1. Field of the Invention
The present invention relates to a printing apparatus and a driving method therefor.
2. Description of the Related Art
A printing apparatus includes, for example, a printhead for printing on a printing medium, and a conveying roller for conveying the printing medium. A plurality of nozzles for printing dots by discharging ink are provided in an inkjet printhead, and each nozzle performs preliminary discharge at a predetermined interval. Preliminary discharge is one of recovery processes of the printhead to prevent clogging of each nozzle. Since nozzles whose driving frequency is relatively low can appropriately print dots by performing preliminary discharge, the quality of an image formed on a printing medium is improved.
Japanese Patent Laid-Open No. 2005-246643 discloses a technique of performing “preliminary discharge on a sheet” to print dots by preliminary discharge on a printing medium at a density which has no influence on the visibility. Preliminary discharge on a sheet is advantageous in, for example, improving the image quality in an arrangement in which printing is executed on a printing medium such as a longitudinally long-shaped sheet (roll sheet) using a full-line printhead while conveying the printing medium.
In some printing apparatuses, a printhead includes two or more nozzle arrays which are used to print dots of the same color and each of which has a plurality of nozzles arranged along a predetermined direction. Print data are distributed to the respective nozzle arrays, and each nozzle array is driven based on the distributed print data. This arrangement is advantageous in improving the print speed since the two or more nozzle arrays are driven in parallel to print dots according to the print data.
Japanese Patent Laid-Open No. 2012-30594 (e.g.
In the arrangement described in Japanese Patent Laid-Open No. 2012-30594, however, when the conveying speed of a printing medium is increased to improve the throughput, it is necessary to increase the operation speed of each nozzle array (for example, the driving frequency of each nozzle array) so that dots are appropriately printed on the printing medium at a speed corresponding to the conveying speed. This requires the user to change a design of hardware such as the circuit design of a printing apparatus along with a change in operation speed, leading to an increase in manufacturing cost.
Furthermore, in the arrangement described in Japanese Patent Laid-Open No. 2012-30594, when time-divisionally driving each nozzle array, one period of time-divisional driving corresponds to a plurality of column data, and thus a nozzle array capable of printing dots on the printing medium is limited (a nozzle array to be used is fixed for each pixel). At this time, it may be impossible to perform preliminary discharge on sheet by a desired nozzle. Therefore, if data for preliminary discharge in which only usable nozzles are selected are generated in advance and stored in the memory of the printing apparatus in order to make it possible to perform preliminary discharge on a sheet by all nozzles, a large-capacity memory is required to store data for preliminary discharge of the entire print region for each ink color or each nozzle array, leading to an increase in manufacturing cost.
The present invention provides a technique for a new driving method of two or more nozzle arrays, which is advantageous in performing preliminary discharge on a sheet while maintaining a print speed with a simple and low-end arrangement.
One of the aspects of the present invention provides a printing apparatus, including an inkjet printhead with not less than two nozzle arrays arranged in a first direction, each nozzle array including a plurality of nozzles arranged along a second direction intersecting the first direction, the apparatus comprising a conveying unit configured to convey a longitudinally long-shaped sheet in the first direction, a driving unit configured to drive the printhead so that each nozzle performs preliminary discharge on the sheet conveyed by the conveying unit while printing a dot based on print data, and a unit, wherein the unit performs a first operation of expanding image data onto a memory in correspondence with the first direction and the second direction, a second operation of, in each nozzle array for every column data corresponding to the second direction in the expanded image data, selecting some of the plurality of nozzles as non-driving nozzles so the nozzles do not overlap each other between the nozzle arrays in the first direction, and the remaining nozzles of the plurality of nozzles as driving nozzles, a third operation of determining, for the expanded image data, image data to be assigned to each nozzle array so that when a portion of each column data indicating driving of a nozzle corresponds to a driving nozzle selected for the column data, the portion indicating driving is assigned to a nozzle array to which the driving nozzle belongs, and when a portion of each column data indicating driving of a nozzle corresponds to a non-driving nozzle selected for the column data, the portion indicating driving is assigned to another nozzle array different from a nozzle array to which the non-driving nozzle belongs, a fourth operation of generating data for preliminary discharge which corresponds to the image data determined in the third operation and is used by the plurality of nozzles of each nozzle array to discretely perform preliminary discharge on the sheet in at least one of the first direction and the second direction, by setting, when the nozzle selected as the driving nozzle in the second operation for given column data is set as a preliminary discharge target, the column data as data used by the nozzle to perform preliminary discharge, and setting, when the nozzle selected as the non-driving nozzle in the second operation for given column data is set as a preliminary discharge target, another column data, which is different from the column data and in which the nozzle is selected as the driving nozzle in the second operation, as data used by the nozzle to perform preliminary discharge, and a fifth operation of generating print data by ORing the image data determined in the third operation and the data for preliminary discharge generated in the fourth operation, and outputting the print data to each nozzle array.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
A plurality of nozzles are arranged along a predetermined direction in the printhead 110, and ink dots (dots) are printed on the sheet P by discharging ink droplets from the nozzles. The printhead 110 adopts a so-called full-line arrangement, and can perform printing at the full width (for example, about 18 inches) on the sheet P at once.
