Reference is made to commonly-assigned, U.S. patent application Ser. No. 12/871,999, entitled “LIQUID CHAMBER REINFORCEMENT IN CONTACT WITH FILTER filed concurrently herewith.
This invention relates generally to the field of digitally controlled printing systems and, in particular, to the filtering of liquids that are subsequently emitted by a printhead of the printing system.
The use of inkjet printers for printing information on recording media is well established. Printers employed for this purpose can include continuous printing systems which emit a continuous stream of drops from which specific drops are selected for printing in accordance with print data. Other printers can include drop-on-demand printing systems that selectively form and emit printing drops only when specifically required by print data information.
Continuous printer systems typically include a printhead that incorporates a liquid supply system and a nozzle plate having a plurality of nozzles fed by the liquid supply system. The liquid supply system provides the liquid to the nozzles with a pressure sufficient to jet an individual stream of the liquid from each of the nozzles. The fluid pressures required to form the liquid jets are typically much greater than the fluid pressures employed in drop-on-demand printer systems.
Particulate contamination in a printing system can adversely affect quality and performance, especially in printing systems that include printheads with small diameter nozzles. Particulates present in the liquid can either cause a complete blockage or partial blockage in one or more nozzles. Some blockages reduce or even prevent liquid from being emitted from printhead nozzles while other blockages can cause a stream of liquid jetted from printhead nozzles to be randomly directed away from its desired trajectory. Regardless of the type of blockage, nozzle blockage is deleterious to high quality printing and can adversely affect printhead reliability. This becomes even more important when using a page wide printing system that accomplishes printing in a single pass. During a single pass printing operation, usually all of the printing nozzles of a printhead are operational in order to achieve a desired image quality. As the printing system has only one opportunity to print a given section of media, image artifacts can result when one or more nozzles are blocked or otherwise not working properly.
As such, there is an ongoing need for better filtration of the liquid supplied to the nozzles of a printhead.
According to one aspect of the present invention, a printhead includes a liquid manifold. A filter is in fluid communication with the liquid manifold. A nozzle plate includes a length and an array of nozzles extending along the length of the nozzle plate. A liquid chamber is positioned between the nozzle plate and the filter. The liquid chamber is in fluid communication with the array of nozzles and the filter and includes a width that is substantially perpendicular to the length of the nozzle plate. The liquid chamber includes a structure that is spaced apart from the nozzle plate and spaced apart from the filter. The structure spans the width of the liquid chamber. A liquid source provides a liquid through the manifold, the filter, the liquid chamber under pressure sufficient to jet individual streams of the liquid from the array of nozzles.
The structure that is included in the liquid chamber can be solid such that liquid flowing through the liquid chamber flows around the structure. Alternatively, the structure that is included in the liquid chamber can include a liquid flow channel.
The liquid chamber can include a port positioned substantially downstream relative to the structure included in the liquid chamber. That port can be a first port with the liquid manifold including a second port. In this aspect of the present invention, the first port is positioned at a first end of the array of nozzles and the second port is positioned at a second end of the array of nozzles. When the structure that is included in the liquid chamber is solid, portions of the structure define a first liquid flow channel and a second liquid flow channel with the first liquid flow channel having a first cross sectional area and being located adjacent to the first port and the second liquid flow channel including a second cross sectional area and being located adjacent to the second port. The first cross sectional area is less than the second cross sectional area. Alternatively, the structure that is included in the liquid chamber can include a plurality of liquid flow channels.
The filter can include a rib structure. The nozzles of the nozzle array can include a nozzle orifice in fluid communication with a flow channel.
A gap can be present between the structure of the liquid chamber and the nozzle plate that is less than a gap that is present between the structure and the filter. The gap between the structure of the liquid chamber and the nozzle plate can be less or equal to 2 mm. Alternatively, the gap between the structure of the liquid chamber and the nozzle plate can be less than or equal to 1.5 mm. The width of the liquid chamber in the gap between the structure and the filter can be larger than the width of the liquid chamber in the gap between the structure and the filter. The structure can span the width of the liquid chamber and span the length of the nozzle array.
