1. Field of the Invention
The present invention relates to conveyance control of a print medium. Especially, the present invention relates to a configuration for detecting an origin or phase of a conveying roller at the time of its rotation and a method for the same in a configuration of conveying the print medium using the conveying roller.
2. Description of the Related Art
In printing apparatuses in recent years, there is increased printing use of printing photographic images not only on plain papers but also on special purpose papers. In particular, in the ink jet printing apparatus, a trend of a decreased size of an ink drop has progressed and it has become possible to output an image comparative to or better than silver salt photographs with high resolution. With realization of such high resolution of images, higher precision of paper conveyance is also being advanced and there have been proposed a lot of methods whereby the conveying roller such that a metallic shaft is coated with grinding stone is used and methods for controlling conveyance of such a conveying roller with high precision.
For example, Japanese Patent Laid-Open No. 2006-240055 discloses a configuration where a code wheel is provided on the same axis of the conveying roller and slits formed on its circumferential part at equal intervals are detected by an encoder sensor fixed in the apparatus. According to this, a technology of performing drive control of a DC motor for rotating the conveying roller depending on a cycle at which the slits are detected, etc., is disclosed. Then, according to the same document, a method includes acquiring an origin of the conveying roller by having provided a pattern for rotation phase detection, separately from the slits on the code wheel, and detecting the pattern concerned with another sensor in order to correct a conveyance error resulting from eccentricity of the conveying roller.
Thus, in order to perform the conveyance control in a high-precision state while correcting the conveyance error resulting from the eccentricity of the conveying roller, a mechanism for detecting the origin of the conveying roller also becomes necessary, apart from the mechanism for detecting the rotation amount of the conveying roller.
However, since the above-mentioned conventional configuration requires some electronic device elements, such a photo-interrupter for phase detection, and cable wiring for this newly, a cost of the apparatus cannot avoid increasing.
The present invention is made in order to solve the problems, and its object is to provide a printing apparatus capable of detecting an origin of the conveying roller with a relatively simple configuration, yet such that it does not accompany increase of a cost.
The first aspect of the present invention is a printing apparatus for printing an image on a print medium using a printing head, comprising: a driving unit configured to drive a conveying roller for conveying the print medium; a counting unit configured to count a rotation amount of the conveying roller; a locking unit configured to lock rotation of the conveying roller at a predetermined rotational position; and a detecting unit that uses a count value of the counting unit when the conveying roller is locked by the locking unit as a reference and detects a phase of rotation of the conveying roller obtained by the reference and the count value of the counting unit.
The second aspect of the present invention is a method for detecting an origin of a conveying roller for conveying a print medium in a printing apparatus for printing an image to the print medium using a printing head, comprising: a step of moving a trigger unit configured to lock the conveying roller to a lock position; a rotating step of rotating the conveying roller; a counting step of counting a rotation amount of the conveying roller from start of rotation of the conveying roller in the rotating step to a time when the conveying roller is locked; and a step of storing a count value acquired by the counting step.
Further features of the present invention will become apparent from the following description of exemplary embodiments (With reference to the attached drawings).
Hereafter, the best forms for carrying out the present invention will be described with reference to the drawings.
(A) Conveying Unit
A conveying unit has a configuration that a pressure plate 21 on which print medium is loaded, a feed roller 28 for feeding the print medium P one sheet by one sheet, a separation roller for separating the print medium (not illustrated), a return lever for returning the print medium to its loading position (not illustrated), etc. are attached on a conveying unit base 20. A movable side guide 23 is provided to the pressure plate 21 in a movable manner and regulates the loading position of the print medium. The pressure plate 21 is pivotable about a rotation axis connected to the conveying unit base 20 and is energized in a direction of the feed roller 28 by an unillustrated pressure plate spring. The feed roller 28 has a rod-like shape whose cross section is a circular arc and feeds a print medium into the inside of the apparatus by rotating itself while keeping contact with a surface of the print medium. The print medium bumps against a nip part that is composed of the feed roller 28 and the separation roller, and is divided by this nip part; and only the print medium at the highest position is further conveyed into the inside. A torque of a feed motor 99 is obtained by a process in which a driving force of the feed motor 99 acting as feed driving means is transferred thereto through a drive transferring gear, a planetary gear, etc. The driving force of the feed motor 99 is also transferred to the cleaning unit that will be described later.
(B) Conveying Unit
Main elements of the conveying unit are attached to a metallic plate chassis 11 that is bent and raised and chassis 97, 98 of mold molding. The print medium sent to the conveying unit is guided by a paper guide and a pinch roller holder 30 that are arranged at specified positions of an inlet port, and is held between a roller pair consisting of a conveying roller 36 and a pinch roller 37. The conveying roller 36 has a structure of a metallic shaft with minute particles of a ceramic coated thereon, and metallic portions at both ends thereof are supported by bearing parts fixed to the chassis 11. A plurality of pinch rollers 37 each of which is energized to press the surface of the conveying roller 36 by a pinch roller spring 31 are held by the pinch roller holder 30, and the each pinch roller 37 abuts against the surface of the conveying roller 36 and is driven by this.
