This disclosure relates generally to devices that produce ink images on media, and more particularly, to devices that eject fast-drying ink from inkjets to form ink images.
Inkjet imaging devices eject liquid ink from printheads to form images on an image receiving surface. The printheads include a plurality of inkjets that are arranged in some type of array. Each inkjet has a thermal or piezoelectric actuator that is coupled to a printhead controller. The printhead controller generates firing signals that correspond to digital data for images. Actuators in the printheads respond to the firing signals by expanding into an ink chamber to eject ink drops onto an image receiving member and form an ink image that corresponds to the digital image used to generate the firing signals.
A prior art ink delivery system 20 used in inkjet imaging devices is shown in
When a new printhead is installed or its manifold needs to be flushed to remove air in the conduit 618, a manifold purge is performed. In a manifold purge, the controller 80 operates the valve 642 to enable fluid to flow from the manifold outlet to the waste ink tank 638, activates the air pressure pump 616, and operates the valve 612 to close the ink reservoir to atmospheric pressure so pump 616 can pressurize the ink in the ink reservoir 604. The pressurized ink flows through conduit 618 to the manifold inlet of printhead 608. Because valve 642 is also opened, the pneumatic impedance to fluid flow from the manifold to the inkjets is greater than the pneumatic impedance through the manifold. Thus, ink flows from the manifold outlet to the waste tank. The pressure pump 616 is operated at a predetermined pressure for a predetermined period of time to push a volume of ink through the conduit 618 and the manifold of the printhead 608 that is sufficient to fill the conduit 618, the manifold in the printhead 608, and the conduit 634 without completely exhausting the supply of ink in the reservoir. The controller then operates the valve 642 to close the conduit 634 and operates the valve 612 to vent the ink reservoir to atmospheric pressure. Thus, a manifold purge fills the conduit 618 from the ink reservoir to the printhead, the manifold, and the conduit 634 so the manifold and the ink delivery system are primed since no air is present in the conduits or the printhead. The ink reservoir is then resupplied to bring the height of the ink to a level where the distance between the level in the reservoir and the printhead inkjets is D as previously noted.
To prime the inkjets in the printhead 608 following a manifold prime, the controller 80 closes the valve 612 and activates the air pressure pump 616 to pressurize the head space of the reservoir 604 to send ink to the printhead. Because the valve 642 is closed, the pneumatic impedance of the primed system through the manifold is greater than the pneumatic impedance through the inkjets so ink is urged into the inkjets. Again, the purge pressure is exerted at a predetermined pressure for a predetermined period of time to urge a volume of ink into the printhead that is adequate to fill the inkjets. Any ink previously in the inkjets is emitted from the nozzles in the faceplate 624 of the printhead 608. This ink purging primes the inkjets and can also help restore clogged and inoperative inkjets to their operational status. After the exertion of the pressure, the controller 80 operates the valve 612 to open and release pressure from the ink reservoir. A pressure sensor 620 is also operatively connected to the pressure supply conduit 622 and this sensor generates a signal indicative of the pressure in the reservoir. This signal is provided to the controller 80 for regulating the operation of the air pressure pump. If the pressure in the reservoir during purging exceeds a predetermined threshold, then the controller 80 operates the valve 612 to release pressure. If the pressure in the reservoir drops below a predetermined threshold during purging, then the controller 80 operates the pressure source 616 to raise the pressure. The two predetermined thresholds are different so the controller can keep the pressure in the reservoir in a predetermined range during purging rather than at one particular pressure.
Some inkjet imaging devices use inks that change from a low viscosity state to a high viscosity state relatively quickly. In a prior art printer, a capping station, such as the station 60 shown in
A capping station is configured to reduce the drying of ink on the seals of the capping station and includes structure to preserve the operational status of the inkjets more effectively. The capping station includes a receptacle having at least one wall and a floor configured to enclose a volume partially and a sealing member mounted to an upper surface of the at least one wall of the receptacle so the sealing member extends away from the upper surface of the at least one wall, the sealing member having a surface that slopes at an angle from a vertical line extending from the upper surface of the wall forming the receptacle in a direction away from the volume partially enclosed by the receptacle to direct fluid on the sloping surface of the sealing member into the volume within the receptacle.