When the apparatus 100 supports color printing, the ink cartridges 120 are provided in correspondence with respective colors (for example, yellow (Y), magenta (M), cyan (C), and black (K)). In this example, the four ink cartridges 120 are provided. Ink in each ink cartridge 120 is supplied to the printhead 110 via, for example, an ink inlet pipe 150. Note that the color types and the number of colors are not limited to those in this example.
The conveying roller 130 conveys the sheet P in a direction intersecting the array direction of the plurality of nozzles in the printhead 110. In this specification, the array direction of the nozzles will be simply referred to as a “nozzle array direction” hereinafter, and the conveying direction of the sheet P will be simply referred to as a “conveying direction” hereinafter.
Note that only the conveying roller 130 is shown for the sake of simplicity. The apparatus 100 may further include other conveying units. For example, the apparatus 100 includes a paper feed unit for feeding the sheet P to a path for executing printing on the sheet P and each process associated with printing, a plurality of conveying rollers for conveying the sheet P from the paper feed unit, and a plurality of motors for driving the plurality of conveying rollers.
The control unit 140 includes, for example, a CPU 141 and a memory such as a RAM 142 and ROM 143, and controls the respective units of the apparatus 100 based on, for example, a print job including a control command and image data. More specifically, for example, the CPU 141 reads out a program for printing from the ROM 143 and expands it onto the RAM 142, and also expands image data onto the RAM 142, thereby performing data processing based on the program for the image data. The CPU 141 drives the conveying roller 130 while driving the printhead 110 based on the image data having undergone the data processing.
Note that upon start of printing based on print data having undergone the above data processing, before the printing is completed, preparations for printing based on next print data are started by expanding the next print data onto the RAM 142, and performing the same data processing. By repeating this operation, one or more images corresponding to a print job input to the apparatus 100 are formed on the sheet P without interrupting a print operation.
With the above arrangement, while the sheet P is conveyed in the conveying direction, dots are printed on the sheet P by the respective nozzles of the printhead 110, and images corresponding to the image data are formed on the sheet P. Note that in this specification, an “image” can include a region such as a blank where no dots are printed, in addition to characters, graphics, symbols, and other objects formed by one or more dots, which are formed in an effective region of the roll sheet P. An image formed in a region corresponding to a unit page of the roll sheet P will also be referred to as an “image for one page” or “unit image” hereinafter.
The apparatus 100 may further include a memory card slot 151, an external interface (external I/F) 152, an operation unit 153, and a display unit 154. These units are connected to the control unit 140 via, for example, a system bus, and can exchange image data or a control command. For example, a memory card 155 is inserted to the memory card slot 151, and the control unit 140 can read out image data held in the memory card 155, and perform control based on the image data. For example, the control unit 140 may receive image data via the external interface 152, and control each unit based on the image data. Furthermore, for example, the user can set print information via the operation unit 153, and the control unit 140 may control each unit based on the information. The display unit 154 can display a print status and the state of the apparatus 100, as needed, and the user can refer to the display unit 154.
Note that in this specification, when the element substrates 3001, 3002, 3003, and 3004 are not specifically discriminated, they are simply referred to as the “element substrates 300”.
The element substrate 300 includes a plurality of printing elements e and a logic circuit 310 for driving the plurality of printing elements e. Each of the plurality of printing elements e corresponds to each nozzle nz, and an electrothermal transducer (heater) can be used as each printing element e. The logic circuit 310 specifically includes driver circuits 301, AND circuits 302, a shift register 303, a latch circuit 304, and a block selection circuit 305. In accordance with a signal from the logic circuit 310, each printing element e is driven to generate heat energy, and the corresponding nozzle nz discharges an ink droplet by the heat energy. This is also expressed as “the nozzle is driven”.
The plurality of printing elements e are divided into N groups G, that is, G1 to GN so that each group includes 16 printing elements e (N is an integer of 2 or more). More specifically, a segment number (Seg#) is assigned to each of the plurality of printing elements e, and a given group Gk includes 16 printing elements e of Seg#(16(k−1)+1) to Seg#(16(k−1)+16) (k is an integer of 1 to N).
