Printhead service station

Information

  • Patent Grant
  • 6663215
  • Patent Number
    6,663,215
  • Date Filed
    Thursday, October 25, 2001
    23 years ago
  • Date Issued
    Tuesday, December 16, 2003
    21 years ago
Abstract
An image forming device having a rotatable drum, at least one printhead mounted adjacent to the rotatable drum, and a printhead service station. The printhead and rotatable drum together define a print zone in which fluid travels from the printhead towards the rotatable drum, and the printhead service station is within the print zone.
Description




FIELD OF THE INVENTIONS




The present inventions are related to image forming devices and, more specifically, to printhead service stations.




BACKGROUND OF THE INVENTIONS




There are a wide variety of drum-based image forming devices that include one or more printheads. In one type of drum-based image forming device, the print media is carried by a rotating cylindrical drum past a printhead assembly that translates back and forth over the drum. Ink is deposited by the printheads directly onto the print media to create the desired image. The printheads include a plurality of very small nozzles and are typically associated with ink ejecting cartridges (or “pens”). Ink drops are fired through the nozzles by an ink ejection mechanism, such as a piezo-electric or thermal ejection mechanism, to create the desired dot pattern (or “image”).




The condition of the printheads is of paramount importance because of their direct effect on print quality. An improperly maintained printhead can become clogged and/or become the source of dot placement errors that reduce print quality. To that end, image forming devices that include printheads also typically include a printhead service station, which is located outside the print zone, to clean and protect the printheads. The printhead assembly moves from the rotating drum to the service station during non-printing periods and the shutdown process.




Spitting and wiping are two service station functions that may be performed during operation of the image forming device, albeit during non-printing periods, and also during start up and/or shutdown. Spitting clears clogs from the printhead by firing a number of drops of ink through each of the nozzles into a reservoir (or “spittoon”) that is part of the service station. Spittoons often include light sensors for drop counting. With respect to wiping, service stations are typically provided with an elastomeric wiper blade that wipes the printhead surface to remove ink residue, paper dust and any other debris that may have collected on the printhead. The wiping action, which is usually achieved through relative motion of the printhead and the elastomeric wiper blade, benefits from the moistening effect of spitting. Capping is another function that may be associated with service stations. The service station capping system seals the printhead nozzles to protect them from contaminants and prevent drying. This function is typically only associated with the shutdown process. The printhead nozzles are unsealed at startup.




Efforts are also continuously being made to address the dot placement error problems that can arise even when the printheads are properly maintained. For example, the alignment of the printhead assembly and rotating drum can be a source of dot placement errors. Such errors may, however, be substantially reduced by selecting and maintaining the optimum angular orientation of the printhead assembly relative to the rotating drum. Depositing ink directly from the printheads onto the print media can be another source of dot placement errors. One proposed solution to this problem is an image forming device in which ink is deposited by the translating printheads onto a rotating drum (or “print cylinder”), and then transferred from the print cylinder to the print media. An example of this type of imaging forming device is disclosed in commonly assigned U.S. application Ser. No. 09/571,647, which was filed on May 15, 2000, and is entitled “Digital Press and Method of Using the Same.”




Speed is another important printing consideration. Although service station functions such as spitting and wiping must be periodically performed, it is critical in many instances that downtime be minimized so that throughput can be maximized. The inventors herein have determined that moving the printhead assembly from the print zone to a service station and then back to the print zone is, however, a relatively slow process. It must be done carefully in order to insure that printhead errors are not introduced by variations in the orientation of the printhead assembly.




Accordingly, the inventors herein have determined that it would be desirable to increase the speed of service station functions such as, for example, spitting and wiping, without increasing the likelihood of dot placement errors in order to increase throughput while maintaining print quality.











BRIEF DESCRIPTION OF THE DRAWINGS




Detailed description of preferred embodiments of the inventions will be made with reference to the accompanying drawings. Certain aspects of the preferred embodiments have been eliminated from some or all of the views for clarity.





FIG. 1

is perspective view of an image forming device in accordance with a preferred embodiment of a present invention.





