An inkjet printhead is a microfluidic device that includes an electronic circuit on a silicon substrate and an ink firing chamber defined by an ink barrier and an orifice, or nozzle. Various microfabrication techniques used for fabricating semiconductors are also used in the fabrication of printheads. For example, many functional printhead chips, or dies, are fabricated together on a single silicon wafer. The functional printhead dies are then separated from the wafer, or singulated, using a saw blade to cut the wafer along the thin, non-functional spacing between each die (i.e., the saw street). As the saw blade moves along the saw street, it makes a kerf, or slit in the wafer at the edges of individual dies. The saw blade often causes chipping to occur along the kerf that can result in damaged and defective printhead dies. Die handling equipment, such as a die bonder tool used during singulation and subsequent manufacturing processes can also cause damage along the kerf or die edges. Normal use of the printhead die can cause or increase such damage as well. Damage to printhead die edges reduces the percentage yields in printhead fabrication and increases replacement costs when defects are discovered during printing. Accordingly, efforts to improve detection of this damage and mitigate its impact are ongoing.
The present embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
a illustrates a fluid ejection system implemented as an inkjet printing system, according to an example implementation;
b shows an example inkjet printhead assembly implemented as an inkjet printbar, according to an example implementation;
Overview
As noted above, kerf chipping from saw blades, bonding equipment, and normal use, can lead to defective and/or damaged printhead dies and reduced fabrication yields for printheads. Accordingly, efforts to provide cost-effective detection and mitigation of kerf chip damage are ongoing. Kerf chips can occur in both the silicon substrate and the thin-film layer formed on the substrate of a die. The extent to which a printhead die may be at risk of failure can depend on how far a kerf chip propagates toward and/or into the functional area of the die, which can typically be determined upon visual inspection. Kerf chipping can also lead to cracks that extend into the silicon substrate and the thin-film and fluidic layers fabricated on the substrate of a printhead die. In some cases, such cracks can propagate into the functional area of a printhead die, causing electrical and other failures in the die.
Printhead dies are generally less tolerant of damage from kerf chipping and cracking than conventional semiconductor integrated circuit dies, due to the constant exposure of printhead dies to the corrosive effects of ink. A kerf chip that exposes the thin-films near the functional edge of a conventional semiconductor die may be tolerable because the die is typically covered in epoxy and/or otherwise packaged in a manner that prevents the kerf chip from causing a failure. However, a kerf chip that causes similar exposure to the thin-films near the functional edge of a printhead die will usually render the printhead die defective, because the functioning printhead die is in direct and constant contact with ink. The ink attacks and corrodes the thin-films and can lead to electrical failure of the printhead die if the kerf chip causes exposure of the thin-films too close to the functional edge of the die.
Efforts to produce more robust and reliable printhead die-edge terminations are ongoing. Previous approaches for reducing die defects from saw kerf chipping include making the width of the saw street much greater than the width of the saw blade. This solution typically results in highly reliable printhead dies, because saw blade kerf chips do not come close enough to the functional thin-film terminations along the edges of the dies to cause defective parts. One drawback to using wide saw streets, however, is that it involves the use of additional real estate on the wafer which results in a lower separation ratio (i.e., lower die per wafer) and higher costs.
Some conventional semiconductor dies include a protection ring formed around the die to help prevent the propagation of cracks into the inner, functional, region of the die. However, the protection ring in such semiconductor dies is formed in the layers above the die substrate and therefore provides little or no protection for the substrate itself. As a result, cracks often propagate into the functional region of the die through cracks that travel through the unprotected substrate. Furthermore, due to the corrosive ink environment in which printhead dies operate, a semiconductor die protection ring implemented in a printhead die is ineffective in preventing die failures from kerf chips. As noted above, a kerf chip that is terminated at the functional edge of a printhead die usually results in failure of the die because of the direct and continual exposure of the thin-films to ink at the functional edge of the die, which attacks and corrodes the thin-films, leading to electrical failure of a printhead die.
