supply spool is configured to be disposed on a media spindle comprising a ribbon supply spindle. The print media supply roll comprising print media wound on a print media supply spool is configured to be disposed on a media spindle comprising a print media supply spindle. As used herein, the media width is equivalent to the media roll width. The media spindle comprises a hollow elongated substantially cylindrical member comprised of a nonconductive material according to various embodiments of the present invention. A ribbon rewind spindle 44 on which unwound ribbon is wound up may also be contained within the body 32. Each of the media spindles and the media rolls disposed thereon are configured to rotate.
The printer 14 further comprises a processor 33. As known in the art, the central processing unit (CPU) (i.e., the processor 33) is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by the instructions as hereinafter described. According to various embodiments of the present invention as hereinafter described, the processor is configured to determine the width of the media loaded on the media spindle through feedback from resistance circuitry coupled to the processor. Once the media width is known to the processor, the processor causes an adjustment in media tension in accordance with the media width. The processor is further configured to implement torque requirements of the printer. By adjusting the torque requirements, the media tension is changed. The processor may be configured to send information on the width of the media loaded on the media spindle to a display 35 on the printer.
The printer further comprises other illustrated and non-illustrated components as known in the art. For example, the printer may further comprise one or more motors (not shown) for rotating the media spindle(s) and the media rolls disposed thereon, and a user interface 34 for communication between a user and the printer 14. The user interface 34 may include, but is not limited to, the printer display 35 for displaying information, including information on the width of the media loaded on the media spindle.
Returning now to
The electrically conductive spring 30 are electrically linked to the commutator 26. The carbon brushes 28 are disposed generally on either side of the commutator 26. The voltage source, the carbon brushes, and the commutator form a closed electrical circuit. The closed electrical circuit connects the electrical circuits in series to a main electrical control unit housing the processor 33 (
Still referring to
In the depicted embodiment of
When a media roll is disposed on the media spindle of the printer spindle assembly, the media roll compresses one or more of the electrically conductive springs. The media roll will contact the second portion 34-2 and then the first portion 34-1 of the electrically conductive springs will touch the conductive path 40 as noted previously. Therefore, each electrically conductive spring is configured to be in an uncompressed state in the absence of media on the media spindle and one or more of the electrically conductive springs is configured to be in a compressed state in the presence of the media on the media spindle. In
The electrically conductive springs have a length such that when one or more of the electrically conductive springs are compressed, the first spring end of the compressed electrically conductive spring(s) will make electrical contact with the continuous electrically conductive path 40, resulting in current 29 flow (e.g.,
In
In
The media width is determined from the difference in electrical resistance caused by compression of the electrically conductive springs contacting the continuous electrically conductive path 40 (see, e.g.,
Returning again to
Referring now to
Determining the electrical resistance of the series circuit comprises measuring the electrical resistance. The electrical resistance may be measured, for example, with an ohmmeter. Other ways of determining the electrical resistance of the series circuit are contemplated according to various embodiments of the present invention.
Determining the width of the media from the electrical resistance comprises identifying the width of the media that is associated with the electrical resistance. Each different electrical resistance value may be associated with a different width of the media, such as in a look-up table.
