Printhead unit and ink cartridge

Information

  • Patent Grant
  • 6244698
  • Patent Number
    6,244,698
  • Date Filed
    Friday, January 9, 1998
    26 years ago
  • Date Issued
    Tuesday, June 12, 2001
    23 years ago
Abstract
A printhead unit is detachably coupled to an ink cartridge. The printhead unit includes an ink passage and a damper member for absorbing a pulsation of ink in the ink passage. The damper member permits the forces created when the ink cartridge receives an impact to be absorbed rather than translated through to the printhead, thereby destroying the meniscuses in the nozzles.
Description




BACKGROUND OF INVENTION




The present invention relates to an ink jet printer having an ink cartridge and more particularly to a printhead unit and ink cartridge used in an ink jet printer.




A small impact applied to an ink jet printer, for example when the printer drops from a height of about 1 to 2 cm, will destroy the meniscuses in the nozzle plane of the printhead. When the ink jet printer receives an impact, the impact propagates to the printhead unit contained in the printer which causes the ink in the ink passage to begin to pulsate. Because the ink passage is substantially closed by an ink absorbing member (or filter) of the ink cartridge, the pulsation of ink is reflected from the ink cartridge and travels to the nozzles in the printhead thereby destroying the meniscuses in the nozzles. In the ink jet printers currently marketed, the meniscuses may even be destroyed when the printer is merely moved. When the meniscuses are destroyed, a variety of problems may arise including: “nozzle missing” resulting in the improper discharge of ink and the “bending” of the shooting ink drop thus causing the printhead to become soiled from leaking ink thereby affecting performance. As a result, ink jet printer manufacturers generally include in the printer manual instructions on how to manually clean the printhead after the printer has been moved. This problem is more acute for portable ink jet printers that are frequently moved. This forces the user to frequently clean the printhead to maintain acceptable printer performance.




The continuous loss of ink and the need to clean the printhead as a result of the meniscus destruction problem will adversely affect the marketability of these printers. One partial solution may be to increase the size of the ink cartridge thus providing the user with additional ink. However, increasing the size of the ink cartridge makes it difficult to meet the market demand for reduced printer size and portability.




Accordingly, it is desirable to have a printhead unit for use in an ink jet printer in which the meniscuses of the nozzle plane are not destroyed on impact.




SUMMARY OF THE INVENTION




The present invention is directed to a printhead unit which detachably couples to an ink cartridge. An ink passage extends through the ink cartridge and printhead. A damper member for absorbing a pulsation of ink in an ink passage is disposed in facing relationship with the ink passage.




The damper member for absorbing a pulsation of the ink is disposed in the printhead facing the ink passage. With this unique feature, the ink pulsation caused by the impact to the printer is absorbed before it reaches the nozzle plane preserving the meniscus at the nozzle plane.




A preferred embodiment of the invention includes a printhead unit of the surface contact type in which the printhead unit is coupled with the ink cartridge in a surface contact fashion. A connection member of the printhead unit is coupled with an ink supplying port of the ink cartridge. A head needle is disposed on the connection member. The head needle is mounted on a printhead and the ink passage of the printhead unit includes a first ink passage in fluid communication with the ink supplying port of the ink cartridge, a second ink passage in fluid communication with the first ink passage, and a third ink passage in fluid communication with the second ink passage of the printhead.




In one embodiment, the damper member is provided in the connection member in a position that faces the first ink passage. The damper member is easily formed in the connection member which is separate from the printhead and the head needle because in a connection structure of the surface contact type, the ink passage opening is large. Forming the damper member in the connection member does not have any adverse effect on the supplying of ink, as it would if it was formed in the printhead.




In an exemplary embodiment, the printhead unit is constructed such that the damper member is provided in the circumferential wall of the connection member. The damper member is formed as a stagnate air recess in fluid communication with the first ink passage allowing air to stagnate therein. The stagnate air recess may easily be formed by boring a long and narrow indentation into the circumferential wall of the connection member extending in a direction perpendicular to the first ink passage. The indentation faces the first ink passage. The stagnate air recess may also include a through-hole passing through the circumferential wall of the connection member and extending in the direction perpendicular to the first ink passage. A sealing member seals both ends of the through-holes. The stagnate air recess may easily be formed by drilling a through-hole in the circumferential wall, the sealing member being a rubber ring.




In a preferred embodiment, the stagnate air recess includes a choke passage in fluid communication with the first ink passage so that the surface tension of the ink at the choke passage blocks the inflow of ink into the stagnate air recess, and a buffering space that is contiguous with the choke passage. The damper member constructed in such a manner communicates with the first ink passage through the choke passage and prevents the inflow and outflow of the ink to and from the buffering space.




In a preferred embodiment, the damper member includes a flexible sealing film member located in a position facing the first ink passage, and a stagnate air recess located in a position facing the first ink passage with the flexible sealing film member disposed between the first ink passage and the air stagnate recess. In this way, the flexible sealing film member reliably prevents the inflow and outflow of ink to and from the stagnate air recess.




