In some printing systems printing liquid is ejected from a nozzle plate for printing. Servicing of the nozzle plate is generally beneficial for a variety of reasons, such as to prevent a build-up of dried printing liquid.
In 3D printing systems that use scanning printheads (such as thermal or piezo printheads) to deposit printing agents and many 2D printing systems, one or more printheads are passed in a reciprocating movement over a print zone. Printheads typically comprise a nozzle plate, which is generally planar with nozzle openings therein from which printing fluid is ejected for printing. The nozzles are typically a few tens of microns across.
Servicing of the nozzle plate is beneficial to address, for example, any build-up of dried printing fluid that can accumulate around nozzle openings. A build-up of dried printing fluid can cause mis-firing of one or more nozzles of the nozzle plate, which produces noticeable image quality defects, such as microbanding or white lines. Also, a nozzle can misdirect printing fluid if a nozzle is partially clogged. A clogged nozzle can also increase a temperature of the nozzle plate, because there is a reduction in the amount of heat removed from the nozzle plate due to the flow of printing fluid being reduced when one or more nozzles are clogged. The increase in nozzle plate temperature can increase the likelihood of the ejected printing fluid drying on the nozzle plate.
The formation of a crust of dried printing fluid is due to the loss of humidity in the meniscus of the printing fluid at the nozzle and the remnants of printing fluid in the surrounding space. The main contributing factors to the presence of dried printing fluid are a high printing fluid droplet firing frequency (which increases the temperature of the nozzle plate), a low humidity of air in contact with the nozzles, a printing time and a printing fluid composition.
A printhead servicing system is shown schematically in
In
The main purpose of the mist generator 12 is to produce many small water droplets, so as to facilitate the humidification of the surrounding air by the water droplets evaporating into the surrounding air. Use of the mist generator also provides a cooling effect on the mist and surrounding air due to the heat energy required for a phase change of water droplets as they evaporate into the surrounding air. The expansion of the water or water and air through an atomizing nozzle also provides a cooling effect.
The humidified air stream generator 10 also includes an air supply 16, which is simply an air inlet from the surroundings of the system into the humidified air stream generator 10. The air supply will provide air with a relative humidity, for example measured by a hygrometer, of the environment.
The humidified air stream generator 10 also includes an air stream accelerator 18, which in this example is an axial fan. Examples of other air stream accelerators 18 that could be used include radial fans, air blowers and compressed air feeds.
The humidified air stream generator 10 also includes a housing 13, which in this example is cuboidal in shape, in which are located the mist generators 12 and the air stream accelerator 18. The air stream accelerator 18 is directed towards an outlet 15 of the humidified air stream generator 10 and generates an accelerated air stream that generally passes between the horizontal dashed lines shown in the lower part of
The humidified air stream channeling module 20 comprises a duct 22, which in this example is circular in cross-section, to channel the generated humidified air stream from the humidified air stream generator 10 to the humidified air stream ejection module 30.
At the outlet 15 of the humidified air stream generator 10 the humidified air may contain droplets that have not yet undergone a phase change to evaporate in to the air stream. If these droplets were to be sprayed on to nozzle plates of the printheads (see
The humidified air stream ejection module 30 comprises a cuboidal chamber 32 to which an exit end of the duct 22 is attached to feed the humidified air stream into the chamber 32. The chamber 32 may be made of moulded plastics material, thermoformed plastics material, bent sheet metal, or press-formed metal. The chamber 32 includes openings 34, which in this example are in the form of nozzles. In other examples only one nozzle may be provided. The nozzles direct the humidified air stream towards the nozzle plates, as indicated by the arrows in
The nozzles may be arranged with an ejection angle to the chamber 32 that is less than 90 degrees, and may be in the region of 70 degrees to 80 degrees. The angle of ejection is chosen to improve the application of the humidified air stream to the nozzle plates. With an angle less than 90 degrees as mentioned above, there may be benefits in the airstream being directed underneath a developing crust on the nozzle plates.
The wiping module 40 is provided to remove residual printing fluid from the nozzle plates 52a by wiping blades 42 making contact with the nozzle plates as the carriage scans forward and backward over the wiping module 40 during a printing operation. A normal force is exerted between the wiping blades 42 and the nozzle plates to cause friction between the two and thereby wipe residual printing fluid from the nozzle plates.