From the foregoing, it is to be appreciate that various embodiments automatically determine media width for controlling media tension. Various embodiments provide an automatic system that can sense the width of media/media roll disposed on a printer spindle assembly and feedback this information to an onboard processor that can implement torque requirements to achieve correct media tension, thereby avoiding printing problems associated with using an incorrect media tension.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;
U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;
U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;
U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;
U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;
U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;
U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;
U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;
U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;
U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;
U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;
U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;
U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;
U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;
U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;
U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;
U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;
U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;
U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;
U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;
U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;
U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;
U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;
U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;
U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;
U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;
U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;
U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;
U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;
U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;
U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;
U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;
U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;
U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;
U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;
U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;
U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;
U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;
U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;
U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;
U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;
U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;
U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;
U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;
U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;
U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;
U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;
U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;
U.S. Pat. No. 8,727,223; U.S. Pat. No. 8,740,082;
U.S. Pat. No. 8,740,085; U.S. Pat. No. 8,746,563;
U.S. Pat. No. 8,750,445; U.S. Pat. No. 8,752,766;
U.S. Pat. No. 8,756,059; U.S. Pat. No. 8,757,495;
U.S. Pat. No. 8,760,563; U.S. Pat. No. 8,763,909;
U.S. Pat. No. 8,777,108; U.S. Pat. No. 8,777,109;
U.S. Pat. No. 8,779,898; U.S. Pat. No. 8,781,520;
U.S. Pat. No. 8,783,573; U.S. Pat. No. 8,789,757;
U.S. Pat. No. 8,789,758; U.S. Pat. No. 8,789,759;
U.S. Pat. No. 8,794,520; U.S. Pat. No. 8,794,522;
U.S. Pat. No. 8,794,525; U.S. Pat. No. 8,794,526;
U.S. Pat. No. 8,798,367; U.S. Pat. No. 8,807,431;
U.S. Pat. No. 8,807,432; U.S. Pat. No. 8,820,630;
U.S. Pat. No. 8,822,848; U.S. Pat. No. 8,824,692;
U.S. Pat. No. 8,824,696; U.S. Pat. No. 8,842,849;
