Information
-
Patent Grant
-
6585347
-
Patent Number
6,585,347
-
Date Filed
Monday, January 31, 200024 years ago
-
Date Issued
Tuesday, July 1, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 347 22
- 347 29
- 347 30
- 347 32
- 347 33
- 347 35
- 347 13
- 347 42
-
International Classifications
-
Abstract
A print cartridge support structure holds one or more print cartridges in a stationary position while applying ink on media. A printhead servicing station is located outside of the print zone and has one or more servicing modules dedicated for interaction with one of the nozzle arrays of a print cartridge when such nozzle array is positioned in aligned proximity with its dedicated servicing module. The printhead servicing modules may include wipers, scrapers, cleaning fluid applicators, ink receiving receptacles and cappers. A motorized device may be used to relocate the print cartridge and/or the servicing modules to be in close proximity for servicing the printhead during a period when the nozzle arrays are not applying ink to the media.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to U.S. patent application Ser. No. 09/167,392, filed Oct. 6, 1998, entitled “Modular Print Cartridge Receptacle for Use in Inkjet Printing Systems” and U.S. patent application Ser. No. 09/167,394, filed Oct. 6, 1998, entitled “Inkjet Printing Systems Using a Modular Print Cartridge Assembly” which are herein incorporated by reference.
FIELD OF THE INVENTION
This invention relates to inkjet printers using stationary print cartridges and, more particularly, to servicing stationary print cartridges in an inkjet printing system.
BACKGROUND OF THE INVENTION
Thermal inkjet hardcopy devices such as printers, graphics plotters, facsimile machines and copiers have gained wide acceptance. These hardcopy devices are described by W. J. Lloyd and H. T. Taub in “Ink Jet Devices,” Chapter 13 of Output Hardcopy Devices (Ed. R. C. Durbeck and S. Sherr, San Diego: Academic Press, 1988) and U.S. Pat. Ser. Nos. 4,490,728 and 4,313,684. The basics of this technology are further disclosed in various articles in several editions of the Hewlett-Packard Journal [Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988), Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (August 1992), Vol. 43, No. 6 (December 1992) and Vol. 45, No. 1 (February 1994)], incorporated herein by reference. Inkjet hardcopy devices produce high quality print, are compact and portable, and print quickly and quietly because only ink strikes the media.
An inkjet printer forms a printed image by printing a pattern of individual dots at particular locations of an array defined for the printing medium. The locations are conveniently visualized as being small dots in a rectilinear array. The locations are sometimes “dot locations”, “dot positions”, or pixels”. Thus, the printing operation can be viewed as the filling of a pattern of dot locations with dots of ink.
Inkjet hardcopy devices print dots by ejecting very small drops of ink onto the print medium and typically include a movable carriage that supports one or more print cartridges each having ink ejecting nozzles. The carriage traverses over the surface of the print medium, and the nozzles are controlled to eject drops of ink at appropriate times pursuant to command of a microcomputer or other controller, wherein the timing of the application of the ink drops is intended to correspond to the pattern of pixels of the image being printed.
The typical inkjet printhead (i.e., the silicon substrate, structures built on the substrate, and connections to the substrate) uses liquid ink (i.e., dissolved colorants or pigments dispersed in a solvent). It has an array of precisely formed orifices or nozzles attached to a printhead substrate that incorporates an array of ink ejection chambers which receive liquid ink from the ink reservoir. Each chamber is located opposite the nozzle so ink can collect between it and the nozzle. The ejection of ink droplets is typically under the control of a microprocessor, the signals of which are conveyed by electrical traces to the resistor elements. Properly sequencing the operation of each nozzle causes either to eject ink or to refrain from ejecting ink according to the output of the controlling microprocessor to cause characters or images to be printed upon the media as the printhead moves past the media or the media moves past the printhead.
Color inkjet hardcopy devices commonly employ a plurality of print cartridges, usually two to four, mounted in the printer carriage to produce a full spectrum of colors. In a printer with four cartridges, each print cartridge can contain a different color ink, with the commonly used base colors being cyan, magenta, yellow, and black. In a printer with two cartridges, one cartridge can contain black ink with the other cartridge being a tri-compartment cartridge containing the base color cyan, magenta and yellow inks, or alternatively, two dual-compartment cartridges may be used to contain the four color inks. In addition, two tri-compartment cartridges may be used to contain six base color inks, for example, black, cyan, magenta, yellow, light cyan and light magenta. Further, other combinations can be employed depending on the number of different base color inks to be used.
The base colors are produced on the media by depositing a drop of the required color onto a dot location, while secondary or shaded colors are formed by depositing multiple drops of different base color inks onto the same dot location, with the overprinting of two or more base colors producing the secondary colors according to well established optical principles.
For many applications, such as personal computer printers and fax machines, the ink reservoir has been incorporated into the pen body such that when the pen runs out of ink, the entire pen, including the printhead, is replaced.