The wiping module 40 may be an existing type, which may typically use silicone rubber wiping blades or ethylene propylene diene monomer (EPDM) rubber wiping blades.
The controller 17 is used to control the operation of the mist generators 12 and water supply 14 and air stream accelerator 18, as well as the wiping module 40.
In use, the printhead servicing system may be implemented as shown in
In a typical printing cycle the carriage 54 starts in the location at the right side of the printer 50 away from the printing zone 58 and above the second printhead servicing subsystem B. The openings 34 direct the cooled and humidified air stream that has been generated in the humidified air stream generator 10 at the nozzle plates 52a, which will allow moisture to be absorbed by any dried printing fluid on one or more of the nozzle plates 52a and/or any incipient crust of printing fluid on the nozzle plates 52a. The nozzle plates 52a are also cooled by the humidified air stream. The carriage then starts to move to the left towards the position shown in
The functioning of the printhead servicing system has been described in relation to
The humidified air stream generator 10 is provided take an air stream from a room environment or external supply and add humidity using the mist generators so that the air stream reaches almost to dewpoint at constant enthalpy, which has the additional effect of cooling the air stream. There is a greater cooling effect if a greater amount of mist is supplied by the mist generators. However, if too much mist is supplied by the mist generators, for a given temperature and pressure in the system, then the water from the misters will not evaporate and will remain as droplets in the air stream, which droplets could be supplied to the nozzle plates.
The controller 17 is used to control the operation of one or more of the mist generators 12, water supply 14 and air stream accelerator 18 so that the humidified airstream has a high relative humidity, almost at dewpoint, in one example it may be close to 100%, as it exits the openings 34. Close to 100% relative humidity may be above 99%, or may be above 95%, or may be above 90%, or may be above 80%.
In one example the air stream accelerator 18 is operated during operation of the printing system 50 and the mist generators 12 are operated intermittently, for example when the carriage 54 approaches the printhead servicing system, to ensure that the desired humidified airstream is provided from the openings 34 when the carriage 54 is present, but the housing 56 is not provided with air at near saturation level when the carriage 54 is not in the vicinity of the printhead servicing system. In one example the printhead servicing system is not operated at every pass of the carriage passed the printhead servicing system, instead the printhead servicing system may be operated intermittently.
The printhead servicing system examples described above have printheads that are movable in a scanning movement across a print zone. Different examples are possible in which the printhead servicing system is moved relative to a stationary printhead. Other examples printing systems use a single page-wide printhead or a page-wide array of printheads. In one example a page-wide printhead is stationary in use, with a paper or print zone moved beneath the printhead. In another example a page-wide array of printheads is stationary in use, with a paper or print zone moved beneath the array of printheads. For these examples the printhead servicing system is moved relative to the page-wide printhead or page-wide array of printheads.
As described above, the nozzle plate is cooled and dried or excess printing fluid is removed. The system and method described above provide a cooled and humidified air stream that is substantially free from liquid droplets of water, which might otherwise impart liquid water or cleaning fluid to the nozzle plate in the form of droplets. Such liquid water or cleaning fluid would potentially be fired to the printing area inadvertently. It is of benefit to keep the nozzles clean and cool, whilst not allowing them to be wetted with droplets.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the operations of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or operations are mutually exclusive.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/039836 | 6/28/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/263274 | 12/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4364065 | Yammamori et al. | Dec 1982 | A |
5790147 | Hensel | Aug 1998 | A |
5914734 | Rotering et al. | Jun 1999 | A |
6158838 | Capurso | Dec 2000 | A |
6497471 | Gargir | Dec 2002 | B1 |
6682165 | Yearout | Jan 2004 | B2 |
8636337 | Shinoda | Jan 2014 | B2 |
8757754 | Azuma et al. | Jun 2014 | B2 |
9315029 | Fernando et al. | Apr 2016 | B2 |
Number | Date | Country |
---|---|---|
709732 | Sep 1999 | AU |
2003165230 | Jun 2003 | JP |
20070091817 | Sep 2007 | KR |
2497683 | Nov 2013 | RU |
WO-2004108416 | Dec 2004 | WO |
WO-2016063539 | Apr 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20220048292 A1 | Feb 2022 | US |