In another exemplary embodiment, the damper member is provided in the circumferential wall of the connection member, and includes a passage extending from the first ink passage to the outside of the circumferential wall. A flexible sealing film member is disposed on the outer surface of the circumferential wall for sealing the passage opening in the outside of the circumferential wall. In this way, the first ink passage is opened to outside air through the flexible sealing film member. Accordingly, an unlimited amount of force resulting from the pulsation of ink can be absorbed in a reliable manner.




The sealing film member may be replaced by a combination of a sealing cap provided at the opening of the outer end of the passage, and an urging means for urging the sealing cap in the sealing direction.




The damper member may be a flexible film member being filled with a gas, for example air, and located in the first ink passage. To form the damper member for absorbing the ink pulsation, the film member is put in the first ink passage without requiring any modifications to the connection member. The film member is bonded onto the inner wall of the first ink passage so that it remains stationary.




The film member may be replaced by a flexible foam member. In this case, the plurality of pores included in the foam member absorb the pulsation of ink.




The damper member may be placed in the head needle in a location facing the second ink passage. In this case, the damper member may easily be formed in the major part (tubular part) or the expanded part (ink reservoir) of the head needle. Placing the damper member in the head needle does not have any adverse effect on the ink passage as in the case of placing the damper member in the connection member.




In another embodiment, the printhead unit of the needle connection type is coupled with the ink cartridge in a needle contact type. A head needle is coupled with an ink supplying port of the ink cartridge. The head needle is mounted on the printhead. A passage includes a fourth ink passage formed in the head needle and coupled with the ink supplying port. A fifth ink passage is formed in the printhead and communicates with the fourth ink passage. In this case, the damper member is preferably provided in the head needle so as to not adversely affect the supplying of ink.




Under the present invention, an ink jet printer is provided with any of the printhead units previously defined. An ink jet printer thus constructed has a good impact resistance performance and therefore can be made portable or otherwise frequently moved.




Further, under the present invention there is provided an ink cartridge for use in an ink jet printer, the ink cartridge being selectively attachable to a printhead unit contained in the printer body of the ink jet printer, the ink cartridge having a member positioned facing an ink reservoir of an ink supplying port for absorbing the pulsation of ink. In this construction, because the damper member is positioned facing an ink reservoir of an ink supplying port, the ink pulsation can be absorbed without having to alter the structure of the printer body. This enables any conventional ink jet printer to include the pulsation absorbing function.




In a preferred embodiment, the damper member is provided in the circumferential wall of the ink supplying port.




In a preferred embodiment, the ink cartridge is constructed such that a sealing member is provided in the ink supplying port, the sealing member sealing the ink reservoir and a head needle of the printhead being thrust into the sealing member, and the damper member being provided in the sealing ember. In this way, the damper member may be provided more easily than if it is formed in the circumferential wall of the ink supporting port.




In a preferred embodiment, the damper member is a sealing member formed with a flexible foam member. In this case, the damper member may be provided in a simple and easy manner and at a low cost.




In a preferred embodiment, the damper member is a flexible film member being filled with a gas, for example air, and located in the ink reservoir or a flexible, foam member located in the ink reservoir.




Accordingly, it is an object of this invention to provide a printhead unit and ink cartridge in which the meniscuses in the nozzle plane are not destroyed on impact.




Another object of the invention is to provide an impact resistant ink cartridge for use in conventional ink jet printers.




Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.




The invention accordingly comprises the features of construction, combinations of elements, and arrangement of parts which will be exemplified in the constructions hereinafter set forth, and the scope of the invention will be indicated in the claims.











BRIEF DESCRIPTION OF THE DRAWINGS




For a fuller understanding of the invention, reference is had to the following description taken in connection with the accompanying drawings, in which:





FIG. 1

is a cross sectional view of a tape printing device incorporating a printhead unit and an ink cartridge constructed in accordance with the present invention;





FIG. 2

is an exploded view of a printhead unit and an ink cartridge used in the tape printing device of

FIG. 1

showing surface contact construction;




FIG.


2


(


a


) is an enlarged sectional view of an ink supply port of the needle type connection;




FIG.


2


(


b


) is an enlarged sectional view of an ink supply needle;





FIG. 3

is an enlarged cross sectional view of a printhead unit and ink cartridge of the surface contact type constructed in accordance to the present invention;





FIG. 4

is an enlarged cross sectional view of a printhead unit and an ink cartridge of the needle connection type constructed in accordance to the present invention;





FIG. 5

is a cross sectional view of a printhead unit of the surface contact type constructed in accordance to the present invention;




FIG.


5


(


a


) is an enlarged view of the damper member of

FIG. 5

constructed in accordance with the invention;





FIG. 6

is a cross sectional view of a printhead unit and ink cartridge of the needle connection type constructed in accordance with another embodiment of the present invention;





FIG. 7

is an alternative embodiment of the printhead unit and ink cartridge of the needle connection type constructed in accordance with another embodiment of the present invention;





FIG. 8

is a sectional view of the printhead unit constructed in accordance with an alternative embodiment of the present invention;





FIG. 9

is a sectional view of the printhead unit constructed in accordance with another embodiment of the present invention;





FIG. 10

is a sectional view of a printhead unit of the surface connection type constructed in accordance with the present invention;




FIG.