However, for other hardcopy high volume printing applications, such as large format plotting of engineering drawings, color posters and the like, there is a requirement for the use of much larger volumes of ink than can be contained within the replaceable pens. Therefore, various off-board ink reservoir systems have been developed recently which provide an external stationary ink supply connected to the scanning cartridge via a tube. The external ink supply is typically known as an “off-axis,” “off-board,” or “off-carriage” ink supply.
There is a trend to use inkjet printing in new specialized printing systems which are very different systems compared to desk-top printers and facsimile machines, or from large format plotters. These specialized printing systems include applications, such as postal printing, postal franking, label printing and bar code printing. Currently, there are no means to design a specialized printing system without a substantial engineering effort.
In typical inkjet printers the inkjet print cartridges containing the nozzles are scanned or moved repeatedly across the width of the medium to be printed upon. During this movement across the medium, each of the nozzles is caused either to eject ink or to refrain from ejecting ink according to the program output of the controlling microprocessor. Each completed scan or movement across the medium can print a swath approximately as wide as the number of nozzles arranged in a column of the ink cartridge multiplied times the distance between nozzle centers. After each such completed movement or swath the medium is moved or advanced forward the width of the swath, and the ink cartridge begins the next swath.
In inkjet printers the print cartridges need to be periodically serviced. In a scanning carriage printer, a service station is normally located in the scan direction past the edge of the media, since because the scan direction motion is required for printing, it is natural to expand that motion and locate the service station in that direction out of the print zone. Accordingly, when servicing is required, the print cartridges move past the edge of the medium to the location of the service station for servicing.
In printing systems which use stationary print cartridges for printing (such as for example, ticket, tag, label and mail printing), there is no scan direction motion because the print cartridges remain in a fixed or stationary position during printing. In addition, in typical stationary printhead printing systems there may be media movement and drive system mechanisms which make accessing the print cartridges difficult. Because of these difficulties, many stationary printhead printing systems do not use service stations. The disadvantage of this approach is that the performance of the printhead decreases as nozzles become dried and ink residue builds up on the printhead orifice plate. Accordingly, periodically it is necessary for an operator technician to manually remove the print cartridges and manually clean the orifice plates. This type of operation is not well controlled and depends on user know-how and consistent execution and exposes the printheads to damage if done incorrectly.
Accordingly, there is a need for a solution to the servicing of print cartridges in specialty printing systems which often use print cartridges which are stationary during the printing operation with only the media moving through the print zone. With stationary printhead printers, a new means for making the print cartridges accessible to service station components is required.
SUMMARY OF THE INVENTION
The present invention enables the print cartridges on printers using stationary print cartridges to be accessed by service station components such as wipers, scrapers, cleaning fluid applicators, ink receiving receptacles and cappers. The advantage of the present invention is that enables the print cartridges on stationary printhead printing system to be serviced in a manner similar to what is done in a conventional scanning printhead printing system. The benefits of correctly servicing the inkjet print cartridges are increased printhead quality, increased printhead life, more consistent performance over a wide range of environmental conditions, and reduced operator intervention such as manually clean and replacing print cartridges. The present invention includes a print cartridge support structure for holding one or more print cartridges in a stationary position while applying ink on a media. A printhead is located on each of the print cartridges. The printhead has nozzles for ejecting ink which are arranged in a nozzle array of one or more columns of nozzles. A media movement mechanism provides movement of the media though a print zone located beneath the nozzle array. A printhead servicing station is located outside of the print zone and has one or more servicing modules dedicated for interaction with one of the nozzle arrays when the one of the nozzle arrays is positioned in aligned proximity with its dedicated servicing module. A motorized device coupled to the print cartridge support structure moves the print cartridge support structure out of the print zone to the service station during a period when the print cartridges are not applying ink to the media.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
comprising
FIGS. 1A
,
1
B and
1
C, are perspective views of a first inkjet print cartridge which can be used with the present invention as seen from the bottom rear, top rear and bottom front, respectively.
FIG. 2
is a perspective front right view of a singular modular print cartridge receptacle of the present invention.
FIG. 3
is a perspective back right view of a singular modular print cartridge receptacle of the present invention.
FIG. 4
is a perspective front left view of a singular modular print cartridge receptacle of the present invention.
FIGS. 5A and 5B
are views, respectively.
FIG. 6
is a perspective view of four modular print cartridge receptacles assembled in an aligned arrangement into a modular print cartridge receptacle assembly and showing one print cartridge installed in the modular assembly.
FIG. 7
is a perspective view of four modular print cartridge receptacles assembled in a staggered arrangement into a modular print cartridge receptacle assembly.
FIGS. 8A
,
8
B and
8
C are plan views.
FIG. 9
is a simplified schematic perspective view of an inkjet printing system with print cartridges installed, using a belt drive media movement system.
FIG. 10
is a simplified schematic perspective view of an inkjet printing system with print cartridges installed, using a drum media movement system.
FIG. 11
is a simplified schematic perspective view of an inkjet printing system with print cartridges installed, using drive rollers as a media movement system.