Damage from kerf chipping in printhead dies is generally detected using random visual inspections of die samples during or directly following die fabrication. However, visually inspecting samples of printhead dies is insufficient as it does not adequately detect damage to dies that are not part of the sampled group, and some damage such as hairline cracks may not be visible. In addition, visual inspection is time consuming and costly.
Embodiments of the present disclosure improve on prior efforts to detect and prevent defective printhead dies caused by kerf chipping, generally by providing damage detection conductors nestled between multiple damage termination rings. The termination rings comprise a field oxide (i.e., FOX) layer of silicon dioxide (SiO2) grown into the surface of a silicon substrate. Because the SiO2 layer is a grown oxide layer, as opposed to being a deposited layer (e.g., by CVD, chemical vapor deposition), it provides greater integrity and higher strength to the silicon substrate and helps prevent kerf chips and cracks from propagating through the substrate. The termination rings are concentric around the inner, functional area of the die, for example, with a first ring adjacent to the functional edge of the die and a second ring outside of the first ring. Additional termination rings can be formed concentrically around the second termination ring. Berms comprising a layer of TEOS and BPSG separate the first and second termination rings, as well as any additional termination rings outside the second ring. Together, a first ring, a berm, and a second ring provide three kerf chip break points or barriers. The kerf chip barriers help to dissipate the energy in kerf chips and prevent the kerf chips from propagating further inward toward the functional area of the printhead die. A damage detection conductor runs underneath each of the one or more berms. Multiple damage detection conductors between concentric termination rings enable a printer to gather graduated damage data that indicates different levels of damage to a printhead die, as well as whether the die is defective.
In one example, a printhead die includes a silicon dioxide (SiO2) layer grown into the surface of a silicon substrate. A dielectric layer is formed on the surface of the substrate, and covers an interior functional area of the substrate. A first termination ring surrounds the interior area and is defined by an absence of the dielectric layer. A berm surrounds the first termination ring and is defined by the presence of the dielectric layer. A damage detection conductor is formed under the berm and on top of the SiO2 layer. A second termination ring then surrounds the berm and is also defined by an absence of the dielectric layer over.
In another example, a printhead die includes a SiO2 layer grown into a surface of a silicon substrate, a dielectric layer deposited onto an interior surface area of the substrate, multiple termination rings formed concentrically around the interior surface area, each ring defined by an absence of the dielectric layer, a berm in between every set of two termination rings, each berm defined by the presence of the dielectric layer, and a damage detection conductor formed on the SiO2 layer under each berm.
In another example, a processor-readable medium stores code representing instructions that when executed by a processor cause the processor to apply a voltage to a first conductor on a printhead die to determine if there is damage to the printhead die past a first level. When there is damage past a first level, the processor applies a voltage to a second conductor on the printhead die to determine if there is damage to the printhead die past a second level. When there is damage past the first level but not the second level, the processor reports that the printhead die is damaged but is not defective, and when there is damage past the first and second levels, the processor reports that the printhead die is damaged and may be defective.
a illustrates a fluid ejection system implemented as an inkjet printing system 100, according to an example implementation. Inkjet printing system 100 generally includes an inkjet printhead assembly 102, an ink supply assembly 104, a mounting assembly 106, a media transport assembly 108, an electronic controller 110, and at least one power supply 112 that provides power to the various electrical components of inkjet printing system 100. In this embodiment, fluid ejection devices 114 are implemented as fluid drop jetting printhead dies 114 (i.e., inkjet printhead dies 114). Inkjet printhead assembly 102 includes at least one fluid drop jetting printhead die 114 that ejects drops of ink through a plurality of orifices or nozzles 116 toward print media 118 so as to print onto the print media 118. Nozzles 116 are typically arranged in one or more columns or arrays such that properly sequenced ejection of ink from nozzles 116 causes characters, symbols, and/or other graphics or images to be printed on print media 118 as inkjet printhead assembly 102 and print media 118 are moved relative to each other. Print media 118 can be any type of suitable sheet or roll material, such as paper, card stock, transparencies, Mylar, and the like. As discussed further below, each printhead die 114 comprises multiple termination rings 119 and a damage detection conductor 119 running underneath berms that separate the rings. The rings, berms, and conductors surround a functional interior area of the die to detect kerf chip damage and prevent the damage from propagating into the function interior area, thus protecting the die from attack at its edges by corrosive inks.