FIG. 2

is a side view of an image forming device in accordance with a preferred embodiment of a present invention.





FIG. 3

is a perspective view of a portion of a print cylinder in accordance with a preferred embodiment of a present invention.





FIG. 4

is a section view taken along line


4





4


in FIG.


3


.





FIG. 5

is a plan view of the print cylinder illustrated in FIG.


3


.





FIG. 6

is perspective, partial section view of the print cylinder illustrated in FIG.


3


.











DETAILED DESCRIPTION




The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions. Additionally, it is noted that detailed discussions of various operating components of image forming devices which are not pertinent to the present inventions, such as the ink ejecting pens and print control systems, have been omitted for the sake of simplicity.




As illustrated for example in

FIGS. 1 and 2

, an image forming device


10


in accordance with a preferred embodiment of a present invention includes a rotating print cylinder (or “drum”)


12


, which is mounted with bearings


13


, and a printhead assembly


14


, which is mounted in conventional fashion relative to the print cylinder such that it may be moved to a stationary service station (not shown) outside the print zone during shutdown for capping. A rotating impression roller


16


is positioned adjacent to the print cylinder


12


and is movable relative to the print cylinder (note arrow A). The exemplary printhead assembly


14


deposits ink onto the print cylinder


12


as the print cylinder rotates relative to the printhead assembly in accordance with a print control signal. The print control signal also prevents the ink from being ejected into a service station channel


60


, which is discussed in greater detail below with reference to

FIGS. 5 and 6

, other than during printhead service operations.




The exemplary image forming device


10


is also provided with a media feed system that includes a pick roller


18


that is activated when an index mark


20


on the rotating print cylinder


12


passes a sensor (not shown). The pick roller


18


draws a piece of print media


22


such as, for example, a sheet of paper, a sheet of labels, or transparency film, from a stack


24


in a tray


26


and directs the print media to the print cylinder


12


. Ink is then transferred from the print cylinder


12


to the print media


22


in a manner similar to offset printing. A cleaning roller


28


, which is carried by a support


30


, may be provided to remove any residual ink from the print cylinder


12


.




The exemplary image forming device


10


also includes a movable service station, which is discussed in greater detail below with reference to

FIGS. 5 and 6

. The movable service station


52


in the exemplary embodiment is carried by the print cylinder


12


. Nevertheless, other types of movable service stations, such as those advanced into the print zone from a position outside the print zone, may be employed. A movable service station eliminates the need to move the printhead (or printhead assembly) to the service station from its printing position adjacent to the drum during printing operations. Servicing the printhead in this manner reduces the amount of time required to perform periodic service station functions such as spitting and wiping and, accordingly, increases the overall productivity of the image forming device.




As illustrated for example in

FIG. 3

, the outer surface of the exemplary print cylinder


12


includes a plurality of embedded cells


32


that receive ink droplets


34


from the printhead assembly


14


in patterns that correspond to the desired image. The exemplary print cylinder


12


also includes a cylindrical core


36


, which is preferably formed from steel or aluminum, and a copper sheath


38


, which is preferably about 0.02 inch thick. Other core and sheath materials may, of course, be employed as desired or as applications require. The cells


32


are formed in the surface of the sheath


38


by electronic engraving or other suitable methods. The sheath


38


, including the cells


32


, is then plated with a layer of chromium


40


or other suitable material that is wear resistant and has non-wetting tendencies.




The size of the print cylinder


12


(i.e. the circumference and width), as well as the size and number of cells


32


, may be varied in accordance with the intended application. The print cylinder


12


in the exemplary embodiment which, although not so limited, is well suited for many printing applications and has a diameter of 6 inches, a circumference of 18.85 inches and a width of 9 inches. The cells


32


are preferably identical in size and are arranged in rows and columns with separations D


1


and D


2


. The separations D


1


and D


2


are between about 5 μm and 10 μm and, preferably, about 8 μm. Each cell


32


preferably corresponds to a single dot and the volume, which is about 30-40 pico-liters, will accommodate a single droplet


34


. Cell density, like dot density, may be varied in accordance with the desired print quality. Although exemplary cell densities range from 75 dpi (dots/cells per inch) and below to 600 dpi and above, it has been found that excellent print quality may be achieved in the 75 dpi to 250 dpi range.