FIG. 12
is a simplified schematic perspective view of an inkjet printing system showing x-axis movement of the print cartridge assembly to a service station.
FIG. 13
is a simplified schematic perspective view of an inkjet printing system showing combined z-axis movement of the print cartridge assembly and x-axis movement of the service station.
FIG. 14
is a simplified schematic perspective view of an inkjet printing system showing combined y-axis rotation of the print cartridge assembly and x-axis movement of the service station.
FIG. 15
is a simplified schematic perspective view of an inkjet printing system showing combined z-axis rotation of the print cartridge assembly and y-axis movement of the service station.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to
FIGS. 1A
,
1
B and
1
C, shown is an inkjet print cartridge
10
which maybe used in the present invention. The inkjet print cartridge
10
includes two side walls
12
and a perimeter wall
13
and a printhead
14
affixed to the “snout” portion
15
of the perimeter wall
13
. The printhead
14
includes a nozzle member
16
comprising two parallel columns of offset holes or orifices
17
formed in a flexible polymer flexible circuit
18
by, for example, laser ablation.
The flexible circuit
18
is bent over the back edge of the print cartridge “snout” and extends down the back perimeter wall of the snout. This flap portion of the flexible circuit
18
is needed for the routing of conductive traces
19
which are connected to substrate electrodes (not shown). The contact pads
20
are located on the flexible circuit
18
which is secured to the back of perimeter wall
13
and the conductive traces
19
are routed over the bend and are connected to the substrate electrodes.
Printhead
14
has affixed to the back of the flexible circuit
18
the silicon substrate containing a plurality of individually energizable thin film resistors. Each resistor is located generally behind a single orifice
17
and acts as a heater resistor for ejecting ink droplets when selectively energized by one or more pulses applied sequentially or simultaneously to one or more of the contact pads
20
.
Windows
22
extend through the flexible circuit
18
and are used to facilitate bonding of the conductive traces
19
to the electrodes on the silicon substrate. The windows
22
are filled with an encapsulant after bonding the conductive traces
19
to the electrodes on the silicon substrate to protect any underlying portion of the traces and substrate.
A demultiplexer (not shown) may be formed on the substrate for demultiplexing the incoming multiplexed signals and distributing the address and primitive signals to the heater resistors. The demultiplexer demultiplexes the incoming electrical signals into signals to be applied to the heater resistors to selectively energize the various heater resistors to eject droplets of ink from nozzles
17
on a receiving media in the print zone. The demultiplexer enables the use of fewer contact pads
20
than heater resistors. Further details regarding multiplexing are provided in U.S. Pat. No. 5,541,269, issued Jul. 30, 1996, entitled “Printhead with Reduced Interconnections to a Printer,” which is herein incorporated by reference.
Preferably, an integrated circuit logic using CMOS technology can be placed on the substrate in place of the demultiplexer in order to decode more complex incoming data signals than just multiplexed address signals and primitive signals, thus further reducing the number of contact pads
20
required. The incoming data signals are decoded by the integrated logic circuits on the printhead into address line and primitive firing signals. Performing this operation in the integrated logic circuits on the printhead increases the signal processing speed and the firing frequency of the printhead.
The back surface of the flexible circuit
18
includes conductive traces
19
formed thereon using a conventional photolithographic etching and/or plating process. These conductive traces are terminated by contact pads
20
designed to interconnect with a modular print cartridge receptacle described below. The print cartridge
10
is designed to so that the contact pads
20
, on the front surface of the flexible circuit
18
, contact electrodes when the print cartridge is installed in a modular print cartridge receptacle.
The print cartridge
10
also includes datums for accurately aligning the print cartridge and the nozzle member
16
in the modular print cartridge receptacle of the present invention discussed below. The print cartridge
10
is provided with three datum surfaces
26
located on the perimeter of a sidewall of print cartridge
10
and sufficiently spaced apart from each other to provide accurate and stable alignment. The print cartridge is also provided with a forwardly facing fourth datum surface
25
located on the front lower portion of the snout and with a downwardly facing fifth datum surface
27
on the perimeter wall of the print cartridge adjacent the fourth datum surface, so as to establish a pivot axis above and in front of the snout, and with a rearwardly facing sixth datum surface
24
on the upper end of the print cartridge perimeter wall
13
. the fifth datum surface
25
is used to determine the spacing of the nozzle to the print medium and the sixth datum surface is used to determine angular orientation of the print cartridge about a pivot point.
Alignment between two or more nozzle plates affixed to print cartridges installed in a modular print cartridge receptacle is achieved by machining datum projections
24
-
27
on each print cartridge after its nozzle plate
16
has been permanently secured to the print cartridge. The machined datum projections
24
-
27
on the print cartridge contact mating surfaces on a modular print cartridge receptacle described below when print cartridge
10
is installed in the modular print cartridge receptacle. The datums affect the position of the cartridge
10
, and hence the nozzle plate
16
, within the modular print cartridge receptacle. Print cartridge
10
also has a latch engaging portion
28
having an angled surface
29
between the horizontal and vertical directions for engaging with a latching mechanism on the modular print cartridge receptacle to be described below.