10


(


a


) is an enlarged view of the damper member of

FIG. 10

;





FIG. 11

is a sectional view of the printhead unit and ink cartridge of the needle connection type constructed in accordance with another embodiment of the present invention;





FIG. 12

is a cross sectional view of the printhead unit and ink cartridge constructed in accordance with another embodiment of the present invention;





FIG. 13

is a sectional view of the printhead unit constructed in accordance with another embodiment of the present invention;





FIG. 14

is a sectional view of the printhead unit constructed in accordance with another embodiment of the present invention;





FIG. 15

is a sectional view of a printhead unit of the surface connection type constructed in accordance with another embodiment of the present invention;




FIG.


15


(


a


) is an enlarged sectional view of the damper member of

FIG. 15

;





FIG. 16

a cross sectional view of a printhead unit and ink cartridge constructed in accordance with another embodiment of the present invention;





FIG. 17

is a cross sectional view of a printhead unit constructed in accordance with another embodiment of the present invention;





FIG. 18

is a cross sectional view of printhead unit of the surface connection type constructed in accordance with another embodiment of the present invention;





FIG. 19

is a cross sectional view of a printhead unit and an ink cartridge constructed in accordance with another embodiment of the present invention;





FIG. 20

is a cross sectional view of a printhead unit constructed in accordance with another embodiment of the present invention;





FIG. 21

a cross sectional view of a printhead unit and ink jet cartridge of the needle connection type constructed in accordance with another embodiment of the present invention;





FIG. 22

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 23

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 24

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 25

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 26

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 27

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 28

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 29

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 30

is a cross sectional view of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 31

is a cross sectional view of another alternative embodiment of a damper member constructed in accordance with another embodiment of the present invention;





FIG. 32

is an enlarged cross sectional view of another embodiment of a damper member constructed in accordance to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to

FIG. 1

, there is shown a cross sectional view of a tape printing device, generally indicated as


1


. As shown, tape printing device


1


includes a device body


2


, defined by a case


5


. A printhead unit


10


is mounted within case


5


along with an ink cartridge


3


. Ink cartridge


3


is filled with three color inks I. A tape cartridge


4


containing a tape T is detachably attached to case


5


. A keyboard


6


including various keys


6




a


is arranged on the front upper surface of device case


5


. An LCD (not shown) is arranged on the rear upper surface of device body


2


.




A selectively openable first door


8


is disposed on the rear side of device case


5


so that it closes a tape cartridge setting portion


7


in which tape cartridge


4


is set. First door


8


is opened to provide access for removing tape cartridge


4


from tape cartridge setting portion


7


. A tape exit port


9


is disposed on the rear side of device case


5


at a location above first door


8


. Printed tape T is discharged through tape exit port


9


. A second door


11


is provided on the lower side of device case


5


adjacent printhead unit


10


. Second door


11


is selectively openable so that ink cartridge


3


may be inserted into or removed from tape printing device


1


.




An information processor unit (not shown) is disposed in the front portion of device case


5


. The center portion of device case


5


contains printhead unit


10


. An ink cartridge


3


is removeably attached to printhead unit


10


. A head driver unit


12


, mounted within case


5


, is coupled to printhead unit


10


for driving printhead unit


10


(for scanning) when the printing is performed. The rear portion of device case


5


contains a tape supplying unit


13


for withdrawing tape T from tape cartridge


4


and supplying it to printhead unit


10


and a tape exit portion


14


for feeding printed tape T to the tape exit port


9


. Printhead unit


10


, head driver unit


12


, tape supplying unit


13


are formed as a unitary structure, mounted on a base frame


14


and placed into device body


2


.




During operation the desired information is entered into printing device


1


using a plurality of keys


6




a


. The user then ascertains that the entered information is correct and a print command is issued to printing device


1


. In response, tape supplying unit


13


withdraws tape T from tape cartridge


4


and supplies it to printhead unit


10


. Then, tape T passes in front of printhead unit


10


and head driver unit


12


reciprocally moves printhead unit


10


along tape T. During this reciprocate motion, printhead unit


10


receives ink


5


from ink cartridge


3


and ejects inks I onto moving tape T thereby printing on tape T. The movement of printhead unit


10


along tape T is a fast scan direction, and the direction of the movement of tape T through case body


5


is a slow scan direction. After printing is completed, tape T is cut and discharged out of tape printing device


1


through tape exit port


9


and used as a label.




As shown in

FIG. 2

, there are two types of connection structures that connect a printhead unit to an ink cartridge: a surface contact type using ink cartridge


3


and printhead unit


10


(FIG.


2


), and a needle connection type which employs ink cartridge


3


′ and printhead unit


10


′ (FIGS.


2


(


a)


,


2


(


b


)). The surface contact type will first be described in detail, and afterwards the needle connection type will then be described highlighting the structural differences between the two.