Referring to

FIGS. 3 and 4

, and as noted above, the cells


32


receive ink droplets


34


from the orifices of the printhead assembly printheads


50


(discussed below) in a pattern that corresponds to the image being produced. The cells


32


include sidewalls


42


that are inclined (or “tapered”) with respect to bottom walls


44


at an angle of between about 120 degrees and about 150 degrees, and preferably about 135 degrees. It is most desirable for an ink droplet


34


to be ejected into the center of the associated cell


32


so that the droplet fills the cell and forms a meniscus


46


across the top of the cell. Such precise positioning of the ink droplet


34


within the cell


32


is optimum for transfer (note arrow Y) and results in substantially no dot placement errors on the print media. More specifically, surface tension causes the ink droplet


34


to snap cleanly out of the cell


32


as it is transferred to the print media.




In some instances, an ink droplet


34




a


(

FIG. 4

) will be eccentrically ejected (note arrow X) by a distance D


3


from the cell centerline C. This type of ejection error often results in dot placement errors in those image forming devices where the ink is ejected directly onto the print media. Here, however, the ink droplet


34




a


will settle into the center of the cell


32


during the time that it takes the cell to travel from the printhead assembly


14


to the print media


22


, thereby eliminating the potential dot placement error.




It should also be noted here that the exemplary print cylinder


12


is not limited to circular cells in the illustrated pattern. For example, and as disclosed in aforementioned U.S. application Ser. No. 09/571,647, which is incorporated herein by reference, various diamond-shaped arranged in a variety of angular orientations with respect to the print cylinder axis may also be employed.




Turing to the printhead assembly, the exemplary printhead assembly


14


illustrated in

FIGS. 1 and 2

includes five staggered pens


48


with printheads


50


that are about ⅚ of an inch wide. The resulting image will, therefore, be up to 2 ½ inches wide. A suitable printhead is the Hewlett-Packard C482x printhead, which should be mounted at 1.79 degree angle to print cylinder


12


for 20 inch per second printing. The printheads


50


are also about 1 mm from the print cylinder


12


in the exemplary embodiment. Of course, the number of pens as well as the size and type of the printheads may be varied as desired. Off-axis printhead arrangements, where the printheads carry a small amount of ink and are refilled by tubes that connect the pens to a remote ink reservoir may also be employed.




The impression roller


16


in the exemplary embodiment includes a resilient surface that is more deformable than the surface of the print cylinder


12


. A rubber impression roller surface having a durometer of between about 40 shore A and 90 shore A is preferred. The impression roller is moved against the print cylinder


12


when the piece of print media


22


is guided between the impression roller


16


and print cylinder. The impression roller


16


applies a force of approximately 30 lbs./in. of roller width to 60 lbs./in. of roller width, and preferably approximately 50 lbs./in. of roller width, against the print cylinder


12


. Such force maintains intimate contact between the print cylinder


12


and print media


22


and, accordingly, facilitates precise ink transfer from the print cylinder to the print media without media cockling.




As illustrated in

FIGS. 5 and 6

, the exemplary movable service station


52


includes a pair of wipers


54


and a spittoon


56


. The exemplary wipers


54


extend about 1.5 mm beyond the print cylinder


12


, which is about 0.5 mm greater than the spacing between print cylinder and printheads


50


, thereby creating mechanical interference between the wipers and printheads as the wipers are moved along the printheads. Thus, as discussed below, the wipers


54


in the exemplary embodiment will be moved to a position away from the printheads


50


during printing. Alternatively the wipers


54


may be shorter and moved by a suitable device radially in to and out of engagement with the printheads


50


, which would allow the wipers


54


to remain aligned with the printheads during printing. The exemplary spittoon


56


is an absorbent block, formed from open cell foam or other suitable material, hat will absorb the ink droplets ejected during the spitting process and continue to hold the ink as the print cylinder


12


rotates. A drop counting sensor (not shown) may also be provided. The wipers


54


and spittoon


56


are mounted on a carrier


58


that is located within a channel


60


formed in the print cylinder


12


. The channel


60


should be oriented at a slight angle (here, about 1.79 degrees) to the longitudinal axis of the print cylinder


12


in those instances where the printheads


60


are angled relative to the print cylinder.