An inkjet printer includes the capping station configured to reduce the drying of ink on the seals of the capping station and includes structure to preserve the operational status of the inkjets more effectively. The inkjet printer includes a plurality of printheads; and a capping station for each printhead in the plurality of printheads. Each capping station includes a receptacle having at least one wall and a floor configured to enclose a volume partially and a sealing member mounted to an upper surface of the at least one wall of the receptacle so the sealing member extends away from the upper surface of the at least one wall, the sealing member having a surface that slopes at an angle from a vertical line extending from the upper surface of the wall forming the receptacle in a direction away from the volume partially enclosed by the receptacle to direct fluid on the sloping surface of the sealing member into the volume within the receptacle.
The foregoing aspects and other features of a capping station and printer having a capping station that reduces the drying of ink on the seals of the capping station and includes structure to preserve the operational status of the inkjets more effectively are explained in the following description, taken in connection with the accompanying drawings.
For a general understanding of the environment for the printer and capping station disclosed herein as well as the details for the printer and capping station, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements. As used herein, the word “printer” encompasses any apparatus that produces ink images on media, such as a digital copier, bookmaking machine, facsimile machine, a multi-function machine, or the like. As used herein, the term “process direction” refers to a direction of travel of an image receiving surface, such as an imaging drum or print media, and the term “cross-process direction” is a direction that is substantially perpendicular to the process direction along the surface of the image receiving surface. Also, the description presented below is directed to a system for preserving the operational status of inkjets in an inkjet printer during periods of printer inactivity. The reader should also appreciate that the principles set forth in this description are applicable to similar imaging devices that generate images with pixels of marking material.
The aqueous ink delivery subsystem 20, such as the one shown in
After an ink image is printed on the web W, the image passes under an image dryer 30. The image dryer 30 can include an infrared heater, a heated air blower, air returns, or combinations of these components to heat the ink image and at least partially fix an image to the web. An infrared heater applies infrared heat to the printed image on the surface of the web to evaporate water or solvent in the ink. The heated air blower directs heated air over the ink to supplement the evaporation of the water or solvent from the ink. The air is then collected and evacuated by air returns to reduce the interference of the air flow with other components in the printer.
As further shown, the media web W is unwound from a roll of media 38 as needed by the controller 80′ operating one or more actuators 40 to rotate the shaft 42 on which the take up roll 46 is placed to pull the web from the media roll 38 as it rotates with the shaft 36. When the web is completely printed, the take-up roll can be removed from the shaft 42. Alternatively, the printed web can be directed to other processing stations (not shown) that perform tasks such as cutting, collating, binding, and stapling the media.
Operation and control of the various subsystems, components and functions of the machine or printer 10 are performed with the aid of a controller or electronic subsystem (ESS) 80′. The ESS or controller 80′ is operably connected to the components of the ink delivery system 20, the purge system 24, the printhead modules 34A-34D (and thus the printheads), the actuators 40, the heater 30, and the capping station 60′. The ESS or controller 80′, for example, is a self-contained, dedicated mini-computer having a central processor unit (CPU) with electronic data storage, and a display or user interface (UI) 50. The ESS or controller 80′, for example, includes a sensor input and control circuit as well as a pixel placement and control circuit. In addition, the CPU reads, captures, prepares and manages the image data flow between image input sources, such as a scanning system or an online or a work station connection, and the printhead modules 34A-34D. As such, the ESS or controller 80′ is the main multi-tasking processor for operating and controlling all of the other machine subsystems and functions, including the printing process.