For further details regarding the datums see U.S. Pat. Ser. No. 5,646,665 entitled “Side Biased Datum Scheme for Inkjet Cartridge and Carriage;” U.S. Pat. Ser. No. 4,907,018 entitled “Printhead-carriage Alignment and Electrical Interconnect Lock-in mechanism” U.S. Pat. Ser. No. 5,617,128 entitled “Alignment of Multiple Nozzle Members in a Printer;” and U.S. Pat. Ser. No. 5,408,746 entitled “Datum Formation for Improved Alignment of Multiple Nozzle Members in a Printer” which are herein incorporated by reference.
While print cartridge
10
is shown in
FIG. 1
has an integral ink supply, print cartridge
10
is readily modified to receive ink from an off-axis ink supply. See, U.S. Pat. Ser. No. 5,675,367 entitled “Inkjet Print Cartridge Having Handle Which Incorporates an Ink Fill Port;” Wu, et al., U.S. patent application Ser. No. 09/045,151, filed Mar. 19, 1998, entitled “Alignment Coupling Device for Manually Connecting an Ink Supply to an Inkjet Print Cartridge” and Wu, et al., U.S. patent application Ser. No. 09/045,150, filed Mar. 19, 1998, entitled “Ink Replenishment System with an Open-valve Printhead Fill Port Continuously Connected to an Ink Supply” which are herein incorporated by reference.
FIGS. 2
,
3
, and
4
are perspective front and rear views of the single modular print cartridge receptacle
30
of the present invention. The modular print cartridge receptacle
30
includes a right sidewall
34
, a left sidewall
36
and a back wall
38
rigidly attached to sidewalls
34
,
36
. Back wall
38
contains the electrical connections, or electrodes
32
, a print cartridge driver circuit, or print ASIC
48
, and electrical pin connectors
49
for electrical connection to a printer controller. Additional details of the front and back, or outside and inside of back wall
38
is described below in reference to FIG.
5
. The modular print cartridge receptacle
30
also includes a partial bottom
39
attached to a portion of right sidewall
34
and left sidewall
36
to maintain rigidity of sidewalls
34
,
36
and a datum reference surface. The bottom has an opening for snout
15
of print cartridge
10
and has a datum mating surface for engaging datum
27
on print cartridge
10
when print cartridge
10
is installed in the modular receptacle
30
, thereby providing precise printhead to print media spacing. Optionally, modular receptacle
30
may also have a front wall
42
for providing further rigidity of the modular receptacle.
Referring to FIG.
5
(
b
), back wall
38
has electrodes
32
mounted on the inside wall of back wall
38
. The modular print cartridge receptacle
30
is designed so that when print cartridge
10
is installed in modular print cartridge receptacle
30
, the contact pads
20
, on the flexible circuit
18
of the print cartridge, align with and make contact with electrodes
32
on modular print cartridge receptacle
30
when the print cartridge
10
is installed in the modular print cartridge receptacle. The electrodes provide externally generated energization signals to the print cartridge
10
. Preferably, the electrodes
32
on modular print cartridge receptacle
30
are resiliently biased toward the contact pads
20
on print cartridge
10
to ensure a reliable contact. Such electrodes are found in U.S. Pat. Ser. Nos. 5,608,434, 5,461,482, 5,372,512 and 5,684,518 all assigned to the present assignee and incorporated herein by reference.
As shown in FIG.
5
(
b
), the modular print cartridge receptacle
30
, also contains a print ASIC, or integrated circuit, dedicated to and mounted on the modular print cartridge receptacle. While the print ASIC may be mounted anywhere on the modular print cartridge receptacle, preferably, the print ASIC is mounted on the back wall
38
ease of electrical connection. The print ASIC interprets signals from a printer controller and delivers control signals to the electrodes
32
which in turn provide control signals to the print cartridge
10
. As shown in FIG.
5
(
a
), the modular print cartridge receptacle
30
also contains electrical connectors
49
for connection to a printer preferably, the electrical connectors
49
are mounted on the back wall
38
for ease of electrical connection.
When using a printhead with a large number of nozzles and high resolution, correct alignment of all the nozzles so that the ink is correctly placed on the print media is extremely important. Dot alignment must be done in both the horizontal and vertical axes. This requires the nozzle plates on all the print cartridges be aligned precisely with respect to one another after being installed in the modular receptacle and after the modular receptacles are assembled together. In a preferred alignment method, alignment between two or more nozzle plates affixed to print cartridges installed in modular print cartridge receptacle
30
is achieved by machining the datum projections
24
-
27
on each print cartridge
10
after its nozzle plate has been permanently secured to the print cartridge. The machined datum projections on the print cartridge contact surfaces on the modular print cartridge receptacle when the print cartridge is installed in the modular print cartridge receptacle such that the dimensions of the datums affect the position of the cartridge, and hence the nozzle plate, within the modular print cartridge receptacle.