The channel


60


in the exemplary embodiment extends from one longitudinal end of the print cylinder


12


to the other. The length of the channel


60


may, however, be modified as desired. For example, a channel in an image forming device that includes only a single printhead could be limited to an area directly under printhead that is only long enough to support the service functions.




A drive device, which in the exemplary embodiment is also at least partially located within the channel


60


, the service station


52


back and forth within the channel. A motor


62


and worm gear


64


arrangement performs the drive function in the exemplary embodiment. Power is supplied to the motor


62


using a conventional inductive power transmission system (not shown). The worm gear


64


, which is mounted on bearings


66


and


68


, engages a follower (not shown) on the carrier


58


. The print controller regulates power to the motor


62


in order to control the rotation of the worm gear


64


and, therefore, the position of the service station


52


. For example, during printing, the service station


52


will be moved to a position close to the motor


62


and away from the printheads


50


. A position sensing device, such as an encoder that senses rotation of the worm gear


64


or motor spindle, may be used to more precisely track and control the position of the service station


52


.




The service station


52


may, of course, be driven in other ways. For example, a service station carrier could be provided with an on-board motor that drives the service station along a track. The drive device could also be mounted on the image forming device chassis instead of the print cylinder. For example, a motor could be mounted on the image forming device chassis and connected to the worm gear


64


during a service operation and disconnected from the worm gear while the print cylinder is rotating, by a suitable gear and clutch arrangement.




The exemplary service station


52


may be employed in the manner described below during a printing operation being performed by the exemplary image forming device


10


as well as other image forming devices. The service station may, of course, also be employed during start up and shut down. Once it is determined that the printheads


50


are due for a spitting and wiping procedure, printing will cease and the cylinder will, if necessary, be rotated until the channel


60


is aligned with one of the printheads (referred to herein as rotational alignment). If the spittoon


56


is not already positioned under the printhead


50


at this point, the motor


62


and worm gear


64


, arrangement will drive the service station


52


until the spittoon is aligned with the printhead (referred to herein as longitudinal alignment). Ink is then spit into the spittoon


56


. Next, the service station


52


is moved along the channel


60


to longitudinally align the wipers


54


with the printhead


50


. The service station (and wipers


54


) will then be moved back and forth to clean the printhead


50


.




After the wising process has been completed, the print cylinder


12


may be rotated to bring the channel


60


into rotational alignment with the next printhead


50


. The service station


52


will then be moved to longitudinally align the spittoon


56


with the next printhead


50


and the spitting and wiping will processes will be repeated. These steps will preferably continue until each of the printheads


50


has been serviced. Nevertheless, it should be noted that the exemplary printhead may be used to service fewer than all of the printheads


50


in those instances where it is determined that fewer than all of the printheads require service.




It should be noted that the present inventions are applicable to other types of image forming devices. For example, the present inventions are applicable to drum-based image forming devices in which the ink is deposited directly onto the print media, image forming devices which include a carriage that carries one or more printheads and translates over the printzone, and image forming devices which include a page-wide array printhead that extends the width of the printzone. It should also be noted that the present inventions are applicable to other types of pens. For example, the present inventions are applicable to typical replaceable inkjet cartridges and the printheads associated therewith.




Although the present inventions have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. By way of example, and not limitation, a capping device may be provided on the service station. It is intended that the scope of the present inventions extend to all such modifications and/or additions.