Referring now to

FIG. 2

, there is shown ink cartridge


3


of the surface contact type formed with a cartridge case


21


which includes a case body


221


and a case cover


222


for covering the opened end of case body


221


. Cartridge case


21


, which is also called an ink tank, contains an ink holding member


22


for holding ink I. The ink tank includes three ink chambers (not shown) for containing inks I of three colors: cyan, magenta and yellow. An ink supplying port


23


for supplying ink I to printhead


10


is disposed at the bottom of case body


221


in a downwardly protruding direction. Ink cartridge


3


is detachably coupled to printhead unit


10


at ink supplying port


23


. A filter


24


is placed below ink holding member


22


.




Printhead unit


10


of the surface contact type includes a printhead


31


with a plurality of nozzles


31


a arrayed on its top face. A head needle


32


located within tape printing device


1


is formed on printhead


31


. A connection cap


33


(connection member) for covering head needle


32


receives head needle


32


therein. A cartridge holder


34


receives ink tank cartridge


21


. Printhead unit


10


is then mounted on a carriage


35


, which is coupled with head driver unit


12


. After ink cartridge


3


is attached to cartridge holder


34


a press cover


36


presses ink cartridge


3


against printhead


31


.




Referring now to

FIG. 3

, there is shown an enlarged connection cap


33


which is cylindrically shaped. A first ink passage


37


is formed between filter


24


and head needle


32


, i.e. in close proximity to ink cartridge


3


within connection cap


33


. The tip of head needle


32


protrudes into first ink passage


37


. A pair of rings


38


are disposed within connection cap


33


and form a tension fit with head needle


32


adjacent a narrowed portion


338


of connection cap


33


which defines the bottom of first ink passage


37


. Narrowed portion


338


of connection cap


33


and head needle


32


seal first ink passage


37


. A seal ring


39


is disposed between the outer circumferential surface of connection cap


33


and the inner circumferential surface of ink supplying port


23


of ink cartridge


3


.




Head needle


32


is dimensioned and shaped like an inverse T having a flattened base and a thinned rod with a wedge-like tip, which extends upwardly from a central part of the flattened base. A second ink passage


40


is formed within head needle


32


and includes a pair of thin passages


40




a


disposed at the upper end of second ink passage


40


and extending through the tip of head needle


32


and into first ink passage


37


, a main passage


40




b


that extends from the lower ends of thin passages


40




a


to a reservoir


40




c


disposed at the base of head needle


32


. Reservoir


40




c


is flared in a downstream direction from the direction of ink flow. A filter


41


, which is disposed on head needle


32


thereby closing the bottom of reservoir


40




c.






Printhead


31


includes a third ink passage


42


the upper end of which is in fluid communication with second ink passage


40


, while the lower end of third ink passage


42


is branched into a plurality of thin passages. The distal ends of the branched thin passages are in fluid communication with nozzles


31




a


. First ink passage


37


, second ink passage


40


and third ink passage


42


form a continuous ink passage


141


through printhead unit


10


. The ink passage is formed in each of the three ink chambers of the ink tank under discussion, as a matter of course.




Ink cartridge


3


′ and printhead unit


10


′ of the needle connection type will be described with reference to FIGS.


2


(


a


),


2


(


b


) and


4


. A rubber seal


25


is disposed within the inner side of ink supplying port


23


. When ink cartridge


3


′ is attached to printhead unit


10


′ (FIG.


2


(


b


)), head needle


32


is thrust through rubber seal


25


(

FIG. 4

) so that an ink reservoir


26


in ink cartridge


3


′ is in fluid communication with fourth ink passage


43


in printhead unit


10


′.




As shown in

FIG. 4

, printhead unit


10


′ includes printhead


31


with nozzles


31


a arrayed on its tip. A head needle


32


is disposed on printhead


31


and printhead


31


is mounted on cartridge holder


34


. Unlike printhead unit


10


, connection cap


33


is not included in printhead unit


10


′. Similar to printhead unit


10


of the surface contact type, a fourth ink passage


43


is formed in head needle


32


, and a fifth ink passage


44


is formed in printhead


31


. A filter


28


is provided in the ink cartridge


3


′.




Referring now to

FIGS. 5-21

, there is shown a damper member


16


constructed in accordance with the present invention. In each of the embodiments discussed herein, damper member


16


absorbs a pulsation of ink I that results when tape printing device


1


receives an impact. Damper member


16


is located facing ink passage


37


or ink reservoir


26


. As explained below, damper member


16


may be formed in a variety of ways and disposed in various locations within the printhead unit ink passage.




Referring now to

FIGS. 5

,


5


(


a


), a damper member


16


is formed in circumferential wall


51


of connection cap


33


of printhead unit


10


of the surface contact type. Damper member


16


includes a stagnate air recess


52


which opens into first ink passage


37


and allows air to stagnate therein. To form stagnate air recess


52


, a hole may be bored in the inner side of circumferential wall


51


by means of a small diameter drill. When first ink passage


37


is filled with ink I, air is sealed in stagnate air recess


52


.