Modular print cartridge receptacle
30
has one or more leaf springs
44
attached to right sidewall
34
of modular print cartridge receptacle
30
. The cantilevered leaf springs
44
provide a sideways force. The leaf spring
44
in its uncompressed condition does not lie flat against sidewall
34
, but extends into the interior of modular print cartridge receptacle
30
. Accordingly, leaf springs
44
provide a sideways right to left bias force on the print cartridge
10
toward datum mating surfaces on the interior of left sidewall
36
that align with and engage the three datum surfaces
26
on the print cartridge
10
.
The print cartridge can be secured within the modular print cartridge receptacle
30
by a locking mechanism, such as a hinged latch
46
which pivots about axis
47
. When lowered latch
46
presses down on the latch engaging portion
28
of print cartridge
10
. The latch engaging portion
28
on print cartridge
10
has an angled surface
29
between the horizontal and vertical directions for engaging with latch mechanism
46
on the modular print cartridge receptacle
30
. Angled surface
29
causes print cartridge
10
to be biased both downward and leftward so as to engage datums
26
with the mating surfaces on left sidewall
36
of modular receptacle
30
. Alternatively, the locking mechanism may comprise a spring assembly which movably allows the print cartridge to be snapped into the modular print cartridge receptacle
30
. For further details regarding other locking mechanisms see U.S. Pat. Ser. No. 5,646,665 entitled “Side Biased Datum Scheme for Inkjet Cartridge and Carriage.”
The exterior of right sidewall
34
of modular receptacle
30
contains alignment projections
50
,
52
and
54
and left sidewall
36
of modular receptacle
30
contains alignment openings
60
,
62
and
64
. Alignment projections
50
,
52
and
54
and alignment openings
62
and
64
are round and alignment opening
60
is oval shaped. The alignment projections and alignment openings are shown as round or oval shaped, but any other suitable shape for the alignment projections and alignment openings may be used. Alignment projections
50
,
52
and
54
and alignment openings
60
,
62
and
64
are used for joining and aligning two or more modular receptacles
30
together as discussed below.
The modular print cartridge receptacles
30
, in addition to providing mechanical alignment and electrical interconnection also provides other functionalities through the print driver ASIC located on the modular print cartridge receptacle. These functionalities include: (1) controlled and accurate pulse firing energy for the print cartridge, (2) electrical pulse driving, (3) automatic pulse warming, (4) ambient temperature measurement, (5) printhead temperature measurement, (6) ESD protection (7) detection of, and protection from, open circuit and shorts, and (7) other servicing functions normally used to support inkjet print cartridges. These integrated features of modular print cartridge receptacle
30
allow for the easy development of specialized printing systems without the need for a thorough knowledge of thermal inkjet technology. Accordingly, the specialized printing system must only perform the following functions: (1) set the print cartridge firing energy level (the print driver ASIC ensures accurate deliver of that energy level), (2) set the firing order of the print cartridge, (3) set the time when the print cartridge is fired by providing a logic timing signal along with which nozzles are to be fired, and (4) set the pulse width of the firing pulse.
For additional details regarding print cartridge control see U.S. patent application Ser. No. 08/958,951, filed Oct. 28, 1997, entitled “Thermal Ink Jet Print Head and Printer Energy Control Apparatus and Method,” U.S. Pat. Ser. No. 5,418,558, entitled “Determining the Operating Energy of a Thermal Ink Jet Printhead Using an Onboard Thermal Sense Resistor;” U.S. Pat. Ser. No. 5,428,376, entitled “Thermal Turn on Energy Test for an Inkjet Printer;” and U.S. Pat. Ser. No. 5,682,185 entitled “Energy Management Scheme for an Ink Jet Printer;” The foregoing commonly assigned patents and patent applications are herein incorporated by reference.
The modular print cartridge receptacles
30
may assembled in various configurations, only some of which are described below. One skilled in the art will readily see other possible combinations. First, modular print cartridge receptacles
30
may be assembled in an aligned arrangement into a modular print cartridge receptacle assembly
70
. To assemble modular print cartridge receptacles assembly
70
in an aligned arrangement, alignment projections
50
and
54
are aligned and inserted into alignment openings
60
and
64
, respectively, in the exterior left sidewall
36
of a second modular receptacle
30
.
FIG. 6
is a perspective view of four modular print cartridge receptacles
30
assembled in an aligned arrangement into a modular print cartridge receptacle assembly
70
and showing one print cartridge installed in the modular assembly.
Second, modular print cartridge receptacles
30
may be assembled in a staggered arrangement into a modular print cartridge receptacle assembly
70
. To assemble modular print cartridge receptacles assembly
70
in an aligned arrangement, alignment projections
52
and
54
are aligned and inserted into alignment openings
60
and
62
, respectively, in the exterior left sidewall
36
of a second modular receptacle
30
.
FIG. 7
is a perspective view of four modular print cartridge receptacles assembled in a staggered arrangement into a modular print cartridge receptacle assembly. Precise alignment of the nozzle plates on different cartridges installed in different modular receptacles
30
is achieved by the precise location of alignment projections
50
,
52
and
54
and alignment openings
60
,
62
and
64
.