The element substrate 3001 corresponding to the nozzle array La will be exemplified. In this case, among the 16 printing elements e of the group Gk, the 16 printing elements e of Seg#(16(k−1)+1), Seg#(16(k−1)+2), . . . , Seg#(16(k−1)+16) correspond to the nozzles nz of the nozzle array La.
Block numbers B#1 to B#16 are also assigned to the 16 printing elements e, respectively. For example, in the group Gk, the printing element e of Seg#(16(k−1)+1) belonging to the nozzle array La or the like is assigned with B#1. That is,
B#1: Seg#(16(k−1)+1)
Similarly,
B#2: Seg#(16 (k−1)+2)
B#3: Seg#(16(k−1)+3)
B#4: Seg#(16(k−1)+4)
B#5: Seg#(16(k−1)+5)
B#6: Seg#(16(k−1)+6)
B#7: Seg#(16(k−1)+7)
B#8: Seg#(16(k−1)+8)
B#9: Seg#(16(k−1)+9)
B#10: Seg#(16 (k−1)+10)
B#11: Seg#(16 (k−1)+11)
B#12: Seg#(16(k−1)+12)
B#13: Seg#(16(k−1)+13)
B#14: Seg#(16(k−1)+14)
B#15: Seg#(16(k−1)+15)
B#16: Seg#(16(k−1)+16)
Similarly, segment numbers (Seg#) and block numbers (B#) are assigned to the corresponding nozzles nz.
Each of the printing elements e of each group G is driven for each block together with the corresponding printing elements e of other groups G. More specifically, the respective printing elements e of the same block number are simultaneously driven. For example, the printing element e of Seg#(1) of the group G1 and that of Seg#(16(k−1)+1) of the group Gk belong to the same block, that is, B#1, and are driven at substantially the same timing. The printing elements e belonging to the respective blocks are sequentially driven.
This driving method will also be referred to as “time-divisional driving” hereinafter, the block will also be referred to as a “time-divisional driving block” or simply a “time-divisional block” hereinafter, and the group will also be referred to as a “time-divisional driving group” or simply a “time-divisional group” hereinafter.
The shift register 303 is a 16×N-bit shift register, and sequentially shifts data DATA every time a clock signal DCLK is received from the control unit 140.
The latch circuit 304 is a 16×N-bit latch circuit, and latches the 16×N-bit data DATA of the shift register 303 in response to a latch signal LATCH from the control unit 140. The latched data DATA will also simply be referred to as “latch data” hereinafter. For example, the latch circuit 304 initializes the latch data upon receiving a reset signal RESET from the control unit 140.
The block selection circuit 305 functions as a decoder and, for example, generates a block selection signal BSEL, that is, BSEL1 to BSEL16 upon receiving block enable signals BENB0 to BENB3 from the control unit 140. The block selection signal BSEL is a control signal for selecting a specific block whose printing elements e are to be driven.
Each AND circuit 302 is provided in correspondence with each printing element e. Each AND circuit 302 receives the latch data of the latch circuit 304, the block selection signal BSEL, and a heat enable signal HENB for defining the driving time of the printing element e, and outputs a driving signal to the driver circuit 301.
A heater voltage VH and a ground voltage GNDH corresponding to it are supplied to the driver circuit 301, and the driver circuit 301 boosts the driving signal from the AND circuit 302 and supplies it to the printing element e. This drives the printing element e, that is, drives the corresponding nozzle nz to discharge an ink droplet.
Furthermore, during the period T1, the shift register 303 receives the clock signal DCLK, and shifts data DATA2 for a second period T2. In response to the latch signal LATCH during the period T2, the latch circuit 304 latches the data DATA2. After that, the same processing as that during the period T1 is performed.
The first embodiment will be described below with reference to
(2-1. Driving Method of Printing Apparatus)
In step S110 (to be simply referred to as “S110” hereinafter; the same applies to other steps), image data input from a data input unit 510 are acquired. More specifically, as described with reference to
In S120, a color conversion processing unit 520 performs color conversion processing (color space conversion processing) for the input image data. The image data are converted into 8-bit, 256-tone data for respective colors corresponding to ink colors. For example, in this example in which color printing is executed using four ink colors of Y (yellow), M (magenta), C (cyan), and K (black), data for the four colors of Y, M, C, and K are generated. The image data having undergone the color conversion processing undergoes data processing for each color.
In S130, a quantization processing unit 530 performs quantization processing for the image data for each color, which has undergone the color conversion processing. The quantization processing includes data processing by, for example, an error diffusion method or dither matrix method. Assuming that unit data corresponding to a given print position is a “pixel value” in the image data, the error diffusion method performs quantization processing for each pixel value in accordance with the difference from its peripheral pixel value. The image data can be converted into, for example, four-level data (one of levels 0 to 3) by the error diffusion method.