Stagnate air recess


52


is dimensioned and shaped as a long and narrow indentation. The surface tension of ink I prevents air from going into and out of stagnate air recess


52


. The magnitude of the pulsation of ink I that results from an impact to tape printing device


1


is determined by the magnitude of the impact and the quantity of ink I in ink passage


37


. If the magnitude of the pulsation of ink I is such that ink I is not sufficiently absorbed by a simple stagnate air recess, a plurality of stagnate air recesses


52


may be formed.




Damper member


16


may be modified as shown in FIG.


22


. In this embodiment, damper member


16


includes a choke passage


53


in fluid communication with first ink passage


37


and a buffering space


54


which extends from choke passage


53


further into circumferential wall


51


. When ink passage


37


is filled with ink I, air is sealed in buffering space


54


. The volume of buffering space


54


for absorbing the ink pulsation may be increased while blocking an inflow of ink I into the buffering space


54


.




A second embodiment of damper member


16


is shown in FIG.


23


. In this embodiment, a flexible film


55


is provided at the open end of stagnate air recess


52


, i.e. the end that is adjacent to first ink passage


37


, so that the flow of air into and out of stagnate air recess


52


is more reliably blocked.




Because stagnate air recess


52


and buffering space


54


are formed in the inner side of circumferential wall


51


, construction of damper member


16


according to the previous embodiments is difficult. Another embodiment of damper member


16


as shown in

FIG. 24

overcomes this problem. In this embodiment, stagnate air recess


52


is formed in connection cap


33


by drilling through-holes from the outer side of connection cap


33


to first ink passage


37


. The ends of the through-holes which open to the outside of cartridge holder


4


, are sealingly closed with a sealing member, such as a film


56


(

FIG. 24

) welded on connection cap


33


, a rubber hosepipe


57


(

FIG. 25

) connected to connection cap


33


, or an O-ring


58


(FIG.


26


).




Another embodiment of damper member


16


is shown in

FIG. 6

where damper member


16


is formed in the ink cartridge


3


′ of the needle connection type. In this embodiment, damper member


16


is formed in rubber seal


25


. Damper member


16


includes a stagnate air recess


52


formed in rubber seal


25


which opens into ink reservoir


26


. Because rubber seal


25


is a component that is formed separately from cartridge case


21


, it is easy to form damper member


16


in rubber seal


25


before rubber seal


25


is attached to cartridge case


21


.




Yet another embodiment of damper member


16


formed in ink cartridge


3


′ of the needle connection type is shown in FIG.


7


. In this embodiment, damper member


16


is a stagnate air recess


52


formed in circumferential wall


59


of ink supplying port


23


which opens into ink reservoir


26


.




Still another embodiment of damper member


16


is shown in FIG.


8


. Damper member


16


includes a stagnate air recess


52


formed in head needle


32


of printhead unit


10


of the surface contact type or printhead unit


10


′ of the needle connection type. In this embodiment, damper member


16


is formed in the main body


60


of head needle


32


. Damper member


16


includes an stagnate air recess


52


opened into second ink passage


40


in the case of printhead unit of the surface contact type or fourth ink passage


43


in the case of printhead unit


10


′ of the needle connection type.




As shown in

FIG. 9

damper member


16


includes a recess


52


. Recess


52


is formed in the base


61


of head needle


32


of the printhead unit


10


of the surface contact type or printhead unit


10


′ of the needle connection type. Recess


52


opens into either second ink passage


40


(surface connection type) or fourth ink passage


43


(needle connection type). Because head needle


32


is used for both the surface contact type and the needle connection type printhead units, by placing damper member


16


in head needle


32


the damping function can be easily incorporated into either of the printhead connection structure types.




Reference is now made to

FIGS. 10-14

which illustrate a damper member constructed in accordance with another embodiment, the primary difference being that the recess fills with ink. Second damper member


16


′ includes a passage


62


. Passage


62


is formed in circumferential wall


51


of connection cap


33


of printhead unit


10


of the surface contact type. Passage


62


connects first ink passage


37


to the outside of the connection cape


33


. One end of passage


62


, the end on the outer circumference of connecting cap


33


, is sealed with a flexible sealing film


63


. When pulsation of ink I enters passage


62


, first ink passage


37


is opened to the air through flexible sealing film


63


which absorbs most of the pulsation of ink I.




Other embodiments of second damper member


16


′ are shown in

FIGS. 27-29

. In

FIG. 27

, sealing film


63


expands when it receives a pressure from ink I pulsating through passage


62


. In

FIG. 28

, sealing film


63


is previously slackened so it can expand further under pressure. In yet another embodiment shown in

FIG. 29

, the tip of sealing film


63


is formed to be balloon-shaped.




Another embodiment damper member


16


′ is shown in

FIG. 11

where second damper member


16


′ is formed in ink cartridge


3


′ of the needle connection type. Specifically, second damper member


16


′ includes a passage


62


formed through a portion of rubber seal


25


so that one end of second passage


62


opens into ink reservoir


26


while the other end opens into the inner part of rubber seal


25


. The end of passage


62


away from ink reservoir


37


is also covered with a sealing film


63


.