U.S. Pat. No. 8,844,822; U.S. Pat. No. 8,844,823;
U.S. Pat. No. 8,849,019; U.S. Pat. No. 8,851,383;
U.S. Pat. No. 8,854,633; U.S. Pat. No. 8,866,963;
U.S. Pat. No. 8,868,421; U.S. Pat. No. 8,868,519;
U.S. Pat. No. 8,868,802; U.S. Pat. No. 8,868,803;
U.S. Pat. No. 8,870,074; U.S. Pat. No. 8,879,639;
U.S. Pat. No. 8,880,426; U.S. Pat. No. 8,881,983;
U.S. Pat. No. 8,881,987; U.S. Pat. No. 8,903,172;
U.S. Pat. No. 8,908,995; U.S. Pat. No. 8,910,870;
U.S. Pat. No. 8,910,875; U.S. Pat. No. 8,914,290;
U.S. Pat. No. 8,914,788; U.S. Pat. No. 8,915,439;
U.S. Pat. No. 8,915,444; U.S. Pat. No. 8,916,789;
U.S. Pat. No. 8,918,250; U.S. Pat. No. 8,918,564;
U.S. Pat. No. 8,925,818; U.S. Pat. No. 8,939,374;
U.S. Pat. No. 8,942,480; U.S. Pat. No. 8,944,313;
U.S. Pat. No. 8,944,327; U.S. Pat. No. 8,944,332;
U.S. Pat. No. 8,950,678; U.S. Pat. No. 8,967,468;
U.S. Pat. No. 8,971,346; U.S. Pat. No. 8,976,030;
U.S. Pat. No. 8,976,368; U.S. Pat. No. 8,978,981;
U.S. Pat. No. 8,978,983; U.S. Pat. No. 8,978,984;
U.S. Pat. No. 8,985,456; U.S. Pat. No. 8,985,457;
U.S. Pat. No. 8,985,459; U.S. Pat. No. 8,985,461;
U.S. Pat. No. 8,988,578; U.S. Pat. No. 8,988,590;
U.S. Pat. No. 8,991,704; U.S. Pat. No. 8,996,194;
U.S. Pat. No. 8,996,384; U.S. Pat. No. 9,002,641;
U.S. Pat. No. 9,007,368; U.S. Pat. No. 9,010,641;
U.S. Pat. No. 9,015,513; U.S. Pat. No. 9,016,576;
U.S. Pat. No. 9,022,288; U.S. Pat. No. 9,030,964;
U.S. Pat. No. 9,033,240; U.S. Pat. No. 9,033,242;
U.S. Pat. No. 9,036,054; U.S. Pat. No. 9,037,344;
U.S. Pat. No. 9,038,911; U.S. Pat. No. 9,038,915;
U.S. Pat. No. 9,047,098; U.S. Pat. No. 9,047,359;
U.S. Pat. No. 9,047,420; U.S. Pat. No. 9,047,525;
U.S. Pat. No. 9,047,531; U.S. Pat. No. 9,053,055;
U.S. Pat. No. 9,053,378; U.S. Pat. No. 9,053,380;
U.S. Pat. No. 9,058,526; U.S. Pat. No. 9,064,165;
U.S. Pat. No. 9,064,165; U.S. Pat. No. 9,064,167;
U.S. Pat. No. 9,064,168; U.S. Pat. No. 9,064,254;
U.S. Pat. No. 9,066,032; U.S. Pat. No. 9,070,032;
U.S. Pat. No. 9,076,459; U.S. Pat. No. 9,079,423;
U.S. Pat. No. 9,080,856; U.S. Pat. No. 9,082,023;
U.S. Pat. No. 9,082,031; U.S. Pat. No. 9,084,032;
U.S. Pat. No. 9,087,250; U.S. Pat. No. 9,092,681;
U.S. Pat. No. 9,092,682; U.S. Pat. No. 9,092,683;
U.S. Pat. No. 9,093,141; U.S. Pat. No. 9,098,763;
U.S. Pat. No. 9,104,929; U.S. Pat. No. 9,104,934;
U.S. Pat. No. 9,107,484; U.S. Pat. No. 9,111,159;
U.S. Pat. No. 9,111,166; U.S. Pat. No. 9,135,483;
U.S. Pat. No. 9,137,009; U.S. Pat. No. 9,141,839;
U.S. Pat. No. 9,147,096; U.S. Pat. No. 9,148,474;
U.S. Pat. No. 9,158,000; U.S. Pat. No. 9,158,340;
U.S. Pat. No. 9,158,953; U.S. Pat. No. 9,159,059;
U.S. Pat. No. 9,165,174; U.S. Pat. No. 9,171,543;
U.S. Pat. No. 9,183,425; U.S. Pat. No. 9,189,669;
U.S. Pat. No. 9,195,844; U.S. Pat. No. 9,202,458;
U.S. Pat. No. 9,208,366; U.S. Pat. No. 9,208,367;
U.S. Pat. No. 9,219,836; U.S. Pat. No. 9,224,024;
U.S. Pat. No. 9,224,027; U.S. Pat. No. 9,230,140;
U.S. Pat. No. 9,235,553; U.S. Pat. No. 9,239,950;
U.S. Pat. No. 9,245,492; U.S. Pat. No. 9,248,640;
U.S. Pat. No. 9,250,652; U.S. Pat. No. 9,250,712;
U.S. Pat. No. 9,251,411; U.S. Pat. No. 9,258,033;
U.S. Pat. No. 9,262,633; U.S. Pat. No. 9,262,660;
U.S. Pat. No. 9,262,662; U.S. Pat. No. 9,269,036;
U.S. Pat. No. 9,270,782; U.S. Pat. No. 9,274,812;
U.S. Pat. No. 9,275,388; U.S. Pat. No. 9,277,668;
U.S. Pat. No. 9,280,693; U.S. Pat. No. 9,286,496;
U.S. Pat. No. 9,298,964; U.S. Pat. No. 9,301,427;
U.S. Pat. No. 9,313,377; U.S. Pat. No. 9,317,037;
U.S. Pat. No. 9,319,548; U.S. Pat. No. 9,342,723;
U.S. Pat. No. 9,361,882; U.S. Pat. No. 9,365,381;
U.S. Pat. No. 9,373,018; U.S. Pat. No. 9,375,945;
U.S. Pat. No. 9,378,403; U.S. Pat. No. 9,383,848;
U.S. Pat. No. 9,384,374; U.S. Pat. No. 9,390,304;
U.S. Pat. No. 9,390,596; U.S. Pat. No. 9,411,386;
U.S. Pat. No. 9,412,242; U.S. Pat. No. 9,418,269;
U.S. Pat. No. 9,418,270; U.S. Pat. No. 9,465,967;
U.S. Pat. No. 9,423,318; U.S. Pat. No. 9,424,454;
U.S. Pat. No. 9,436,860; U.S. Pat. No. 9,443,123;