The present invention makes the alignment between print cartridges simple and inexpensive since the print cartridge
10
machined datums
24
-
27
align print cartridge
10
precisely in modular receptacle
30
as described above. Accurate alignment between print cartridges located in adjacent modular receptacles
30
after assembly into a modular print cartridge assembly
70
is achieved by the precise alignment features of alignment projections
50
,
52
and
54
and alignment openings
60
,
62
and
64
.
Modular print cartridge receptacles
30
may be assembled together in various configurations including combinations of both staggered and aligned modular print cartridge receptacles
30
. Modular print cartridge receptacles
30
may be assembled together with either monochrome or multiple color ink print cartridges depending upon the printing system.
FIG. 8
is a plan view of some different possible assembled configurations of modular print cartridge receptacles
30
and associated print cartridges as viewed upward from below the print cartridges to show the nozzle array
16
. In an aligned arrangement, the each orifice, or nozzle,
17
in nozzle array
16
is aligned with the corresponding nozzle in the other print cartridges
10
. In a staggered arrangement, the orifices
17
in nozzle array
16
are aligned such that the top nozzle in one print cartridge is aligned with the bottom nozzle in the adjacent print cartridge
10
. Alternatively, in a staggered arrangement, the orifices
17
in nozzle array
16
are overlapped such that the top nozzles in one print cartridge is aligned with a nozzle above the bottom nozzle in the adjacent print cartridge
10
. In this case electronic alignment through selective on/off control of individual nozzles may also be utilized.
FIG.
8
(
a
) shows four modular print cartridge receptacles
30
and associated print cartridges
10
assembled in a fully aligned arrangement into a modular print cartridge receptacle assembly
70
. Any number of modular print cartridge receptacles
30
and associated print cartridges
10
may be assembled in this arrangement and may include any colors desired. FIG.
8
(
b
) shows four modular print cartridge receptacles
30
and associated print cartridges
10
assembled in a fully staggered arrangement into a modular print cartridge receptacle assembly
70
having a swath width essentially equal to four individual print cartridges. Obviously, any number of modular print cartridge receptacles
30
and associated print cartridges
10
could be assembled in a fully staggered arrangement to provide a desired print swath width. FIG.
8
(
c
) shows eight modular print cartridge receptacles
30
and associated print cartridges
10
assembled into a combination aligned and staggered modular print cartridge receptacle assembly
70
. Obviously, any number of modular print cartridge receptacles
30
and associated print cartridges
10
could be assembled as in FIG.
8
(
c
) to provide a desired print swath width. The arrangements shown in
FIG. 8
are merely illustrative of the many possible combinations of staggered, aligned and the number of modular print cartridge receptacles
30
assembled into a modular print cartridge receptacle assembly
70
.
Accordingly, the present invention provides for variable width printing up to and including full page width printing. When using a single print cartridge for monochrome printing, the width of printing is determined by the length of the nozzle portion of the print cartridge. The present invention provides for mounting multiple print cartridges
10
through the use of modular print cartridge receptacles
30
in order to easily provide variable width printing. As many print cartridges
10
and modular print cartridge receptacles
30
may be assembled into a modular print cartridge receptacle assembly
70
as is necessary to achieve the desired print width. Greater throughput is possible by using wider print widths across the print media.
A flexible circuit (not shown) provides for transmitting electrical signals from the printing system's microprocessor to the electrical interconnects
49
on the individual modular print cartridge receptacles in the modular print cartridge receptacle assembly
70
. The features of inkjet printing system
80
may include an ink delivery system from an onboard ink supply internal to the print cartridge
10
or from tubes connected to an off-axis ink supply.
FIG. 9
is a simplified schematic perspective view of an inkjet printing system
80
using stationary print cartridges
10
and a belt drive media movement system
98
. When a printing operation is initiated, a sheet of media
92
is fed into the printing system
80
and the media is moved through a print zone
84
by a media moving mechanism
98
. The print zone
84
is defined as the area beneath the nozzles
17
of the print cartridges
10
in the path of the media
92
. The media moving mechanism
98
may be either a belt drive as shown in
FIG. 9
, drum as shown in
FIG. 10
, or a conventional roller drive mechanism as shown in FIG.
11
.
Generally, the modular print cartridge receptacle assembly
70
contains the number of print cartridges
10
needed to print a swath of a desired width. The print cartridge assembly
70
remains stationary during the printing operation while the media
92
is passed through the print zone under the print cartridges
10
and to a position out of the print zone by the media moving mechanism
98
.
FIG. 10
shows another embodiment where the media moving mechanism
98
A is a rotating drum. The media
92
is temporarily held to the drum as the drum rotates the media through the print zone
84
. In this embodiment the media may be moved through the print zone once, i.e., one drum rotation, or multiple times, i.e., multiple drum rotations before the media is released to an output tray (not shown). In this embodiment the modular print cartridge receptacle assembly
70
also remains stationary during the printing operation while the media
92
is passed through the print zone under the print cartridges.