Yet another embodiment of second damper member


16


′ is shown in FIG.


12


. In this embodiment, damper member


16


′ is also formed in the ink cartridge


3


′ of the needle connection type. Specifically, damper member


16


′ includes a through-hole passage


62


passing through circumferential wall


59


of ink supplying port


23


. A sealing film


63


is disposed on the outer surface of circumferential wall


59


across passage


62


.




Still another embodiment of damper member


16


′ is shown in FIG.


13


. In this embodiment damper member


16


′ includes a passage


62


which passes through the main body of head needle


32


(of either the needle connection type or the surface contact type). One end of the passage is opened into second ink passage


40


(surface connection type) or fourth ink passage


43


(needle connection type). The opposite end is covered with a sealing member


63


.




A further embodiment damper member


16


′ is shown in FIG.


14


. In this embodiment damper member


16


′ includes a through-hole passage


62


extending through base


61


of head needle


32


. One end of the passage


62


is opened into either second ink passage


40


(surface connection type) or fourth ink passage


43


(needle connection type). The opposite end of passage


62


is covered by film


63


as discussed above.




Reference is made to

FIGS. 30-32

in which another embodiment of the damper generally indicated as


16


″ is shown. These embodiments differ from damper member


16


′ in that a sealing cap is used in place of sealing film


63


to tightly seal the end of the passage that is opened to the outside. Specifically referring to

FIG. 30

, damper member


16


″ includes cylindrical member


65


mounted on circumferential wall


51


across a passage


62


. A sealing cap


64


is T-shaped with the cross bar of T-shaped sealing cap


64


slidably movable in cylindrical member


65


. The vertical portion of T-shaped sealing cap


64


is slidably received in passage


62


so that its tip reaches approximately the mid point of passage


62


. A coil spring


66


is disposed within cylindrical member


65


to bias sealing cap


64


into passage


62


. Usually when ink I is consumed, a negative pressure is created within passage


62


so that the vertical portion sealing cap


64


moves into passage


62


without the aid of a coiled spring


66


. To secure the reliable insertion of sealing cap


64


, coiled spring


66


can be used to constantly urge sealing cap


64


towards passage


62


. When ink I is pulsated thereby applying pressure to sealing cap


64


, sealing cap


64


undergoes a piston-like motion; moving against the urging force of spring


66


while a portion of the vertical bar portion remains within the passage


62


. Thus, the pulsation of ink I is absorbed through the motion of sealing cap


64


.




In another embodiment shown in

FIG. 31

, a damper member


16


″ includes a passage


62


extending through circumferential wall


59


. A housing


72


mounted on circumferential wall


59


extends across an opening passage


62


. A sealing cap


64


slidably mounted within housing


72


is pressed against the opening of passage


62


thus sealing passage


62


. In yet another embodiment shown in

FIG. 32

, sealing cap


64


is pivotably mounted about a support shaft


68


within housing


72


. A torsion coiled spring


69


is mounted about shaft


68


. Sealing cap


64


pivots to open and close the opening of passage


62


and is urged in the sealing direction by torsion coiled spring


69


. In damper member


16


″ of

FIGS. 31 and 32

, ink I may leak out of passage


62


. To absorb the leaked ink I, sealing cap


64


may be covered with suitable ink absorbing means.




Reference is now made to

FIGS. 15-17

in which another embodiment of the damper member, generally indicated as


16


′″ is shown. As shown in

FIGS. 15

,


15


(


a


) damper member


16


′″ is formed in connection cap


33


of printhead unit


10


(the surface contact type) and consists of a flexible film member


71


filled with a gas, for example, air. Film member


71


is bonded onto the inner wall of first ink passage


37


. When a pressure caused by the pulsation of ink I acts on film member


71


, film member


71


contracts to absorb the pressure. Because this does not require any modification to connection cap


33


, construction of damper member


16


′″ according to this embodiment is greatly simplified. Another embodiment of damper member


16


′″, shown in

FIG. 16

, is formed in ink cartridge


3


′ of the needle connection type. In this embodiment film member


71


is bonded onto the inner wall of ink reservoir


26


. In yet another embodiment shown in

FIG. 17

, damper member


16


′″ includes film member


71


bonded in head needle


32


of printhead unit


10


(the surface contact type) of printhead unit


10


′ (the needle connection type). In this embodiment, damper member


16


′″ consists of film member


71


which is bonded on the inner wall of reservoir


40




c.






Reference is now made to

FIGS. 18-21

in which another embodiment of the damper member, generally indicated as


16


′″, is shown. The difference between damper member


16


′″ and damper member


16


′″ is the use of a foam member. Referring now to

FIG. 18

, damper member


16


′″ consists of a ring-shaped foam member


72


formed on connection cap


33


of printhead unit


10


of the surface contact type. Foam member


72


is dimensioned and shaped to be disposed on the inner wall of first ink passage


37


. Foam member


72


includes a plurality of pores. When the pulsation of ink I exerts pressure on foam member


72


, the pores of foam member


72


are compressed thereby absorbing the pressure. Because no modification of connection cap


33


is required for damper member


16


′″ in this embodiment, construction is greatly simplified.