The controller 80′ can be implemented with general or specialized programmable processors that execute programmed instructions. The instructions and data required to perform the programmed functions can be stored in memory associated with the processors or controllers. The processors, their memories, and interface circuitry configure the controllers to perform the operations described below. These components can be provided on a printed circuit card or provided as a circuit in an application specific integrated circuit (ASIC). Each of the circuits can be implemented with a separate processor or multiple circuits can be implemented on the same processor. Alternatively, the circuits can be implemented with discrete components or circuits provided in very large scale integrated (VLSI) circuits. Also, the circuits described herein can be implemented with a combination of processors, ASICs, discrete components, or VLSI circuits.
In operation, image data for an image to be produced are sent to the controller 80′ from either a scanning system or an online or work station connection for processing and generation of the printhead control signals output to the printhead modules 34A-34D. Additionally, the controller 80′ determines and accepts related subsystem and component controls, for example, from operator inputs via the user interface 50 and executes such controls accordingly. As a result, aqueous ink for appropriate colors are delivered to the printhead modules 34A-34D. Additionally, pixel placement control is exercised relative to the surface of the web to form ink images corresponding to the image data, and the media can be wound on the take-up roll or otherwise processed.
As shown in
Using like numbers for like components, a capping station that can attenuate the evaporation of quickly drying inks from printheads is shown in
In more detail, the sealing member 208 has mounting tabs 240 that are inserted into mounting openings 244 of the receptacle 204 to secure the sealing member 208 to the receptacle 204. The lip of the sealing member 208 has a sloping flange 248 around its perimeter. The upper surface of flange 248 is oriented at an angle that directs ink that lands on that surface of the sealing member 208 toward the volume within the receptacle 204 so the ink can be collected. The flange 248 slopes at an angle from a vertical line extending from the upper surface of the wall forming the receptacle 204 in a direction away from the volume partially enclosed by the receptacle. This angle is within a range of about 10 degrees from the line in the direction away from the volume within the receptacle to about 40 degrees from that line in the same direction. Floor 228 also slopes toward an opening 256 in the floor and the opening extends through an outlet 260. A collection vessel can be connected to the outlet 256 to receive ink directed by the sloping floor 228 toward the opening 256. These sloping structures provide paths for ink on the faceplate of the printhead 268 that contact the sealing member 208 so the ink does not remain on the sealing member and dry. As noted previously, dried ink can interfere with the integrity of the seal between sealing member 208 and the faceplate of the printhead 268. Locating tabs 224 extend from the wall of the receptacle 204 past the upper surface of the sealing member 208 so the tabs contact the printhead before the sealing member does during the movement of the capping station 60′ toward the printhead. This engagement helps center the printhead faceplate within the capping station so the sealing member 208 contacts the portion of the faceplate perimeter that is outside the nozzle array area of the faceplate. When the printhead is capped by the station 60′, the faceplate is not visible (
Using similar reference numbers for similar elements, an alternative embodiment 60″ of the capping station is shown in
With continued reference to
The process 400 of operating the capping station 60″ is now discussed with reference to
It will be appreciated that variants of the above-disclosed and other features, and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
7275802 | Berardelli | Oct 2007 | B2 |
20030025755 | Baxter et al. | Feb 2003 | A1 |
20040075702 | Waller | Apr 2004 | A1 |
20040104961 | Hashi et al. | Jun 2004 | A1 |
20040160472 | Khalid et al. | Aug 2004 | A1 |
20040189739 | Okamoto | Sep 2004 | A1 |
20080088666 | Shindo et al. | Apr 2008 | A1 |
20080218554 | Inoue | Sep 2008 | A1 |
20090141073 | Umeda | Jun 2009 | A1 |
20110090280 | Hibbard et al. | Apr 2011 | A1 |
20110279535 | Love et al. | Nov 2011 | A1 |
20120320126 | Martin et al. | Dec 2012 | A1 |
20130038662 | Karppinen et al. | Feb 2013 | A1 |
20170297339 | Midorikawa | Oct 2017 | A1 |