Ink supply assembly 104 supplies fluid ink to printhead assembly 102 and includes a reservoir 120 for storing ink. Ink flows from reservoir 120 to inkjet printhead assembly 102. Ink supply assembly 104 and inkjet printhead assembly 102 can form either a one-way ink delivery system or a macro-recirculating ink delivery system. In a one-way ink delivery system, substantially all of the ink supplied to inkjet printhead assembly 102 is consumed during printing. In a macro-recirculating ink delivery system, however, only a portion of the ink supplied to printhead assembly 102 is consumed during printing. Ink not consumed during printing is returned to ink supply assembly 104.
In some implementations, as shown in
Mounting assembly 106 positions inkjet printhead assembly 102 relative to media transport assembly 108, and media transport assembly 108 positions print media 118 relative to inkjet printhead assembly 102. Thus, print zone 122 is defined adjacent to nozzles 116 in an area between the inkjet printhead assembly 102 and print media 118. In a PWA printer where the printhead assembly 102 comprises a printbar 102, mounting assembly 106 fixes the printbar 102 at a prescribed position while media transport assembly 108 positions and moves print media 118 relative to the printbar 102. In a scanning type printer where the printhead assembly 102 comprises one or more inkjet cartridges 102, the mounting assembly 106 includes a carriage for moving the cartridges 102 relative to the media transport assembly 108 to scan print media 118.
In one implementation, inkjet printing system 100 is a drop-on-demand thermal bubble inkjet printing system comprising a thermal inkjet (TIJ) printhead die. The TIJ printhead die implements a thermal resistor ejection element in an ink chamber to vaporize ink and create bubbles that force ink or other fluid drops out of a nozzle 116. In another implementation, inkjet printing system 100 is a drop-on-demand piezoelectric inkjet printing system where a printhead die 114 is a piezoelectric inkjet (PIJ) printhead die that implements a piezoelectric material actuator as an ejection element to generate pressure pulses that force ink drops out of a nozzle.
Electronic controller 110 typically includes one or more processors 128, firmware, software, one or more computer/processor-readable memory components 130 including volatile and non-volatile memory components (i.e., non-transitory tangible media), and other printer electronics for communicating with and controlling inkjet printhead assembly 102, mounting assembly 106, and media transport assembly 108. Electronic controller 110 receives data 132 from a host system, such as a computer, and temporarily stores data 132 in memory 130. Typically, data 132 is sent to inkjet printing system 100 along an electronic, infrared, optical, or other information transfer path. Data 132 represents, for example, a document and/or file to be printed. As such, data 132 forms a print job for inkjet printing system 100 and includes one or more print job commands and/or command parameters.
In one implementation, electronic controller 110 controls inkjet printhead assembly 102 to eject ink drops from nozzles 116. Thus, electronic controller 110 defines a pattern of ejected ink drops that form characters, symbols, and/or other graphics or images on print media 118. The pattern of ejected ink drops is determined by the print job commands and/or command parameters within data 132. In another implementation, as discussed in more detail below, memory 130 includes a damage detection module 134 executable on electronic controller 110 (i.e., processor 128) to detect open circuits in one or more damage detection conductors on a printhead die 114 and determine varying levels of damage and or defectiveness within the die 114 based on the detections.
In general, the features and layers of the printhead die 114 can be formed using various precision microfabrication techniques such as thermal oxidation, electroforming, laser ablation, sputtering, spin coating, physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), etching, photolithography, casting, molding, stamping, machining, and the like. Photolithography and masks can be used to pattern layers by protecting and/or exposing the patterns to etching, which removes material from the patterned layers. Etching can be isotropic or anisotropic, and can be performed using various etching techniques such as wet etching, dry etching, chemical-mechanical planarization (CMP), reactive-ion etching (RIE), and deep reactive-ion etching (DRIE). Features of a printhead die 114 resulting from the deposition, patterning, and etching of layers can include resistors, capacitors, sensors, wires, ink chambers, fluid flow channels, contact pads, and conductor traces that can connect the resistors and other electrical components and circuitry together.