Another embodiment of damper member


16


′″, shown in

FIG. 19

is provided in ink cartridge


3


′ of the needle connection type. In this embodiment foam member


72


is disposed on the inner wall of ink reservoir


26


. Yet another embodiment of damper member


16


′″, shown in

FIG. 20

, includes foam member


72


disposed in head needle


32


of the printhead unit


10


(the surface contact type) or printhead unit


10


′ (the needle connection type). Specifically, foam member


72


is disposed on the inner wall of main passage


40




b


. In another embodiment, shown in

FIG. 21

, damper member


16


′″ is provided in ink cartridge


3


′ of the needle connection type. Damper member consists of a rubber seal


25


′ formed from foam. Foam member


72


need only be on the portion of rubber seal


25


′ that faces ink reservoir


26


. When a pressure caused by ink pulsation is exerted on foam member


72


, the pores of foam member


72


are compressed to absorb the pressure.




As described above, the present invention provides damper member


16


in printhead unit


10


or ink cartridge


3


, that properly absorbs a pulsation of ink I caused by impact to tape printing device


1


. Therefore, if tape printing device


1


receives an impact, the meniscuses in the nozzle plane are not destroyed, thus greatly improving tape printing device


1


impact resistance.




Damper member


16


may be provided in printhead unit


10


or ink cartridge


3


. However, in the surface contact type of printhead where ink I is stagnated in ink cartridge


3


, the damper member


16


is preferably provided in connection cap


33


of printhead unit so that head needle


32


and the printhead


31


may be used without any design modifications and damper member


16


operation is simplified. On the other hand, in order to improve the impact resistance of tape printing device


1


.




While the present invention was described in reference to the tape printing device


1


, it is evident that the invention is applicable to ink jet printers in general.




As seen from the foregoing description, a printhead unit constructed according to the present invention absorbs a pulsation of the ink caused by an impact applied to a printing device before the pulsating ink propagates to the nozzle plane and breaks the meniscuses. In this way the meniscuses in the nozzle plane are protected from breakage and the impact resistance of the printing device is greatly improved.




Likewise, in an ink jet printer constructed according to the present invention, the impact resistance of its printhead unit is greatly improved. In this way, the ink jet printer can be made portable or otherwise frequently moved and still avoid the adverse consequences of broken meniscuses.




In an ink cartridge constructed according to the present invention, where damper member


16


properly absorbs a pulsation of ink, merely attaching the ink cartridge to the printer improves the printer's impact resistance without any design modifications.




It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above constructions without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.