Referring to
(C) Carriage Unit
On the print medium supported by the platen 34 from below in a downstream side of the conveying roller 36, an image based on print information is printed by a printing head 7 mounted on a carriage 50 that passes over an upper side of the print medium.
The carriage 50 carries the printing head 7 and an ink tank 71 for supplying ink to this, and is movable in the X direction of the figure. The printing head 7 of this embodiment is constructed so that a voltage pulse may be impressed to a heater provided at a position corresponding to the individual discharge port, and the ink may be discharged from the individual discharge port using pressure change produced by growth or contraction of an air bubble in generated film boiling. However, such a discharge method does not limit the present invention.
The carriage 50 is supported by a carriage rail 52 that is extended in a direction at right angles to the conveyance direction of the print medium and an upper guide rail 111 and is guided thereby with respect to its movement direction. The carriage rail 52 is attached to the chassis 11, and the upper guide rail 111 is formed to be integral with the chassis 11. Furthermore, the upper guide rail 111 holds the end of the carriage 50, and also plays the role of maintaining a gap between the discharge port plane of the printing head 7 and the print medium.
The moving force of the carriage 50 is a driving force of a motor 54 attached to the chassis 11 which is supplied thereto through an idle pulley 542 and a timing belt 541 that is provided to the idle pulley 542 in a tensioned state and supported by it. A cord strip 561 in which markings were formed with a pitch of 150 to 300 lpi is provided in a tensioned state in a direction parallel to the timing belt 541, and an unillustrated encoder sensor mounted on the carriage 50 detects the markings during movement of the carriage 50. Thereby, a current position of the carriage 50 can be detected. A flexible cable 57 electrically connects a carriage board on the carriage 50 on which the encoder sensor, etc. is provided with an electric board 91 fixed in the apparatus while following reciprocation of the carriage 50. A printing signal with which the printing head 7 performs printing is transferred thereto from the electric board 91 through the flexible cable 57 and the carriage board. According to this printing signal, individual heaters of the printing head 7 that is during movement are driven, and dots are printed on the print medium on the platen 34.
(D) Discharging Unit
The torque of a discharging roller 40 is obtained by a process where the torque of the conveying roller 36 is transferred to a discharging roller gear 404 directly linked to the discharging roller 40 from the gear part of the pulley gear 361 directly linked to the conveying roller 36 through an idler gear 45. Referring
A plurality of spurs are attached to a spur holder 43, and these spurs are pressed toward the discharging roller 40 by spur springs each of which is a coil spring provided in a rod-like shape. The print medium on which an image was formed by the printing head 7 is conveyed while being held between the discharging roller 40 and a plurality of nips of these spurs, and is discharged.
(E) Cleaning Unit
A cleaning unit 60 consists of a pump for cleaning the printing head 7, a cap for suppressing drying out of the printing head 7, a blade for cleaning the discharge port plane of the printing head 7, etc. A main driving force of the cleaning unit is obtained by a force being transferred from the feed motor 99 being already explained. The cleaning unit 60 performs a suction operation of sucking unnecessary ink etc. from the printing head 7 by acting a pump with a cap adhered to the printing head 7, a blade operation of cleaning a face surface of the printing head 7 by moving a blade, and the like.
Below, a characteristic configuration of this embodiment will be explained in detail.
Such a locked state (stopping state) occurs only at one determined position among positions when the conveying roller 36 makes one rotation. Therefore, the position at which the conveying roller was locked (stopped) in this way can be assigned as the origin of the phase of the conveying roller.
Incidentally, it is preferable that the rotation direction of the conveying roller when the locked state is detected is a direction in which the print medium during printing is conveyed (the CW direction), as explained above. Moreover, in the locked state, referring to
In the above, the lock ring 4001 also bears a function of preventing coming-off of the timing belt 39, and was explained as of a separate configuration from the pulley gear 361 in a mold configuration. However, in the case where there is no possibility that the timing belt 39 may come off, and in the case where the apparatus is configured so that the conveying roller 36 is driven through gears, the lock ring 4001 and the pulley gear 361 may be a monolithic part. Anyway, the constituent components are required to be configured so that the driving force of the conveying motor 35 and the reaction force when the conveying roller 36 is locked may not bring about a shift of rotation phase between the conveying roller 36 and the pulley gear 361, or between the conveying roller 36 and the code wheel 362, or the like. At this time, it is also useful to set up an upper limit to the drive voltage and a pulse width to the conveying motor 35, or to set up an upper limit to the torque in order to prevent damages to parts.