U.S. Pat. No. 9,443,222; U.S. Pat. No. 9,454,689;
U.S. Pat. No. 9,464,885; U.S. Pat. No. 9,465,967;
U.S. Pat. No. 9,478,983; U.S. Pat. No. 9,481,186;
U.S. Pat. No. 9,487,113; U.S. Pat. No. 9,488,986;
U.S. Pat. No. 9,489,782; U.S. Pat. No. 9,490,540;
U.S. Pat. No. 9,491,729; U.S. Pat. No. 9,497,092;
U.S. Pat. No. 9,507,974; U.S. Pat. No. 9,519,814;
U.S. Pat. No. 9,521,331; U.S. Pat. No. 9,530,038;
U.S. Pat. No. 9,572,901; U.S. Pat. No. 9,558,386;
U.S. Pat. No. 9,606,581; U.S. Pat. No. 9,646,189;
U.S. Pat. No. 9,646,191; U.S. Pat. No. 9,652,648;
U.S. Pat. No. 9,652,653; U.S. Pat. No. 9,656,487;
U.S. Pat. No. 9,659,198; U.S. Pat. No. 9,680,282;
U.S. Pat. No. 9,697,401; U.S. Pat. No. 9,701,140;
U.S. Design Pat. No. D702,237;
U.S. Design Pat. No. D716,285;
U.S. Design Pat. No. D723,560;
U.S. Design Pat. No. D730,357;
U.S. Design Pat. No. D730,901;
U.S. Design Pat. No. D730,902;
U.S. Design Pat. No. D734,339;
U.S. Design Pat. No. D737,321;
U.S. Design Pat. No. D754,205;
U.S. Design Pat. No. D754,206;
U.S. Design Pat. No. D757,009;
U.S. Design Pat. No. D760,719;
U.S. Design Pat. No. D762,604;
U.S. Design Pat. No. D766,244;
U.S. Design Pat. No. D777,166;
U.S. Design Pat. No. D771,631;
U.S. Design Pat. No. D783,601;
U.S. Design Pat. No. D785,617;
U.S. Design Pat. No. D785,636;
U.S. Design Pat. No. D790,505;
U.S. Design Pat. No. D790,546;
International Publication No. 2013/163789;
U.S. Patent Application Publication No. 2008/0185432;
U.S. Patent Application Publication No. 2009/0134221;
U.S. Patent Application Publication No. 2010/0177080;
U.S. Patent Application Publication No. 2010/0177076;
U.S. Patent Application Publication No. 2010/0177707;
U.S. Patent Application Publication No. 2010/0177749;
U.S. Patent Application Publication No. 2010/0265880;
U.S. Patent Application Publication No. 2011/0202554;
U.S. Patent Application Publication No. 2012/0111946;
U.S. Patent Application Publication No. 2012/0168511;
U.S. Patent Application Publication No. 2012/0168512;
U.S. Patent Application Publication No. 2012/0193423;
U.S. Patent Application Publication No. 2012/0194692;
U.S. Patent Application Publication No. 2012/0203647;
U.S. Patent Application Publication No. 2012/0223141;
U.S. Patent Application Publication No. 2012/0228382;
U.S. Patent Application Publication No. 2012/0248188;
U.S. Patent Application Publication No. 2013/0043312;
U.S. Patent Application Publication No. 2013/0082104;
U.S. Patent Application Publication No. 2013/0175341;
U.S. Patent Application Publication No. 2013/0175343;
U.S. Patent Application Publication No. 2013/0257744;
U.S. Patent Application Publication No. 2013/0257759;
U.S. Patent Application Publication No. 2013/0270346;
U.S. Patent Application Publication No. 2013/0292475;
U.S. Patent Application Publication No. 2013/0292477;
U.S. Patent Application Publication No. 2013/0293539;
U.S. Patent Application Publication No. 2013/0293540;
U.S. Patent Application Publication No. 2013/0306728;
U.S. Patent Application Publication No. 2013/0306731;
U.S. Patent Application Publication No. 2013/0307964;
U.S. Patent Application Publication No. 2013/0308625;
U.S. Patent Application Publication No. 2013/0313324;
U.S. Patent Application Publication No. 2013/0332996;
U.S. Patent Application Publication No. 2014/0001267;
U.S. Patent Application Publication No. 2014/0025584;
U.S. Patent Application Publication No. 2014/0034734;
U.S. Patent Application Publication No. 2014/0036848;
U.S. Patent Application Publication No. 2014/0039693;
U.S. Patent Application Publication No. 2014/0049120;
U.S. Patent Application Publication No. 2014/0049635;
U.S. Patent Application Publication No. 2014/0061306;
U.S. Patent Application Publication No. 2014/0063289;
U.S. Patent Application Publication No. 2014/0066136;
U.S. Patent Application Publication No. 2014/0067692;
U.S. Patent Application Publication No. 2014/0070005;
U.S. Patent Application Publication No. 2014/0071840;