Claims
  • 1. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means disposed facing said ink passage for absorbing a pulsation of ink in said ink passage caused by impact to the ink cartridge when the ink cartridge is moved while the ink cartridge is coupled to the printhead unit.
  • 2. The printhead unit of claim 1, wherein said ink cartridge includes an ink supply port and said printhead unit includes a printhead; a head needle mounted on said printhead; a connection member detachably coupled to said ink supply port for receiving said head needle; and said ink passage includes a first ink passage in fluid communication with said ink supplying port, a second ink passage in fluid communication with said first ink passage, and a third ink passage in fluid communication with said second ink passage.
  • 3. The printhead unit of claim 2, wherein said damper means is provided in said connection member facing said first ink passage.
  • 4. The printhead unit of claim 3, wherein said connection member has a circumferential wall, wherein said damper means includes a stagnate air recess having an opening at a first end and being closed at a second end for allowing air to stagnate therein, said stagnate air recess is disposed in said circumferential wall and in fluid communication with said first ink passage.
  • 5. The printhead unit of claim 4, wherein said stagnate air recess includes a choke passage formed in said circumferential wall in fluid communication with said first ink passage, said choke passage dimensioned and shaped for blocking a flow of ink into said stagnate air recess, and a buffering space communicating with said choke passage, said buffering space dimensioned and shaped for absorbing the pulsation of ink and said choke passage being disposed between said buffering space and said first ink passage.
  • 6. The printhead unit of claim 3, wherein said connection member has a circumferential wall, and said damper means includes a passage having a first opening in fluid communication with said first ink passage and a second opening on the outside of said circumferential wall, and a flexible sealing film member extending across said second opening for sealing said passage.
  • 7. The printhead unit of claim 2, wherein said damper means is a flexible, film member containing a gas and positioned in said first ink passage.
  • 8. The printhead unit of claim 2, wherein said damper means is a flexible, foam member disposed in said first ink passage.
  • 9. The printhead of claim 1, wherein said ink cartridge includes an ink supply port and said printhead unit includes a printhead; a head needle mounted on said printhead; said head needle detachably coupled to said ink supply port; and said ink passage includes a first ink passage formed in said head needle and in fluid communication with said ink supply port, and a second ink passage being formed in said printhead and in fluid communication with said first ink passage.
  • 10. The printhead unit of claim 1, wherein said printhead unit includes an ink jet printhead.
  • 11. The ink cartridge of claim 10, wherein said printhead unit includes an ink supply port and an ink reservoir, andwherein said damper means for absorbing a pulsation of ink is positioned to face said ink reservoir.
  • 12. The printhead unit of claim 11, wherein said ink supply port has a circumferential wall and said damper member is disposed in said circumferential wall.
  • 13. The printhead unit of claim 11, further comprising a sealing member disposed in said ink supply port for sealing said ink reservoir, a head needle mounted on said printhead unit received by said sealing member, andsaid damper means being disposed in said sealing member.
  • 14. The printhead unit of claim 11, further comprising a sealing member formed as a flexible foam member, said sealing member being disposed in said ink supply port for sealing said ink reservoir, and a head needle mounted on said printhead unit being received by said sealing member, andsaid damper means is said sealing member.
  • 15. The printhead unit of claim 11, wherein said damper means is a flexible film member containing gas disposed in said ink reservoir.
  • 16. The printhead unit of claim 11, wherein said damper meams is a flexible, foam member disposed in said ink reservoir.
  • 17. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means disposed facing said ink passage for absorbing a pulsation of ink in said ink passage; said ink cartridge having an ink supply port and said printhead unit having a printhead; a head needle mounted on said printhead; a connection member detachably coupled to said ink supply port for receiving said head needle; and said ink passage includes a first ink passage in fluid communication with said ink supplying port, a second ink passage in fluid communication with said first ink passage, and a third ink passage in fluid communication with said second ink passage; said damper means being provided in said connection member facing said first ink passage; and said connection member having a circumferential wall, and said damper means including a stagnate air recess formed as a through-hole passing through said circumferential wall of said connection member, said through-hole having a first end and a second end, said stagnate air recess extending in a direction perpendicular to said first ink passage, and sealing means for sealing said first end and said second end of said through-hole.
  • 18. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means facing said ink passage for absorbing a pulsation of ink in said ink passage; said ink cartridge including an ink supply port and said printhead unit including a printhead; a head needle mounted on said printhead; a connection member detachably coupled to said ink supply port for receiving said head needle; and said ink passage includes a first ink passage in fluid communication with said ink supplying port a second ink passage in fluid communication with said first ink passage, and a third ink passage in fluid communication with said second ink passage; said damper means being provided in said connection member facing said first ink passage; and said connection member having a circumferential wall, and said damper means including a stagnate air recess formed in said circumferential wall with an opening therein, said opening facing said ink passage, a flexible, sealing film member positioned across said opening, said sealing film member being positioned in between said first ink passage and said stagnate air recess.
  • 19. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means facing said ink passage for absorbing a pulsation of ink in said ink passage; said ink cartridge including an ink supply port and said printhead unit including a printhead; a head needle mounted on said printhead; a connection member detachably coupled to said ink supply port for receiving said head needle; and said ink passage including a first ink passage in fluid communication with said ink supplying port, a second ink passage in fluid communication with said first ink passage, and a third ink passage in fluid communication with said second ink passage; said damper means being provided in said connection member facing said first ink passage; and said connection member having a circumferential wall having an outside, wherein said damper means includes a passage having a first opening in fluid communication with said first ink passage and a second opening on the outside of said circumferential wall, a housing mounted across said second opening; a sealing cap mounted in said housing for sealing said passage and moveable within said housing between a first direction towards said second opening and a second direction away from said second opening for absorbing said pulsation of ink, and urging means for urging said sealing cap in the first direction.
  • 20. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means facing said ink passage for absorbing a pulsation of ink in said ink passage; said ink cartridge including an ink supply port and said printhead unit including a printhead; a head needle mounted on said printhead; a connection member detachably coupled to said ink supply port for receiving said head needle; and said ink passage including a first ink passage in fluid communication with said ink supplying port, a second ink passage in fluid communication with said first ink passage, and a third ink passage in fluid communication with said second ink passage; and said damper means being mounted in said head needle and disposed to face said second ink passage.
  • 21. A printhead unit detachably coupled to an ink cartridge, comprising:an ink passage; and damper means facing said ink passage for absorbing a pulsation of ink in said ink passage; said ink cartridge includes an ink supply port and said printhead unit includes a printhead; a head needle mounted on said printhead; said head needle detachably coupled to said ink supply port; and said ink passage includes a first ink passage formed in said head needle and in fluid communication with said ink supply port, and a second ink passage being formed in said printhead and in fluid communication with said first ink passage; and said damper means being mounted in said head needle and disposed to face said fourth ink passage.
Priority Claims (1)
Number Date Country Kind
9-013393 Jan 1997 JP
US Referenced Citations (6)
Number Name Date Kind
4112433 Vernon Sep 1978
4354197 Reitberger Oct 1982
4638327 Sutera et al. Jan 1987
5477963 Mochizuki et al. Dec 1995
5633667 Miyazawa May 1997
5808644 Imamura et al. Sep 1998
Foreign Referenced Citations (3)
Number Date Country
61-112648 May 1986 JP
1-308645 Dec 1989 JP
4-265752 Sep 1992 JP