Claims
  • 1. A drum capable of being used in an image forming device including a printhead, comprising:a print cylinder defining a channel; and a printhead service station that is at least partially within the channel.
  • 2. A drum as claimed in claim 1, wherein the print cylinder includes a plurality of embedded cells.
  • 3. A drum capable of being used in an image forming device including a printhead, comprising:a substantially cylindrical member defining a longitudinal axis and a channel that is not parallel to the longitudinal axis; and a printhead service station that is at least partially within the channel.
  • 4. A drum as claimed in claim 3, wherein the substantially cylindrical member comprises a print cylinder.
  • 5. A drum capable of being used in an image forming device including a printhead, comprising:a substantially cylindrical member defining a channel; and a printhead service station that is at least partially within the channel, has first and second positions relative to the channel, and is capable of moving between the first and second positions.
  • 6. A drum as claimed in claim 5, further comprising:a drive mechanism that moves the printhead service station relative to the channel.
  • 7. A drum as claimed in claim 6, wherein the drive mechanism comprises a worm gear.
  • 8. A drum as claimed in claim 6, wherein the drive mechanism comprises a motor carried by the substantially cylindrical member.
  • 9. A drum as claimed in claim 5, wherein the substantially cylindrical member comprises a print cylinder.
  • 10. An image forming device, comprising:a print cylinder having a plurality of embedded cells; at least one printhead mounted adjacent to the print cylinder, the printhead and print cylinder together defining a print zone in which fluid travels from the printhead towards the print cylinder; and a printhead service station within the print zone.
  • 11. An image forming device, comprising:a rotatable drum; at least one printhead mounted adjacent to the rotatable drum, the printhead and rotatable drum together defining a print zone in which fluid travels from the printhead towards the rotatable drum; and a printhead service station carried by the rotatable drum within the print zone.
  • 12. An image forming device as claimed in claim 11, wherein the rotatable drum defines a channel and the printhead service station is at least partially within the channel.
  • 13. An image forming device as claimed in claim 12, wherein the printhead service station is movable within the channel.
  • 14. An image forming device as claimed in claim 11, wherein the rotatable drum comprises a print cylinder.
  • 15. An image forming device, comprising:a rotatable drum including a channel; at least one printhead mounted adjacent to the rotatable drum, the printhead and rotatable drum together defining a print zone in which fluid travels from the printhead towards the rotatable drum; a printhead service station within the print zone and movable within the channel; and a worm gear that moves the printhead service station relative the channel.
  • 16. A method of servicing a printhead mounted adjacent to a rotatable drum such that a print zone in which fluid travels from the printhead towards the rotatable drum is defined between the printhead and the rotatable drum, the method comprising:moving a printhead service station associated with the rotatable drum into the print zone, including rotating the rotatable drum until the printhead service station is rotationally aligned with the printhead; and servicing the printhead with the printhead service station.
  • 17. A method as claimed in claim 16, wherein moving the printhead service station into the print zone further includes moving the printhead service station relative to the rotatable drum.
US Referenced Citations (18)
Number Name Date Kind
3913722 Bowdle et al. Oct 1975 A
3961388 Jaffa Jun 1976 A
4375189 Berner et al. Mar 1983 A
4378622 Pinkston et al. Apr 1983 A
4589505 Takahashi May 1986 A
4602262 Milligan et al. Jul 1986 A
4703346 Bierhoff Oct 1987 A
4901641 Steiner et al. Feb 1990 A
4936215 Walker et al. Jun 1990 A
5081472 Fisher Jan 1992 A
5233921 John Aug 1993 A
5372644 Kochsmeier Dec 1994 A
5583548 Kearns Dec 1996 A
5588763 Nubson et al. Dec 1996 A
5949453 Harris et al. Sep 1999 A
6109746 Jeanmaire et al. Aug 2000 A
6217145 Ito et al. Apr 2001 B1
6220693 Bode et al. Apr 2001 B1
Foreign Referenced Citations (1)
Number Date Country
59115863 Jul 1984 JP
Non-Patent Literature Citations (1)
Entry
Search Report Dated Oct. 24, 2002 for GB application No. 0223088.6, Gary Williams.