U.S. Patent Application Publication No. 2014/0074746;
U.S. Patent Application Publication No. 2014/0076974;
U.S. Patent Application Publication No. 2014/0097249;
U.S. Patent Application Publication No. 2014/0098792;
U.S. Patent Application Publication No. 2014/0100813;
U.S. Patent Application Publication No. 2014/0103115;
U.S. Patent Application Publication No. 2014/0104413;
U.S. Patent Application Publication No. 2014/0104414;
U.S. Patent Application Publication No. 2014/0104416;
U.S. Patent Application Publication No. 2014/0106725;
U.S. Patent Application Publication No. 2014/0108010;
U.S. Patent Application Publication No. 2014/0108402;
U.S. Patent Application Publication No. 2014/0110485;
U.S. Patent Application Publication No. 2014/0125853;
U.S. Patent Application Publication No. 2014/0125999;
U.S. Patent Application Publication No. 2014/0129378;
U.S. Patent Application Publication No. 2014/0131443;
U.S. Patent Application Publication No. 2014/0133379;
U.S. Patent Application Publication No. 2014/0136208;
U.S. Patent Application Publication No. 2014/0140585;
U.S. Patent Application Publication No. 2014/0152882;
U.S. Patent Application Publication No. 2014/0158770;
U.S. Patent Application Publication No. 2014/0159869;
U.S. Patent Application Publication No. 2014/0166759;
U.S. Patent Application Publication No. 2014/0168787;
U.S. Patent Application Publication No. 2014/0175165;
U.S. Patent Application Publication No. 2014/0191684;
U.S. Patent Application Publication No. 2014/0191913;
U.S. Patent Application Publication No. 2014/0197304;
U.S. Patent Application Publication No. 2014/0214631;
U.S. Patent Application Publication No. 2014/0217166;
U.S. Patent Application Publication No. 2014/0231500;
U.S. Patent Application Publication No. 2014/0247315;
U.S. Patent Application Publication No. 2014/0263493;
U.S. Patent Application Publication No. 2014/0263645;
U.S. Patent Application Publication No. 2014/0270196;
U.S. Patent Application Publication No. 2014/0270229;
U.S. Patent Application Publication No. 2014/0278387;
U.S. Patent Application Publication No. 2014/0288933;
U.S. Patent Application Publication No. 2014/0297058;
U.S. Patent Application Publication No. 2014/0299665;
U.S. Patent Application Publication No. 2014/0332590;
U.S. Patent Application Publication No. 2014/0351317;
U.S. Patent Application Publication No. 2014/0362184;
U.S. Patent Application Publication No. 2014/0363015;
U.S. Patent Application Publication No. 2014/0369511;
U.S. Patent Application Publication No. 2014/0374483;
U.S. Patent Application Publication No. 2014/0374485;
U.S. Patent Application Publication No. 2015/0001301;
U.S. Patent Application Publication No. 2015/0001304;
U.S. Patent Application Publication No. 2015/0009338;
U.S. Patent Application Publication No. 2015/0014416;
U.S. Patent Application Publication No. 2015/0021397;
U.S. Patent Application Publication No. 2015/0028104;
U.S. Patent Application Publication No. 2015/0029002;
U.S. Patent Application Publication No. 2015/0032709;
U.S. Patent Application Publication No. 2015/0039309;
U.S. Patent Application Publication No. 2015/0039878;
U.S. Patent Application Publication No. 2015/0040378;
U.S. Patent Application Publication No. 2015/0049347;
U.S. Patent Application Publication No. 2015/0051992;
U.S. Patent Application Publication No. 2015/0053769;
U.S. Patent Application Publication No. 2015/0062366;
U.S. Patent Application Publication No. 2015/0063215;
U.S. Patent Application Publication No. 2015/0088522;
U.S. Patent Application Publication No. 2015/0096872;
U.S. Patent Application Publication No. 2015/0100196;
U.S. Patent Application Publication No. 2015/0102109;
U.S. Patent Application Publication No. 2015/0115035;
U.S. Patent Application Publication No. 2015/0127791;
U.S. Patent Application Publication No. 2015/0128116;
U.S. Patent Application Publication No. 2015/0133047;