In the detailed description of the preferred embodiments of the invention presented below, reference is made to the accompanying drawings, in which:
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art. In the following description and drawings, identical reference numerals have been used, where possible, to designate identical elements.
The example embodiments of the present invention are illustrated schematically and not to scale for the sake of clarity. One of the ordinary skills in the art will be able to readily determine the specific size and interconnections of the elements of the example embodiments of the present invention.
As described herein, the example embodiments of the present invention provide a printhead or printhead components typically used in inkjet printing systems. However, many other applications are emerging which use inkjet printheads to emit liquids (other than inks) that need to be finely metered and deposited with high spatial precision. As such, as described herein, the terms “liquid” and “ink” refer to any material that can be ejected by the printhead or printhead components described below.
For clarity of description, spatial orientation terms such as above or below, upper or lower, and left or right have been used herein. These terms relate to the spatial orientation illustrated in the figure being described, and are not intended to limit the operation of the printhead and jetting module, for example, to one in which the nozzle plate is facing downwards.
Referring to
Referring to
Recording medium 32 is moved relative to printhead 30 by a recording medium transfer system 34, which is electronically controlled by a recording medium transfer control system 36, and which in turn is controlled by a micro-controller 38. The recording medium transfer system shown in
Ink is contained in an ink reservoir 40 under pressure. In the non-printing state, continuous inkjet drop streams are unable to reach recording medium 32 due to an ink catcher 42 that blocks the stream and which may allow a portion of the ink to be recycled by an ink recycling unit 44. The ink recycling unit reconditions the ink and feeds it back to reservoir 40. Such ink recycling units are well known in the art. The ink pressure suitable for optimal operation will depend on a number of factors, including geometry and thermal properties of the nozzles and thermal properties of the ink. A constant ink pressure can be achieved by applying pressure to ink reservoir 40 under the control of ink pressure regulator 46. Alternatively, the ink reservoir can be left unpressurized, or even under a reduced pressure (vacuum), and a pump is employed to deliver ink from the ink reservoir under pressure to the printhead 30. In such an embodiment, the ink pressure regulator 46 can include an ink pump control system. As shown in
The ink is distributed to printhead 30 through an ink manifold 47 which is sometimes referred to as a channel. The ink preferably flows through slots or holes etched through a silicon substrate of printhead 30 to its front surface, where a plurality of nozzles and drop forming mechanisms, for example, heaters, are situated. When printhead 30 is fabricated from silicon, drop forming mechanism control circuits 26 can be integrated with the printhead. Printhead 30 also includes a deflection mechanism which is described in more detail below with reference to
Referring to
Liquid, for example, ink, is emitted under pressure through each nozzle 50 of the array to form streams, commonly referred to as jets or filaments, of liquid 52. In
Jetting module 48 is operable to form liquid drops having a first size or volume and liquid drops having a second size or volume through each nozzle. To accomplish this, jetting module 48 includes a drop stimulation or drop forming device 28, for example, a heater, a piezoelectric actuator, or an electrohydrodynamic stimulator that, when selectively activated, perturbs each jet of liquid 52, for example, ink, to induce portions of each jet to break-off from the jet and coalesce to form drops 54, 56.
In
Typically, one drop forming device 28 is associated with each nozzle 50 of the nozzle array. However, a drop forming device 28 can be associated with groups of nozzles 50 or all of nozzles 50 of the nozzle array.
When printhead 30 is in operation, drops 54, 56 are typically created in a plurality of sizes or volumes, for example, in the form of large drops 56 having a first size or volume, and small drops 54 having a second size or volume. The ratio of the mass of the large drops 56 to the mass of the small drops 54 is typically approximately an integer between 2 and 10. A drop stream 58 including drops 54, 56 follows a drop path or trajectory 57. Typically, drop sizes are from about 1 pL to about 20 pL.
Printhead 30 also includes a gas flow deflection mechanism 60 that directs a flow of gas 62, for example, air, past a portion of the drop trajectory 57. This portion of the drop trajectory is called the deflection zone 64. As the flow of gas 62 interacts with drops 54, 56 in deflection zone 64 it alters the drop trajectories. As the drop trajectories pass out of the deflection zone 64 they are traveling at an angle, called a deflection angle, relative to the un-deflected drop trajectory 57.