In S140, a distribution processing unit 540 performs distribution processing for the image data for the respective colors, which have undergone the quantization processing, thereby distributing the image data to the respective nozzle arrays L of the printhead 110. More specifically, the image data are distributed to the respective element substrates 300 so as to appropriately print dots by the corresponding nozzle arrays L.
The distribution processing unit 540 performs distribution processing based on a result of selection or determination by a selection/determination unit 535 and a detailed description thereof will be provided later. The selection/determination unit 535 selects, among the plurality of nozzles nz, nozzles (driving nozzles) which can be driven to perform printing according to the image data and nozzles (non-driving nozzles) which are not driven, and determines specific ones of the driving nozzles, which are to be used for printing.
Note that as described above with reference to
In S150, the printhead 110 is driven based on the distributed image data to print dots on the sheet P by the respective nozzle arrays L.
Note that with respect to the above-described processing units 520 to 540, the control unit 140 may include dedicated arithmetic processing units corresponding to them or the CPU 141 may have functions corresponding to them.
Assume that on the sheet P, a region where it is possible to print dots by driving all the driving nozzles once among the driving nozzles and non-driving nozzles is set as a “unit column”. That is, assuming that the unit period of time-divisional driving is the time required to drive all the driving nozzles once, the unit column indicates a region where it is possible to print dots for one period of time-divisional driving, and can also indicate a region with a unit pixel width (for example, 1,200 dpi). Data for one column corresponding to the unit column in the image data will be referred to as “unit column data” or simply “column data” hereinafter. Each column data corresponds to the nozzle array direction Y.
For the sake of simplicity, restriction patterns each for four columns will be described using the block numbers B#1 to B#16.
Each restriction pattern defines driving nozzles and non-driving nozzles for every column unit. In other words, each restriction pattern is a reference table for selecting, for each column data of the image data, nozzles (that is, driving nozzles) which can be driven to print dots corresponding to the column data and nozzles (that is, non-driving nozzles) driving of which is limited. Each restriction pattern need only be stored in, for example, the ROM 143 (see
For example, with respect to a restriction pattern TR1a to be applied to the nozzle array La, in a first column clm1, the nozzles nz of B#1 to B#12 are driving nozzles and the nozzles nz of B#13 to B#16 are non-driving nozzles. To discriminate between the driving nozzles and the non-driving nozzles, the boxes of the non-driving nozzles are hatched in
Similarly, with respect to a restriction pattern TR1b to be applied to the nozzle array Lb, in the column clm1, the nozzles nz of B#5 to B#16 are driving nozzles and the nozzles nz of B#1 to B#4 are non-driving nozzles. With respect to a restriction pattern TR1c to be applied to the nozzle array Lc, in the column clm1, the nozzles nz of B#1 to B#4 and B#9 to B#16 are driving nozzles and the nozzles nz of B#5 to B#8 are non-driving nozzles. With respect to a restriction pattern TR1d to be applied to the nozzle array Ld, in the column clm1, the nozzles nz of B#1 to B#8 and B#13 to B#16 are driving nozzles and the nozzles nz of B#9 to B#12 are non-driving nozzles.
That is, some of the plurality of nozzles nz of each group G are selected as “non-driving nozzles” so the non-driving nozzles do not overlap each other between the nozzle arrays L in the conveying direction X, and the remaining nozzles are selected as “driving nozzles”.
In this example, with respect to the column clm1, the nozzles nz of B#1 to B#4 in the nozzle array Lb are non-driving nozzles, and dots corresponding to these nozzles are printed by driving nozzles in at least one of the nozzle arrays La, Lc, and Ld. That is, in this example, with respect to the column clm1, dots corresponding to the nozzles nz of B#1 to B#4 are printed by the corresponding nozzles nz of at least one of the nozzle arrays La, Lc, and Ld.
Similarly, dots corresponding to the nozzles nz of B#5 to B#8 are printed by the corresponding nozzles nz of at least one of the nozzle arrays La, Lb, and Ld. Dots corresponding to the nozzles nz of B#9 to B#12 are printed by the corresponding nozzles nz of at least one of the nozzle arrays La, Lb, and Lc. Dots corresponding to the nozzles nz of B#13 to B#16 are printed by the corresponding nozzles nz of at least one of the nozzle arrays Lb, Lc, and Ld.
In a second column clm2, third column clm3, and fourth column clm4, the block numbers corresponding to the diving nozzles and non-driving nozzles are sequentially shifted by four. For example, with respect to the restriction pattern TR1a, the nozzles nz of B#9 to B#12 are non-driving nozzles in the column clm2, the nozzles nz of B#5 to B#8 are non-driving nozzles in the column clm3, and the nozzles nz of B#1 to B#4 are non-driving nozzles in the column clm4. The same applies to the restriction patterns TR1b to TR1d.