U.S. Patent Application Publication No. 2015/0134470;
U.S. Patent Application Publication No. 2015/0136851;
U.S. Patent Application Publication No. 2015/0142492;
U.S. Patent Application Publication No. 2015/0144692;
U.S. Patent Application Publication No. 2015/0144698;
U.S. Patent Application Publication No. 2015/0149946;
U.S. Patent Application Publication No. 2015/0161429;
U.S. Patent Application Publication No. 2015/0178523;
U.S. Patent Application Publication No. 2015/0178537;
U.S. Patent Application Publication No. 2015/0178685;
U.S. Patent Application Publication No. 2015/0181109;
U.S. Patent Application Publication No. 2015/0199957;
U.S. Patent Application Publication No. 2015/0210199;
U.S. Patent Application Publication No. 2015/0212565;
U.S. Patent Application Publication No. 2015/0213647;
U.S. Patent Application Publication No. 2015/0220753;
U.S. Patent Application Publication No. 2015/0220901;
U.S. Patent Application Publication No. 2015/0227189;
U.S. Patent Application Publication No. 2015/0236984;
U.S. Patent Application Publication No. 2015/0239348;
U.S. Patent Application Publication No. 2015/0242658;
U.S. Patent Application Publication No. 2015/0248572;
U.S. Patent Application Publication No. 2015/0254485;
U.S. Patent Application Publication No. 2015/0261643;
U.S. Patent Application Publication No. 2015/0264624;
U.S. Patent Application Publication No. 2015/0268971;
U.S. Patent Application Publication No. 2015/0269402;
U.S. Patent Application Publication No. 2015/0288689;
U.S. Patent Application Publication No. 2015/0288896;
U.S. Patent Application Publication No. 2015/0310243;
U.S. Patent Application Publication No. 2015/0310244;
U.S. Patent Application Publication No. 2015/0310389;
U.S. Patent Application Publication No. 2015/0312780;
U.S. Patent Application Publication No. 2015/0327012;
U.S. Patent Application Publication No. 2016/0014251;
U.S. Patent Application Publication No. 2016/0025697;
U.S. Patent Application Publication No. 2016/0026838;
U.S. Patent Application Publication No. 2016/0026839;
U.S. Patent Application Publication No. 2016/0040982;
U.S. Patent Application Publication No. 2016/0042241;
U.S. Patent Application Publication No. 2016/0057230;
U.S. Patent Application Publication No. 2016/0062473;
U.S. Patent Application Publication No. 2016/0070944;
U.S. Patent Application Publication No. 2016/0092805;
U.S. Patent Application Publication No. 2016/0101936;
U.S. Patent Application Publication No. 2016/0104019;
U.S. Patent Application Publication No. 2016/0104274;
U.S. Patent Application Publication No. 2016/0109219;
U.S. Patent Application Publication No. 2016/0109220;
U.S. Patent Application Publication No. 2016/0109224;
U.S. Patent Application Publication No. 2016/0112631;
U.S. Patent Application Publication No. 2016/0112643;
U.S. Patent Application Publication No. 2016/0117627;
U.S. Patent Application Publication No. 2016/0124516;
U.S. Patent Application Publication No. 2016/0125217;
U.S. Patent Application Publication No. 2016/0125342;
U.S. Patent Application Publication No. 2016/0125873;
U.S. Patent Application Publication No. 2016/0133253;
U.S. Patent Application Publication No. 2016/0171597;
U.S. Patent Application Publication No. 2016/0171666;
U.S. Patent Application Publication No. 2016/0171720;
U.S. Patent Application Publication No. 2016/0171775;
U.S. Patent Application Publication No. 2016/0171777;
U.S. Patent Application Publication No. 2016/0174674;
U.S. Patent Application Publication No. 2016/0178479;
U.S. Patent Application Publication No. 2016/0178685;
U.S. Patent Application Publication No. 2016/0178707;
U.S. Patent Application Publication No. 2016/0179132;
U.S. Patent Application Publication No. 2016/0179143;
U.S. Patent Application Publication No. 2016/0179368;
U.S. Patent Application Publication No. 2016/0179378;
U.S. Patent Application Publication No. 2016/0180130;
U.S. Patent Application Publication No. 2016/0180133;