Small drops 54 are more affected by the flow of gas than are large drops 56 so that the small drop trajectory 66 diverges from the large drop trajectory 68. That is, the deflection angle for small drops 54 is larger than for large drops 56. The flow of gas 62 provides sufficient drop deflection and therefore sufficient divergence of the small and large drop trajectories so that catcher 42 (shown in
When catcher 42 is positioned to intercept large drop trajectory 68, small drops 54 are deflected sufficiently to avoid contact with catcher 42 and strike recording medium 32. As the small drops are printed, this is called small drop print mode. When catcher 42 is positioned to intercept small drop trajectory 66, large drops 56 are the drops that print. This is referred to as large drop print mode.
Referring to
Drop stimulation or drop forming device 28 (shown in
Positive pressure gas flow structure 61 of gas flow deflection mechanism 60 is located on a first side of drop trajectory 57. Positive pressure gas flow structure 61 includes first gas flow duct 72 that includes a lower wall 74 and an upper wall 76. Gas flow duct 72 directs gas flow 62 supplied from a positive pressure source 92 at downward angle θ of approximately 45° relative to the stream of liquid 52 toward drop deflection zone 64 (also shown in
Upper wall 76 of gas flow duct 72 does not need to extend to drop deflection zone 64 (as shown in
Negative pressure gas flow structure 63 of gas flow deflection mechanism 60 is located on a second side of drop trajectory 57. Negative pressure gas flow structure includes a second gas flow duct 78 located between catcher 42 and an upper wall 82 that exhausts gas flow from deflection zone 64. Second duct 78 is connected to a negative pressure source 94 that is used to help remove gas flowing through second duct 78. Optional seal(s) 84 provides an air seal between jetting module 48 and upper wall 82.
As shown in
Gas supplied by first gas flow duct 72 is directed into the drop deflection zone 64, where it causes large drops 56 to follow large drop trajectory 68 and small drops 54 to follow small drop trajectory 66. As shown in
Alternatively, deflection can be accomplished by applying heat asymmetrically to a jet of liquid 52 using an asymmetric heater 51. When used in this capacity, asymmetric heater 51 typically operates as the drop forming mechanism in addition to the deflection mechanism. This type of drop formation and deflection is known having been described in, for example, U.S. Pat. No. 6,079,821, issued to Chwalek et al., on Jun. 27, 2000. Deflection can also be accomplished using an electrostatic deflection mechanism. Typically, the electrostatic deflection mechanism either incorporates drop charging and drop deflection in a single electrode, like the one described in U.S. Pat. No. 4,636,808, or includes separate drop charging and drop deflection electrodes.
As shown in
Referring to
In the printing system, the inlet port 108 is connected to the ink reservoir 40 such that the liquid manifold is supplied with liquid under pressure through the inlet port. The inlet port therefore serves as a liquid source providing liquid to the nozzles, through the liquid manifold 106, the filter 102, and the liquid chamber 104, at a pressure sufficient to form individual streams or jets of liquid from the array of nozzles. In a jetting module, having nozzle diameters of approximately 9 micron, the pressure for forming of individual jets is on the order of 400 kPa (60 psi). When the jetting module is pressurized in this manner, wall 96 of the carrier can be deformed, creating stress in the bond between the nozzle plate and the carrier.
The example embodiments of the present invention address this concern.
The liquid chamber 104 includes a structure 112 that spans the width of the liquid chamber, mechanically coupling the wall on one side of the liquid chamber to the opposing wall across the width of the liquid chamber. The mechanical coupling, provided by the structure 112, reduces the deformation of the side walls of the liquid chamber that can occur when the liquid supplied to the jetting module is pressurized to jet liquid from the nozzles. The reduction in side wall deformation reduces the stress on the bond between the carrier and the nozzle plate, reducing the risk of a bond failure. The lower surface 116 of the structure 112 is spaced away from the nozzle plate 49 to form a lower gap 120 between the structure and the nozzle plate so that liquid can flow freely down the length of the liquid chamber in the lower gap between the structure and the nozzle plate. The upper surface 114 of the structure 112 is spaced away from the filter to form an upper gap 118 between the structure and the filter so that liquid can flow freely down the length of the liquid chamber in the gap between the structure and the filter. In this example embodiment, the structure 112 not only spans the width of the liquid chamber 104, but it also spans the entire length of the nozzle array, and even extends beyond each end of the nozzle array.