The printhead die 114 can be characterized in part as including a functional area 204 and a frame area 206. As shown in
The dielectric layer 208 is a patterned thin-film layer comprising two materials deposited on top of the substrate 200. The first material of the dielectric layer 208 deposited onto the substrate 200 is silicon oxide (SiO2) formed by chemical vapor deposition (CVD) with the precursor TEOS (tetraethyl orthosilicate). The second material in the dielectric layer 208 is SiO2 formed by CVD with the precursor BPSG (borophosphosilicate glass) which is deposited on the TEOS layer. Other materials may also be suitable for the dielectric layer 208, such as undoped silicate glass (USG), silicon carbide or silicon nitride. Together, the TEOS and BPSG form the dielectric layer 208, which provides electrical insulation to prevent electrical shorting. The thickness of the dielectric layer 208 is on the order of between 0.5 and 2.0 microns. In general, the thickness and thermal conductivity and diffusivity properties of dielectric layer 208 provide electrical isolation of circuits relative to the substrate.
The functional area 204 of the printhead die 114 includes a resistive layer 216 deposited on top of dielectric layer 208. Thermal resistors 214 are formed in the resistive layer 216. The resistive layer can be formed of different materials including tungsten silicide nitride (WSiN), tantalum silicide nitride (TaSiN), tantalum aluminum (TaAl), tantalum nitride (Ta2N), or combinations thereof. The resistive layer is typically on the order of between 0.025 and 0.2 microns thick.
A conductive metal layer 218 is deposited on top of the resistive layer 216 and can be used to provide current to the thermal resistor 214, and/or to couple the thermal resistor 214 to a control circuit or other electronic circuits on the printhead die 114. In other implementations the conductive layer 218 can be located underneath the resistive layer 216 to provide current to the thermal resistor 214. The conductive metal layer 218 can include materials such as platinum (Pt), aluminum (Al), tungsten (W), titanium (Ti), molybdenum (Mo), palladium (Pd), tantalum (Ta), nickel (Ni), copper (Cu) with an inserted diffusion barrier, and combinations thereof.
Another dielectric and/or passivation layer 220 can be deposited on the conductive metal layer 218 and can extend down through a via in the conductive metal layer 218 to the resistive layer 216, as shown in
The functional area 204 of the printhead die 114 includes a metal layer ground line 221 deposited on top of dielectric layer 208 around the perimeter of the functional area 204. The ground line 221 is used to couple various electronic components and conductors to ground through vias or contacts 222, such as a damage detection conductor 223 (i.e., 223a in
Also within the functional area of printhead die 114, chambers 212 are defined by a chamber layer 224 formed over the various underlying layers (e.g., passivation layer 220, conductive metal layer 218, resistive layer 216, dielectric layer 208) and the substrate 200. As shown in
A tophat layer or nozzle layer 226, is formed over the chamber layer 224 and includes nozzles 116 that each correspond with a respective chamber 212 and thermal resistor 214. The nozzle layer 226 forms a top over the slot 202 and other fluidic features of the chamber layer 224 (e.g., fluidic channels 225, and chambers 212). The nozzle layer 226 is typically formed of SU8 epoxy, but it can also be made of other materials such as a polyimide.
As shown in
The frame area 206 is generally defined by a layer of silicon dioxide (SiO2) that is grown into the surface of the silicon substrate 200. The grown SiO2 layer 228 can be referred to as a field oxide layer, or FOX layer. A grown SiO2 layer is a relatively thick oxide (e.g., 100-500 nm) formed to passivate and protect the substrate 200. The grown SiO2 layer 228 covers the whole substrate surface within the frame area 206, which is outside of the active or functional area 204 device area. The SiO2 layer 228 therefore does not typically participate in the normal operation of the printhead die (i.e., fluid ejection, etc.). Because the SiO2 layer 228 is a grown oxide layer, rather than a deposited layer (e.g., by CVD, chemical vapor deposition), it provides greater integrity and higher strength to the substrate 200 which helps prevent kerf chips from propagating through the substrate 200 as deeper cracks.