In summary, the “driving nozzles” selected by the restriction pattern are the nozzles nz which can be driven to perform printing according to the image data. Therefore, for example, if the corresponding latch data (see
Note that for example, if some nozzles nz are selected as driving nozzles, the remaining nozzles nz can be set as non-driving nozzles. Alternatively, if some nozzles nz are selected as non-driving nozzles, the remaining nozzles nz can be set as driving nozzles. That is, selection of driving nozzles and non-driving nozzles by the restriction pattern is substantially equivalent to selection of driving nozzles or non-driving nozzles by the restriction pattern.
For example, in a driving order TD1a of the driving nozzles in the nozzle array La1, the nozzles are driven in the order of B#1, B#2, . . . , B#12 with respect to the column clm1, and thus the nozzle array La prints dots for the column clm1. The nozzles are driven in the order of B#13, B#14, B#15, B#16, B#1, B#2, . . . , B#8 with respect to the column clm2, and thus the nozzle array La prints dots for the column clm2.
The phases of the cycles of the block driving orders defined in the driving order reference table are shifted by 90° between the respective nozzle arrays L. Therefore, for example, in a driving order TD1b of the driving nozzles in the nozzle array Lb, the nozzles are driven in the order of B#5, B#6, . . . , B#16 with respect to the column clm1, and thus the nozzle array Lb prints dots for the column clm1. The nozzles are driven in the order of B#1, B#2, . . . , B#12 with respect to the column clm2, and thus the nozzle array Lb prints dots for the column clm2. Note that the same applies to a driving order TD1c of the driving nozzles in the nozzle array Lc, a driving order TD1d of the driving nozzles in the nozzle array Ld, and the remaining columns clm3 and clm4.
For example, “cda” is defined for B#1 of the column clm1, which indicates that the nozzle array Lc has the highest priority, the nozzle array Ld has the second highest priority, and the nozzle array La has the lowest priority. For example, consider a case in which among the image data having undergone the quantization processing in S130, data corresponding to B#1 of the column clm1 is at level 1, that is, the number of dots to be printed is 1. In this case, one dot is printed at a print position corresponding to B#1 of the column clm1 by the nozzle nz of B#1 of the nozzle array Lc having the highest priority.
Furthermore, for example, “dac” is defined for B#2 of the column clm1, which indicates that the nozzle array Ld has the highest priority, the nozzle array La has the second highest priority, and the nozzle array Lc has the lowest priority. For example, consider a case in which among the image data having undergone the quantization processing in S130, data corresponding to B#2 of the column clm1 is at level 2, that is, the number of dots to be printed is 2. In this case, two dots are printed at a print position corresponding to B#2 of the column clm1 by the nozzle nz of B#2 of the nozzle array Ld having the highest priority and the nozzle nz of B#2 of the nozzle array La having the second highest priority.
Image data DD1a to DD1d respectively assigned to the nozzle arrays La to Ld are dot data each indicating whether to print dots, and are generated based on the image data DQ1 and the above-described priority level reference table TP1. More specifically, the specific nozzle array L whose driving nozzle is to be used to print a dot corresponding to data corresponding to each column and each block in the image data DQ1 is determined based on the priority level of driving of each driving nozzle.
In this example, since the priority levels of B#1 of the column clm1 are indicated by “cda”, dot data (indicated by a solid circle in
Similarly, since the priority levels of B#2 of the column clm1 are indicated by “dac”, dot data (indicated by a solid circle in
The thus generated image data DD1a to DD1d are distributed to the corresponding nozzle arrays La to Ld, respectively.
Note that for the sake of simplicity, a symbol is assigned to each dot in
For example, in the column clm1, the nozzles nz of B#13 to B#16 of the nozzle array La are non-driving nozzles. Dots corresponding to B#13 to B#16 are printed by the nozzles nz of B#13 to B#16 which are driving nozzles in the nozzle arrays Lb to Ld other than the nozzle array La. Similarly, in the column clm2, the nozzles nz of B#9 to B#12 of the nozzle array La are non-driving nozzles, and dots corresponding to B#9 to B#12 are printed by the nozzles nz of B#9 to B#12 which are driving nozzles in the remaining nozzle arrays Lb to Ld.