In this embodiment, the state where rotation of the conveying roller 36 is locked (stopped) is determined, referring to
To be concrete, in the case where the number of detected slits is less than or equal to 10 within a predetermined time of, for example, about 200 ms, it may be determined that the locked state occurs. Moreover, a state may be determined to be the locked state, for example, when the next slit cannot be detected within a predetermined time after the timing when one slit was detected. With such a configuration of this embodiment, it is possible to positively detect an origin position of the conveying roller by using an existing encoder that is constructed with high resolution, without installing a new electronic device.
Electrically writable EEPROM 508 stores set-up values at a factory and data to be updated, and this data is used as control parameters by the controller 502 and the CPU 501. A sensor 505 collectively shows the temperature sensors and encoder sensors being set up in various locations in the apparatus, and the above-mentioned conveying roller encoder sensor 363 is one of them. The CPU 501 overwrites count information that was obtained by the conveying roller encoder sensor 363 in detecting the slits to ring buffer of the RAM 503 on an as-needed basis. When the origin is detected, the origin information is stored in another area of the RAM 503 or in the EEPROM.
When the origin detection processing is started, the CPU 501 moves the carriage 50 to the lock position by driving the carriage motor 54 at Step S1201. Thereby, the protrusion part 50a mounted on the carriage 50 bumps against the slope 4003a of the lock link lever, the lock link lever 4003 turns, and the stopping lever 4002 abuts against the circumferential part 4001a of the lock ring 4001.
In the continuing Step S1202, the CPU 501 rotates the conveying roller 36 in a direction of conveying the print medium (the CW direction in
In Step S1204, the CPU 501 stores a rotational position at which the conveying roller encoder sensor 363 detected the locked state in the RAM 503 or the EEPROM 508 as the origin information.
After this, the CPU 501 evacuates the carriage 50 from the lock position at Step S1205. Furthermore, the CPU 501 makes the conveying roller 36 rotate by a predetermined amount in a CCW direction by driving the conveying motor 35 in a direction opposite to the normal direction at Step S1206. Thereby, the concave part 4002b of the lock ring gets isolated from the stopping lever 4002. By the above-mentioned way, this processing is completed.
A value that the conveying roller encoder sensor 363 counts for one rotation of the conveying roller 36 is a known fixed value, and this serves as one cycle when the phase is managed. Therefore, in printing operations after the origin detection processing explained above was performed, the phase of the conveying roller 36 can always be grasped from a count value that the conveying roller encoder sensor 363 detects after that, on the basis of the origin information stored at Step S1204. That is, the CPU 501 can convey the print medium in the high precision state, while correcting a conveyance error resulting from eccentricity of the conveying roller by using the rotation amount and the phase of the conveying roller obtained from the conveying roller encoder sensor 363.
Incidentally, in the above, although the embodiment was explained to be configured so that the rotational position at which the conveying roller encoder sensor 363 detected the locked state was stored as the original information, the count value that is stored and upgraded at the timing at which this locked state is detected may be reset to zero. If the follow is modified in this way, the phase control after that can be performed in a state where the count value 0 is assumed as the original.
Note that the phase control after the processing of origin detection that was described above can be correctly performed during a time when the conveying roller encoder sensor 363 is operating. However, if the hard power-off is once done, the conveying roller encoder sensor 363 will become not to operate, and the information in the RAM will be erased; therefore, the origin information and the count values will be lost. Therefore, at the time of returning from the hard power-off, the printing apparatus of this embodiment shall newly re-acquire the origin information by performing a series of origin detection processing steps as shown in the flowchart of
Moreover, even when the apparatus is in a state of hard power-on, if an emphasis is placed on power saving and extension of life of the encoder, there may be a case where the conveying roller encoder sensor 363 is not operated at the time of soft power-off or at the time of absence of the printing operation. In such a case, the series of origin detection processing steps as shown by the flowchart of
Furthermore, there is a case where it can be determined that the phase control of the conveying roller 36 is not needed to be performed depending on a kind of image data, a kind of the print medium, etc. In such a case, the above-mentioned origin detection processing may be performed at timing when the printing operation that needs the phase control of the conveying roller 36 is first performed after the soft power-on was done.
In this embodiment explained above, as explained in
Moreover, although in the above, the embodiment was explained to be configured so that an event that the rotation of the conveying roller 36 is locked is detected using the information of the conveying roller encoder sensor 363, the present invention is not limited to such a configuration. For example, in the case where a rotation ratio of the conveying roller 36 and the discharging roller 40 is 1:1, it is also possible to detect that the conveying roller 36 is in the locked state using the information of the discharging roller encoder 403. Moreover, it is also possible to detect the locked state of the discharging roller 40 by providing a mechanism for locking the roller on the discharging roller 40 side, using the information of the conveying roller encoder sensor 363 and the information of the discharging roller encoder 403. Similarly, gears used for transferring of the driving force, for example, the idler gear 45, may be considered as an object to be locked (stopped), and means for detecting the rotation amount of one of these gears may be provided separately.