Referring again generally to
A berm 230 located within the frame area 206 of printhead die 114 is adjacent to and surrounds the first termination ring 119a. The berm is concentric around the first termination ring 119a, and is defined by the presence of the dielectric layer 208 over an area of the grown SiO2 layer 228 within the berm area. That is, a portion of the dielectric layer 208 (including a layer of TEOS and BPSG), remains deposited over the grown SiO2 layer 228 within the area of the berm 230.
Located within the frame area 206 between the berm 230 and the grown SiO2 layer 228, is a damage detection conductor 223 (i.e., 223a in
A second termination ring 119b is located within the frame area 206 of printhead die 114, adjacent to and surrounding the berm 230 and underlying damage detection conductor 223. The second termination ring 119b is concentric around the functional interior area 204, and is defined by an area of the grown SiO2 layer 228 and an absence of the dielectric layer 208 over a portion of the SiO2 layer. That is, the dielectric layer 208 has been removed from over the grown SiO2 layer 228 in the area of the second termination ring 119b. Covering the grown SiO2 layer 228 in the area of the second termination ring 119b is the passivation layer 220, or second dielectric layer.
Break lines 232 are defined within the frame area 206 at the intersections or borders in areas of the grown SiO2 layer 228 that are with, and without, coverage by the BPSG and TEOS of the dielectric layer 208. The break lines 232 act as barriers to kerf chip propagation. In general, there are kerf chip barriers 232 present wherever there are transitions between areas that have the BPSG and TEOS dielectric layer 208 and areas that do not have the BPSG and TEOS of the dielectric layer 208. Thus, there are kerf chip barriers 232 present on either side of the berm 230 where the berm 230 borders the two termination rings 119. In addition, because the saw street 207 has a portion of the dielectric layer 208 remaining, there is also a kerf chip barrier 232 at the edge of the substrate die where the frame area 206 and second termination ring 119b border the saw street 207.
As shown in
As noted above, additional termination rings can be formed concentrically around the second termination ring 119b, with berms 230 and underlying damage detection conductors 223 between each set of two rings. Thus, as shown in
For example, referring to
However, crack 502 has propagated past both the outermost, third termination ring 119c, the damage detect conductor 223b, and the second termination ring 119b. Therefore, a test of the resistance 402b in conductor 223b will reveal an open circuit, and result in data indicating that kerf chip damage has progressed through the conductor 223b. Therefore, the processor 128 will gather and report on data indicating that there is damage to the die 114 past a first level. The continued execution of damage detect module 134 on processor 128 will operate switch 402a to apply a voltage to damage detection conductor 223a and determine if the resistance 402a in the conductor 223a indicates a break (i.e., and open circuit) in conductor 223a. Because crack 502 has not propagated past conductor 223a, the processor 128 will gather and report on data indicating that damage to the die 114 does not exceed a second level. An example report on the data gathered from both conductors 223b and 223a might indicate that some damage is detected on the printhead die 114, but that the die 114 is not defective.
As shown in
In addition to including alternate implementations in which multiple termination rings 119, berms 230, and damage detection conductors 223 are present within the frame area 206 of a printhead die 114, this disclosure also contemplates and includes additional configurations of a layered architecture. For example,
As noted above, the layered architecture of the printhead die 114 shown in
Referring to
Number | Name | Date | Kind |
---|---|---|---|
5363134 | Barbehenn et al. | Nov 1994 | A |
5504507 | Watrobski et al. | Apr 1996 | A |
5736997 | Bolash et al. | Apr 1998 | A |
5942900 | DeMeerleer et al. | Aug 1999 | A |
20120286269 | Hemon et al. | Nov 2012 | A1 |
20120318925 | Gibson et al. | Dec 2012 | A1 |
20130009663 | Gauch et al. | Jan 2013 | A1 |
20130043888 | Soar | Feb 2013 | A1 |
Entry |
---|
Stanely E. Woodard et al.; A Method to Have Multi-Layer Thermal Instulation Provide Damage Detection; American Insitute of Aeronautics and Astronautics; Apr. 23-26, 2007; pp. 1-23. |