As for each column data, this driving method selects some of the plurality of nozzles nz of each nozzle array L as non-driving nozzles, and selects the remaining nozzles nz as driving nozzles. The non-driving nozzles are selected so the non-driving nozzles do not overlap each other between the nozzle arrays L in the conveying direction X of the sheet P. That is, a dot corresponding to a non-driving nozzle of a given nozzle array (for example, the nozzle array La) is printed by a driving nozzle of another nozzle array (for example, one of the nozzle arrays Lb to Ld), thereby completing printing of dots corresponding to the image data.
When the conveying speed of the sheet P is increased to improve the throughput, if all the plurality of nozzles nz of each nozzle array L are driven, the print positions of some dots fall outside the corresponding columns. To print these dots in the corresponding columns, for example, it is necessary to increase the operation speed of each nozzle array L, for example, the driving frequency of each nozzle array L, leading to an increase in manufacturing cost by, for example, changing the design of hardware.
To solve this problem, according to this driving method, some of the plurality of nozzles nz are selected as non-driving nozzles and their driving is limited, and dots corresponding to the non-driving nozzles are printed by driving nozzles of another nozzle array different from a nozzle array to which the non-driving nozzles belong. Consequently, this driving method can appropriately print all dots in the corresponding columns without changing the operation speed of each nozzle array L, and is advantageous in improving the throughput of the printing apparatus while suppressing the manufacturing cost. The driving nozzles and non-driving nozzles are shifted for each column data (in other words, the nozzles nz which serve as non-driving nozzles for given column data are driven as driving nozzles for the next column data), thereby effectively using all the plurality of nozzles nz.
(2-2. Preliminary Discharge on Sheet)
In the inkjet printing apparatus 100, the viscosity of ink in the nozzle nz whose driving frequency is relatively low may increase due to ink evaporation, and clogging (more specifically, an ink droplet discharge failure or the like) of the nozzle nz may occur. To solve this problem, each of all the nozzles nz substantially performs preliminary discharge (one of recovery processes of the nozzle nz) at a predetermined interval regardless of the driving frequency, independently of the image data. As for the above-described full-line printhead, preliminary discharge (to be referred to as “preliminary discharge on a sheet” hereinafter) is performed on the sheet P while printing images corresponding to the image data on the sheet P. Dots printed by preliminary discharge on the sheet are printed on the sheet P at a density which has no influence on the visibility, and are discretely printed in at least one of the conveying direction X and the nozzle array direction Y.
More specifically, in this arrangement for performing preliminary discharge on the sheet, for example, the image data having undergone the distribution processing described with reference to
Generation of print data by combining the data need only be performed by ORing (obtaining the OR of) the image data and the data for preliminary discharge. More specifically, print data corresponding to each column and each block can be generated by ORing data corresponding to each column and each block in the image data and data corresponding to each column and each block in the data for preliminary discharge. That is, in a portion corresponding to a given block of a given column, print data is set to 1 when one or both the image data and the data for preliminary discharge are 1 (a dot is printed), and is set to 0 when both the data are 0 (no dot is printed).
With the above method, each nozzle nz performs preliminary discharge at the predetermined internal to prevent clogging, thereby maintaining the quality of an image formed on the sheet P.
As described above, since the driving nozzles and non-driving nozzles are selected for each column data, and driving of the non-driving nozzles is limited, if the non-driving nozzles are preliminary discharge targets, they cannot perform preliminary discharge. It is, therefore, necessary to change or generate, in accordance with the selection result, the data for preliminary discharge to be combined.
An assignment unit 815 of a distribution processing unit 810 assigns the converted image data to the respective nozzle arrays L based on the result of selection or determination by the selection/determination unit 820. Image data Data_a and the like shown in
Based on, for example, a predetermined program, a data-for-preliminary-discharge generation unit 850 generates data for preliminary discharge to be used by each nozzle nz to perform preliminary discharge at the predetermined internal, and the generated data for preliminary discharge can be changed based on the result of selection or determination by the selection/determination unit 820. That is, the data for preliminary discharge can be generated or changed so that dots corresponding to the data are printed by the driving nozzles among the driving nozzles and non-driving nozzles. For example, if a given dot corresponding to the data for preliminary discharge corresponds to a given nozzle nz selected as a non-driving nozzle, the data for preliminary discharge is changed so that printing is performed by the nozzle nz when the nozzle nz is set as a driving nozzle. This allows each nozzle nz to substantially perform preliminary discharge at the predetermined interval (at another timing when the nozzle is a non-driving nozzle). Note that the data-for-preliminary-discharge generation unit 850 may change the data for preliminary discharge upon receiving the result of selection or determination by the selection/determination unit 820 or a data-for-preliminary-discharge change unit (not shown) may change the data for preliminary discharge.