U.S. Patent Application Publication No. 2016/0180136;
U.S. Patent Application Publication No. 2016/0180594;
U.S. Patent Application Publication No. 2016/0180663;
U.S. Patent Application Publication No. 2016/0180678;
U.S. Patent Application Publication No. 2016/0180713;
U.S. Patent Application Publication No. 2016/0185136;
U.S. Patent Application Publication No. 2016/0185291;
U.S. Patent Application Publication No. 2016/0186926;
U.S. Patent Application Publication No. 2016/0188861;
U.S. Patent Application Publication No. 2016/0188939;
U.S. Patent Application Publication No. 2016/0188940;
U.S. Patent Application Publication No. 2016/0188941;
U.S. Patent Application Publication No. 2016/0188942;
U.S. Patent Application Publication No. 2016/0188943;
U.S. Patent Application Publication No. 2016/0188944;
U.S. Patent Application Publication No. 2016/0189076;
U.S. Patent Application Publication No. 2016/0189087;
U.S. Patent Application Publication No. 2016/0189088;
U.S. Patent Application Publication No. 2016/0189092;
U.S. Patent Application Publication No. 2016/0189284;
U.S. Patent Application Publication No. 2016/0189288;
U.S. Patent Application Publication No. 2016/0189366;
U.S. Patent Application Publication No. 2016/0189443;
U.S. Patent Application Publication No. 2016/0189447;
U.S. Patent Application Publication No. 2016/0189489;
U.S. Patent Application Publication No. 2016/0192051;
U.S. Patent Application Publication No. 2016/0202951;
U.S. Patent Application Publication No. 2016/0202958;
U.S. Patent Application Publication No. 2016/0202959;
U.S. Patent Application Publication No. 2016/0203021;
U.S. Patent Application Publication No. 2016/0203429;
U.S. Patent Application Publication No. 2016/0203797;
U.S. Patent Application Publication No. 2016/0203820;
U.S. Patent Application Publication No. 2016/0204623;
U.S. Patent Application Publication No. 2016/0204636;
U.S. Patent Application Publication No. 2016/0204638;
U.S. Patent Application Publication No. 2016/0227912;
U.S. Patent Application Publication No. 2016/0232891;
U.S. Patent Application Publication No. 2016/0292477;
U.S. Patent Application Publication No. 2016/0294779;
U.S. Patent Application Publication No. 2016/0306769;
U.S. Patent Application Publication No. 2016/0314276;
U.S. Patent Application Publication No. 2016/0314294;
U.S. Patent Application Publication No. 2016/0316190;
U.S. Patent Application Publication No. 2016/0323310;
U.S. Patent Application Publication No. 2016/0325677;
U.S. Patent Application Publication No. 2016/0327614;
U.S. Patent Application Publication No. 2016/0327930;
U.S. Patent Application Publication No. 2016/0328762;
U.S. Patent Application Publication No. 2016/0330218;
U.S. Patent Application Publication No. 2016/0343163;
U.S. Patent Application Publication No. 2016/0343176;
U.S. Patent Application Publication No. 2016/0364914;
U.S. Patent Application Publication No. 2016/0370220;
U.S. Patent Application Publication No. 2016/0372282;
U.S. Patent Application Publication No. 2016/0373847;
U.S. Patent Application Publication No. 2016/0377414;
U.S. Patent Application Publication No. 2016/0377417;
U.S. Patent Application Publication No. 2017/0010141;
U.S. Patent Application Publication No. 2017/0010328;
U.S. Patent Application Publication No. 2017/0010780;
U.S. Patent Application Publication No. 2017/0016714;
U.S. Patent Application Publication No. 2017/0018094;
U.S. Patent Application Publication No. 2017/0046603;
U.S. Patent Application Publication No. 2017/0047864;
U.S. Patent Application Publication No. 2017/0053146;
U.S. Patent Application Publication No. 2017/0053147;
U.S. Patent Application Publication No. 2017/0053647;
U.S. Patent Application Publication No. 2017/0055606;
U.S. Patent Application Publication No. 2017/0060316;
U.S. Patent Application Publication No. 2017/0061961;
U.S. Patent Application Publication No. 2017/0064634;
U.S. Patent Application Publication No. 2017/0083730;