FIG. 11
is a simplified schematic perspective view of a media moving mechanism
98
B using a conventional roller drive media moving mechanism. The portion of the media path through the print zone under the print cartridges
10
is shown with the print cartridge assembly
70
and its support assembly as shown in
FIGS. 9 and 10
removed for clarity of illustration. The media
92
is picked from an input tray and driven into the media path in the direction of arrow
93
. The leading edge of the media
92
is then fed between a drive roller
94
and an idler or pinch roller
95
and is driven into the print zone. A member
96
supports the media
92
as it is passed through the print zone under print cartridges
10
. After the media passes through the print area zone it encounters an output roller
97
and star wheel which propel the media
92
into an output tray (not shown). A star wheel is used so that its pointed edges can pull the media at the printed surface without smearing.
The present invention enables the print cartridges on printers using stationary print cartridges to be accessed by service station components such as wipers, scrapers, cleaning fluid applicators, ink receiving receptacles and cappers. The advantage of the present invention is that enables the print cartridges on stationary printhead printing system to be serviced in a manner similar to what is done in a conventional scanning printhead printing better. The benefits of correctly servicing the inkjet print cartridges are increased printhead quality, increased printhead life, more consistent performance over a wide range of environmental conditions, and reduced operator intervention such as manually cleaning and replacing print cartridges.
The present invention involves relocating the print cartridges on a printing system wherein the print cartridges are stationary during printing to a service station by combining linear and rotational motion in one or more of the directions X, Y, Z, θ
X
, θ
Y
, and θ
Z
in a Cartesian coordinate system. Any combination of X, Y, Z, θ
X
, θ
Y
, and θ
Z
movements could be implemented to relocate the print cartridges for servicing. The print cartridges are only relocated when required for servicing.
FIG. 12
is a simplified schematic perspective view of the inkjet printing system of
FIG. 9
without print cartridges installed, showing the print cartridge service station
100
in further detail. Referring to
FIGS. 9
,
10
and
12
, a mechanism for moving modular print cartridge assembly
70
generally may include slide rods or rails
82
along which modular print cartridge receptacle assembly
70
moves back and forth through the print zone
84
and out of the print zone to the service station
100
. Modular print cartridge receptacle assembly
70
is may be movably attached to slide rod
82
with a split bushing
86
, or any other suitable means of attachment. Alternatively, the bottom of the modular print cartridge receptacle assembly
70
can be mounted to a horizontal base
87
to which bushing
86
may be mounted. It will be appreciated that other means for supporting and traversing the modular print cartridge receptacle assembly
70
above the media are within the scope of the present invention. The print cartridge assembly
70
itself or the print cartridge assembly
70
and any additional means for supporting the modular print cartridge assembly
70
(e.g., such as base
87
) may be referred to herein as the print cartridge support structure
70
.
The guide rails or rods
82
and a movement control system enable the print cartridges to be moved to a location where a service station
100
is mounted below the print cartridges
10
to perform the servicing operations. In this case the print cartridges
10
move in a direction parallel to the columns of the printhead nozzle array
16
, instead of perpendicular to the columns of the printhead nozzle array
16
as in a typical scanning print cartridge system.
A motor
88
may be used to provide the capability of moving the print cartridge assembly
70
within the print zone or out of the print zone to the service station
100
. The motor
88
may be connected to a conventional drive belt
90
and pulley
91
arrangement, a screw drive mechanism (not shown), or an other similar mechanism which is connected to either the modular print cartridge receptacle assembly
70
or to the horizontal base
87
. This arrangement can be used to position the modular print cartridge receptacle assembly
70
to the appropriate position
84
within the print zone and also to move the modular print cartridge receptacle assembly
70
to the print cartridge service station
100
. The service station
100
includes modules for wiping
102
, for spitting ink into an ink receiving receptacle
104
, and for capping the print cartridge for storage
106
. The service station
100
may also include additional modules for scraping the wipers and applying a cleaning fluid to the wipers. The print cartridges
10
are moved in the x-axis direction to a position above the service station
100
. Movement of the print cartridges
10
provides wiping of the nozzle arrays by the wipers
102
, positioning above the ink receiving receptacle
104
for receiving ink ejected by the print cartridges
10
and positioning above the capping module
106
capping the nozzle array for storage.
While in
FIGS. 9
,
10
and
12
the service station
100
is shown as being located orthogonal to the media path
93
, it will be appreciated that the service station could be located at other angles with respect to the media path. In this case the print cartridges
10
would be counter-rotated by the same change in angle so that the columns of nozzle array
16
remain perpendicular to the media path.