The data for preliminary discharge is combined with the corresponding image data Data_a and the like to generate print data. The distribution processing unit 810 outputs and distributes the print data (including the image data Data_a and the like and the data for preliminary discharge) generated by the combining operation to the corresponding nozzle arrays L of the printhead 110. Each nozzle array L of the printhead 110 performs preliminary discharge on the sheet according to the data for preliminary discharge of the print data while printing images corresponding to the image data Data_a and the like of the print data. A cut pattern as a mark for cutting the sheet P for every page unit may be formed between adjacent images on the sheet P.
Note that this arrangement is merely an exemplary arrangement for changing the data for preliminary discharge. The control unit 140 may include dedicated arithmetic processing units corresponding to the unit 520 and the like, or the CPU 141 may have functions corresponding to the units.
Note that as described with reference to
(2-3. Example of Method of Changing Data for Preliminary Discharge)
In S1020, the data for preliminary discharge which has been generated based on the predetermined program and is to be used by each nozzle nz to perform preliminary discharge at the predetermined interval is compared with the information acquired in S1010, and it is determined whether each of dots corresponding to the data for preliminary discharge corresponds to a non-driving nozzle. If each of the dots corresponding to the data for preliminary discharge corresponds to a non-driving nozzle, the process advances to S1030; otherwise, the process advances to S1040 to generate print data by combining the data for preliminary discharge and the image data, thereby terminating the procedure.
In S1030, the data for preliminary discharge is changed so that the data position of a portion corresponding to a non-driving nozzle in the data for preliminary discharge moves by, for example, one column. After that, the process advances to S1040 to generate print data by combining the data for preliminary discharge and the image data, thereby terminating the procedure.
In this example, the nozzle nz of B#i is expected to perform preliminary discharge in the column clm(3×i−2) where i is an integer of 1 to 16. More specifically, the nozzle nz of B#1 is expected to perform preliminary discharge in the column clm1, and the nozzle nz of B#2 is expected to perform preliminary discharge in the column clm4. The same applies to the nozzles nz of B#3 to B#16. The same preliminary discharge processing as that in the columns clm1 to clm48 can be repeated in a column clm49 and subsequent columns (none are shown). That is, in this example, each nozzle nz is expected to repeatedly perform preliminary discharge at a period corresponding to the column data for 48 columns.
Note that the period of preliminary discharge (that is, an internal at which each nozzle is expected to print a dot by preliminary discharge) is not limited to that in this example, and can be set for each ink color. The data for preliminary discharge may be generated based on a predetermined pattern of dots for preliminary discharge, or individually generated so that each nozzle performs preliminary discharge at a period corresponding to each ink color based on the pattern.
Note that in the timing chart shown in
As described with reference to
Referring to
That is, among the data (hatched portions in
According to the method of changing the data for preliminary discharge, each nozzle nz can substantially perform preliminary discharge at the predetermined interval (at another timing when the nozzle is a non-driving nozzle). This can prevent clogging of each nozzle nz, and maintain the quality of an image formed on the sheet P.
Note that in the example shown in
(2-4. Summary of Embodiment)
According to this embodiment, some of the plurality of nozzles nz are selected as non-driving nozzles and their driving is limited, and thus dots corresponding to the non-driving nozzles are printed by driving nozzles of another nozzle array different from that to which the non-driving nozzles belong. Note that driving nozzles and non-driving nozzles are selected in advance when, for example, performing distribution processing of print data having undergone a series of data processes. In this method, even if the conveying speed of the sheet P is increased, it is possible to appropriately print all dots in corresponding columns without changing the operation speed of each nozzle array L. Therefore, this method is advantageous in improving the throughput of the printing apparatus while suppressing the manufacturing cost.
According to this embodiment, preliminary discharge on a sheet is performed while printing an image on the sheet P by the above driving method. Data for preliminary discharge used to perform preliminary discharge on a sheet is changed according to the result of selection of driving nozzles and non-driving nozzles, and each nozzle nz substantially performs preliminary discharge at a predetermined interval (at another timing when the nozzle is a non-driving nozzle). This can maintain the quality of the image formed on the sheet P.
As described above, this embodiment is advantageous in performing preliminary discharge on a sheet while maintaining the print speed with a simple and low-end arrangement.
(2-5. Others)
Although the printhead 110 including the four nozzle arrays La to Ld has been exemplified in this embodiment, the number of nozzle arrays is not limited to this and need only be two or more. For example, when the printhead 110 includes L nozzle arrays and each group G includes M nozzles nz where L represents an integer of 2 or more and M represents an integer of 2 or more and an multiple of L, M/L nozzles nz may be selected as non-driving nozzles. Note that the arrangement in which the nozzle array La and the like print dots of the same color has been exemplified. However, this embodiment is not limited to this as long as each nozzle can print a dot of an arbitrary color.