As explained in the foregoing, according to this embodiment, it is possible to acquire the origin of the conveying roller with high precision by assembling an existing encoder sensor that is constructed with high resolution and several pieces of cheap mechanical parts, without installing a new electronic device and cable wiring for this.
Also in this embodiment, the printing apparatus explained by
The slide bearing 1301 is an axial component that slides on the carriage rail 52 when the carriage 50 moves. A paper spacing switching slider 1302 slides in a direction A-B of the figure, being held by the carriage 50 and the slide bearing, whereby it changes a distance between the carriage 50 and the slide bearing 1301, i.e., a height of the carriage 50.
In the case where the print medium is CD-R, the carriage only needs to move in a range indicated by an arrow of a solid line of
In this embodiment, when the origin detection processing is started, first the paper spacing distance is set to the maximum position at step S1801. This may be done by the CPU 501 automatically or the user may be requested to do so. At the continuing Step S1802, the carriage 50 moves to the lock position by driving the carriage motor 54. Since the paper spacing is being set to the maximum position, at timing when the carriage 50 reaches the lock position, the protrusion part 1302a abuts against the slope 4003a of the lock link lever 4003, which makes the lock link lever 4003 turn. Hereafter, the steps of Step S1803 to Step S1807 are the same as those of the flowchart of
In order not to lock the conveying roller 36 in the midst of a printing operation, it is needed that the lock link lever 4003 and the trigger means on the carriage 50 abutting against this abut against each other outside the movement area where the carriage 50 is in the printing operation. That is, in the case where the protrusion part 50a fixed on the reverse side of the carriage 50 is used as the trigger means like the first embodiment, an area that is the movement area necessary for the operation of printing on a fixed size print medium added with a width of the lock position is required as a moveable area of the carriage 50. As a result, in the printing apparatus of the first embodiment, the width larger than the width shown in
Incidentally, with the above-mentioned configuration, if the printing operation is done on the print medium of the fixed size with the paper spacing of the maximum position, it will become unable to divide the normal printing operation and the origin acquisition operation. However, even in the case like this, if the stroke area of the slider that realizes the same paper spacing may be further widened and the area is brought into correspondence with two positions of the paper spacing switching slider 1303, the above-mentioned problem can be solved.
As described in the foregoing, according to this embodiment, the printing apparatus is configured so that the protrusion part mounted on the paper spacing switching slider can be used as the trigger means for locking the conveying roller, and the function of the trigger means can be switched to be valid or invalid by the paper spacing switching slider. Thereby, the same effect as that of the first embodiment can be realized, without incurring enlargement of the printing apparatus.
Also in this embodiment, the printing apparatus explained by
After that, if the trigger component 1901 is set back to the position of
As described in the foregoing, according to this embodiment, it is possible to acquire the origin of the conveying roller with high precision by preparing the trigger means that is jointed to the feed roller 28 by means of friction rotational joint, without installing a new electronic device and cable wiring for this.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2008-215888, filed Aug. 25, 2008 which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-215888 | Aug 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4288069 | Wallace et al. | Sep 1981 | A |
6322068 | Iemura et al. | Nov 2001 | B1 |
6485210 | Choi | Nov 2002 | B2 |
6592212 | Kakutani | Jul 2003 | B1 |
6599043 | Kobayashi et al. | Jul 2003 | B2 |
6702492 | Saito | Mar 2004 | B2 |
6823132 | Saito et al. | Nov 2004 | B2 |
7367555 | Yoshihisa et al. | May 2008 | B2 |
20070098476 | Goeree et al. | May 2007 | A1 |
20070200878 | Lapstun et al. | Aug 2007 | A1 |
20080073832 | Sudo et al. | Mar 2008 | A1 |
20130026708 | Shingai | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1782960 | May 2007 | EP |
2006-240055 | Sep 2006 | JP |
2007-021933 | Feb 2007 | JP |
2258010 | Aug 2005 | RU |
Entry |
---|
Office Action dated Mar. 29, 2012, in Korean Appln. No. 10-2009-0078571. |
English translation of Office Action dated Apr. 12, 2013, in Korean Application No. 10-2009-0078571. |
Office Action dated Apr. 12, 2013, in Korean Application No. 10-2009-0078571. |
Number | Date | Country | |
---|---|---|---|
20100044959 A1 | Feb 2010 | US |