For further details on service stations and their operation see the following patents, U.S. Pat. Ser. No. 5,949,453 entitled “Mixed Resolution Printing for Color and Monochrome Printers;” U.S. Pat. Ser. No. 5,450,105 entitled “Manual Pen Selection for Clearing Nozzles Without Removal from Pen Carriage;” U.S. Pat. Ser. No. 6,000,780 entitled “Wiping System for Inkjet Printer;” U.S. Pat. Ser. No. 5,847,727 entitled “Wet-wiping Technique for Inkjet Printhead;” U.S. Pat. Ser. No. 5,614,930 entitled “Orthogonal Rotary Wiping System for Inkjet Printheads;” U.S. Pat. Ser. No. 5,886,714 entitled “Actuation Mechanism for Translational Wiping of a Stationary Inkjet Printhead;” U.S. Pat. Ser. No. 5,984,450 entitled “Independent Wiping/Spitting Station for Inkjet Printhead;” U.S. Pat. Ser. No. 5,898,445 entitled “Translational Wiping technique for a Stationary Inkjet Printhead;” U.S. Pat. Ser. No. 5,907,335; U.S. Pat. Ser. No. 5,644,346; U.S. Pat. Ser. No. 5,621,441 and U.S. Pat. Ser. No. 5,905,514 which are herein incorporated by reference.
FIG. 13
is a simplified schematic perspective view of an inkjet printing system showing combined z-axis movement of the print cartridge assembly and x-axis movement of the service station. The print cartridge assembly
70
is raised up in the z-axis direction and the service station
100
is moved in the x-axis direction under the print cartridge assembly
70
. Movement of the service station
100
provides wiping of the nozzle arrays by the wipers
102
, positioning above the ink receiving receptacle
104
for receiving ink ejected by the print cartridges
10
and positioning above the capping module
106
capping the nozzle array for storage.
Others means for relocating the print cartridges by combining linear and rotational motion about different axes are shown in
FIGS. 14 and 15
.
FIG. 14
is a simplified schematic perspective view of an inkjet printing system showing combined y-axis rotation of the print cartridge assembly and z-axis movement of the service station. The print cartridge assembly
70
is rotated 90 degrees about the y-axis so that the print cartridges
10
are horizontal. Servicing access is from the side instead of from below. The service station
100
is moved in the z-axis direction. Movement of the service station
100
provides wiping of the nozzle arrays by the wipers
102
, positioning next to the ink receiving receptacle
104
for receiving ink ejected by the print cartridges
10
and positioning adjacent the capping module
106
capping the nozzle array for storage.
FIG. 15
is a simplified schematic perspective view of an inkjet printing system showing combined z-axis rotation of the print cartridge assembly and y-axis movement of the service station. The print cartridge assembly
70
is rotated 90 degrees about the z-axis out of the print zone. The service station
100
is moved in the y-axis direction under the print cartridge assembly
70
. Movement of the service station
100
provides wiping of the nozzle arrays by the wipers
102
, positioning above the ink receiving receptacle
104
for receiving ink ejected by the print cartridges
10
and positioning above the capping module
106
capping the nozzle array for storage.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made within departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims
- 1. A method of servicing inkjet printheads which are mounted on a carriage, comprising:providing a print zone for supporting media; holding the carriage in a stationary position over the print zone while the inkjet printheads apply ink to media in the print zone; providing a service station located away from the print zone, and mounting a plurality of different service modules on the station; causing the carriage and the service station to move relative to each other in different linear directions in order for the carriage to reach a servicing position, including moving the carriage independently of the service station to the servicing position such that the printheads are in adjacent aligned relationship with one of the different service modules; and causing servicing interaction to occur between the one service module and at least one of the printheads.
- 2. The method of claim 1 wherein said causing servicing interaction includes a servicing activity taken from the following: wiping, spitting, scraping, capping, applying cleaning fluid, priming.
- 3. The method of claim 1 which includes advancing media through the print zone in a direction identified as a Y axis, and moving the carriage to a servicing position in another direction identified as an X axis substantially normal to the Y axis, and wherein said causing servicing interaction includes capping at least one of the printheads in a different direction identified as a Z axis which is substantially normal to both the Y axis and the X axis.
- 4. The method of claim 1 which includes causing the carriage and the service station to move relative to each other in different linear directions in order for the carriage to reach the servicing position.
- 5. A method of servicing inkjet printheads which are mounted on a carriage, comprising:providing a print zone for supporting media; holding the carriage in a stationary position over the print zone while the inkjet printheads apply ink to media in the print zone; providing a service station located away from the print zone, and mounting a plurality of different service modules on the service station; moving the carriage independently of the service station to servicing position such that the printheads are in adjacent aligned relationship with one of the different service modules; causing servicing interaction to occur between the one service module and at least one of the printheads; further including advancing media through the print zone in a direction identified as a Y axis, and moving the carriage to a servicing position in another direction as an X axis substantially normal to the Y axis, and wherein said causing servicing interaction includes capping at least one of the printheads in a different direction identified as a Z axis which is substantially normal to both the Y axis and the X axis.
- 6. The method of claim 5 wherein said causing servicing interaction includes a servicing activity taken from the following: wiping, spitting, scraping, capping, applying cleaning fluid, priming.
US Referenced Citations (20)