Although the arrangement of the full-line printhead 110 has been exemplified in this embodiment, the present invention may be applied to the arrangement of a serial printhead for performing printing by alternately repeating scanning of the printhead and conveyance of the printing medium.
The second embodiment will be described with reference to
In this embodiment, in the column clm1, nozzles nz of B#5, B#6, B#11, and B#16 are non-driving nozzles and the remaining nozzles nz are driving nozzles. Although not shown, the driving nozzles are driven in the order of B#1, B#12, B#7, B#2, B#13, B#8, B#3, B#14, B#9, B#4, B#15, and B#10, and the non-driving nozzles of B#5, B#6, B#11, and B#16 are not driven.
Similarly, in the column clm2, nozzles of B#4, B#9, B#10, and B#15 are non-driving nozzles and the remaining driving nozzles are driven in the order of B#5, B#16, B#11, B#6, B#1, B#12, B#7, B#2, B#13, B#8, B#3, and B#14. In the column clm3, nozzles of B#3, B#8, B#13, and B#14 are non-driving nozzles and the remaining driving nozzles are driven in the order of B#9, B#4, B#15, B#10, B#5, B#16, B#11, B#6, B#1, B#12, B#7, and B#2. In the column clm4, nozzles of B#1, B#2, B#7, and B#12 are non-driving nozzles and the remaining driving nozzles are driven in the order of B#13, B#8, B#3, B#14, B#9, B#4, B#15, B#10, B#5, B#16, B#11, and B#6.
According to this embodiment, therefore, it is possible to obtain the same effects as those in the above-described first embodiment. Distributed driving is advantageous in an inkjet method since the influence of heat energy, generated by driving of the nozzle nz of a given block, on the nozzle nz of an adjacent block is reduced. Note that an example of the driving order of distributed driving has been exemplified but the driving order is not limited to this, and may be changed for, for example, every print job of a predetermined unit, every predetermined column data, or every predetermined period.
The third embodiment will be described with reference to
Note that a pattern of dots to be printed by preliminary discharge in the first and second embodiments will be referred to as a “sequential pattern” hereinafter. To the contrary, a pattern of dots to be printed by preliminary discharge in this embodiment will be referred to as a “distributed pattern” hereinafter.
Referring to
According to this embodiment, therefore, it is also possible to obtain the same effects as those in each of the above-described embodiments. A distributed pattern is further advantageous in maintaining the image quality since it is possible to make it more difficult to visually confirm dots printed by preliminary discharge on a sheet. Note that although an example of a distributed pattern has been exemplified, the order of dots to be printed by preliminary discharge is not limited to this, and may be changed for every print job of a predetermined unit, every predetermined column data, or every predetermined period.
The three preferred embodiments of the present invention have been exemplified above with reference to a printing apparatus including an inkjet full-line printhead. The present invention, however, is not limited to these embodiments, and the embodiments may partially be changed or their features may be combined in accordance with the purpose or the like.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
In addition, the present invention is applicable to another aspect without departing from the spirit and scope of the present invention. For example, although an inkjet method using heating elements has been exemplified in each of the above-described embodiments, any printing methods such as a method using piezoelectric elements, a method using electrostatic elements, a method using MEMS elements, and other known printing methods may be used.
Furthermore, “printing” can include, in addition to printing of forming significant information such as characters and graphics, printing in a broad sense regardless of whether information is significant or insignificant. For example, “printing” need not be visualized to be visually perceivable by humans, and can also include printing of forming images, figures, patterns, structures, and the like on a printing medium, or printing of processing the medium.
In addition, “printing agent” can include a consumable used for printing in addition to “ink” used in each of the above-described embodiments. For example, “printing agent” can include a liquid which is used to process a printing medium or to process ink (for example, to solidify or insolubilize a colorant in ink applied onto a printing medium) as well as a liquid which is applied onto a printing medium to form images, figures, patterns, and the like. Furthermore, it is possible to adopt, for example, an arrangement configured to perform printing by applying ink onto an intermediate transfer medium and then transferring the ink onto a printing medium, instead of an arrangement configured to directly apply ink onto a printing medium. It is also possible to use an arrangement configured to perform monochrome printing using one type of ink (for example, black ink), instead of an arrangement configured to perform color printing using a plurality of types of inks.
In addition, “printing medium” can include any media capable of receiving a printing agent, such as cloth, plastic films, metal plates, glass, ceramics, resin, wood, and leather, as well as paper used in general printing apparatuses.
The definition of each term used in this specification for the sake of simplicity should be interpreted without departing from the spirit and scope of the present invention.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-206672, filed Oct. 7, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-206672 | Oct 2014 | JP | national |