In the example embodiment shown in
The cross section of the lower gap must be large enough to provide the fluid to all the nozzles without an appreciable pressure drop across the array. Depending on the particular application contemplated for a jetting module having a small drop creation frequency between 400 and 500 kHz, the formation of drops having a first (large) volume and a second (small) volume is more consistent across the nozzle array when the height of the lower gap between the nozzle plate and the and the lower face of the structure is 2 mm or less, more preferably, the height of the lower face is 1.5 mm or less, and even more preferably the height of the lower face of the structure is 1 mm or less. While not being constrained to a particular physical understanding, it is thought that lower gaps that are less than 2 mm tall attenuate sound waves which may be created in the lower gap so that they don't interfere with the drop creation process.
Preferably the width of the liquid chamber in the lower gap, perpendicular to the long axis of the liquid chamber is less than or equal to 2 mm, and more preferably is 1.5 mm or less. The pressure drop across the filter for a given flow rate is inversely related to the filter area the length times the width of the filter through which liquid can flow. To keep the pressure drop acceptably low, the width of the liquid chamber in the upper gap can be larger than the width of the liquid chamber in the lower gap, as shown in
Typically, the example embodiment shown in
It has been determined that at higher flow rates the flow of liquid over the top of the ribs 140 between the flow passages 136 shown in
The ribs can vary in shape and orientation as indicated in
The upper body and the carrier are typically fabricated out of a stainless steel, though other materials can be used. These components can be fabricated using conventional machining techniques, including grinding, milling, and electrical discharge machining (EDM). The structure 112 that spans the liquid chamber 104 of the carrier 100 is fabricated as an integral feature of the carrier. It is distinct from reinforcing features that can be integral features of either the filter or the nozzle plate. These upper body and carrier components are typically electropolished or processed using other intrinsically leveling process, as described in, for example, EP 0 854 040, to reduce the number of particles produced by the fabrication processes.
The inclusion of the structure 112 in the flow channel of the carrier, where the structure 112 spans the width of the fluid channel from one wall to the other stiffens the walls of the carrier so that excessive flexing of the carrier walls is reduced or even eliminated. As a result, bond failures between the nozzle plate and the carrier produced by flexing of the walls are reduced or even eliminated. The included structure also serves to direct the flow so that removal of particles from the inner face of the nozzle plate is enhanced. Embodiments of the invention also provide improved the consistency of drop formation across the drop generator.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3645448 | Houser | Feb 1972 | A |
4636808 | Herron | Jan 1987 | A |
6079821 | Chwalek et al. | Jun 2000 | A |
6132033 | Browning et al. | Oct 2000 | A |
6457807 | Hawkins et al. | Oct 2002 | B1 |
6491362 | Jeanmaire | Dec 2002 | B1 |
6505921 | Chwalek et al. | Jan 2003 | B2 |
6554410 | Jeanmaire et al. | Apr 2003 | B2 |
6575566 | Jeanmaire et al. | Jun 2003 | B1 |
6588888 | Jeanmaire et al. | Jul 2003 | B2 |
6672712 | Donaldson et al. | Jan 2004 | B1 |
6793328 | Jeanmaire | Sep 2004 | B2 |
6827429 | Jeanmaire et al. | Dec 2004 | B2 |
6851796 | Jeanmaire et al. | Feb 2005 | B2 |
20060214995 | Hayakawa et al. | Sep 2006 | A1 |
20090096845 | Braun et al. | Apr 2009 | A1 |
20110205306 | Vaeth et al. | Aug 2011 | A1 |
20120050428 | Rike et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
0 854 040 | Mar 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20120050427 A1 | Mar 2012 | US |