U.S. Patent Application Publication No. 2017/0091502;
U.S. Patent Application Publication No. 2017/0091706;
U.S. Patent Application Publication No. 2017/0091741;
U.S. Patent Application Publication No. 2017/0091904;
U.S. Patent Application Publication No. 2017/0092908;
U.S. Patent Application Publication No. 2017/0094238;
U.S. Patent Application Publication No. 2017/0098947;
U.S. Patent Application Publication No. 2017/0100949;
U.S. Patent Application Publication No. 2017/0108838;
U.S. Patent Application Publication No. 2017/0108895;
U.S. Patent Application Publication No. 2017/0118355;
U.S. Patent Application Publication No. 2017/0123598;
U.S. Patent Application Publication No. 2017/0124369;
U.S. Patent Application Publication No. 2017/0124396;
U.S. Patent Application Publication No. 2017/0124687;
U.S. Patent Application Publication No. 2017/0126873;
U.S. Patent Application Publication No. 2017/0126904;
U.S. Patent Application Publication No. 2017/0139012;
U.S. Patent Application Publication No. 2017/0140329;
U.S. Patent Application Publication No. 2017/0140731;
U.S. Patent Application Publication No. 2017/0147847;
U.S. Patent Application Publication No. 2017/0150124;
U.S. Patent Application Publication No. 2017/0169198;
U.S. Patent Application Publication No. 2017/0171035;
U.S. Patent Application Publication No. 2017/0171703;
U.S. Patent Application Publication No. 2017/0171803;
U.S. Patent Application Publication No. 2017/0180359;
U.S. Patent Application Publication No. 2017/0180577;
U.S. Patent Application Publication No. 2017/0181299;
U.S. Patent Application Publication No. 2017/0190192;
U.S. Patent Application Publication No. 2017/0193432;
U.S. Patent Application Publication No. 2017/0193461;
U.S. Patent Application Publication No. 2017/0193727;
U.S. Patent Application Publication No. 2017/0199266;
U.S. Patent Application Publication No. 2017/0200108; and
U.S. Patent Application Publication No. 2017/0200275.
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
5940106 | Walker | Aug 1999 | A |
6070048 | Nonaka et al. | May 2000 | A |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz m | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Pluck | Oct 2015 | B2 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Wangu | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9443123 | Hejl | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey | May 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9360304 | Chang et al. | Jul 2016 | B2 |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein | Aug 2016 | B2 |
9412242 | Van Horn et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van Volkinburg et al. | Aug 2016 | B2 |
9423318 | Lui et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9931867 | Yap | Apr 2018 | B1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130170848 | Hirota | Jul 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140100813 | Showering | Jan 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150310243 | Ackley | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160179132 | Harr et al. | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Linwood | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | DiPiazza et al. | Jun 2016 | A1 |
20160192051 | DiPiazza et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggert et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160316190 | McCloskey et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Geramine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van Horn et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170108838 | Todeschini et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | d'Armancourt et al. | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delano et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Jonas et al. | Jul 2017 | A1 |
20170193727 | Van Horn et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |