1. Technical Field
The present invention relates to a printing apparatus and a method of controlling the same.
2. Related Art
There is known a printing apparatus that, when a nozzle check button is pushed on a utility screen of application software running on a computer, prints a nozzle check pattern, and when a cleaning button is pushed on the screen, performs head cleaning (for example, see JP-A-2002-283672).
At predetermined timings, for example, each time the number of print jobs exceeds a predetermined number or a predetermined time elapses, automatic nozzle check may be performed with no check pattern printed, and if necessary, nozzle cleaning may be performed. However, in the printing apparatus disclosed in JP-A-2002-283672, such a process is not taken into consideration. Specifically, when a predetermined timing comes, for example, even if a user pushes the nozzle check button so as to check the current state of nozzles, cleaning may be performed before then. That is, unintended nozzle check or nozzle cleaning may be performed.
An advantage of some aspects of the invention is that it provides a printing apparatus capable of printing a check pattern, from which information according to a user's intention is obtained, and a method of controlling a printing apparatus.
Some aspects of the invention are provided in the following manner.
According to an aspect of the invention, a printing apparatus includes an ejection unit that ejects a fluid from nozzles onto a target, a nozzle inspection unit that performs nozzle inspection to inspect whether or not the fluid is ejected from the nozzles, an automatic print setting unit that, when printing based on print data to be printed is performed, sets a check pattern automatic print mode in which a check pattern for confirming whether or not the fluid is ejected from the nozzles is printed, together with the print data, an automatic inspection setting unit that, when a predetermined automatic inspection condition is established, sets an automatic nozzle inspection mode in which the nozzle inspection is performed, a cleaning unit that, when the result of the nozzle inspection indicates that there is an abnormal nozzle, performs nozzle cleaning to clean the nozzles, and a control unit that, when the automatic nozzle inspection mode is set, if the automatic inspection condition is established while printing based on the print data is being performed in the check pattern automatic print mode, controls the nozzle inspection unit so as not to perform the nozzle inspection during a period from when one of printing based on the print data and printing of the check pattern is started until the other is finished.
With this printing apparatus, when the result of a nozzle inspection as to whether or not a fluid is ejected from nozzles indicates that there is an abnormal nozzle, nozzle cleaning is performed to clean the nozzle. And, when an automatic nozzle inspection mode in which the nozzle inspection is performed is set while a predetermined automatic inspection condition is established, if the automatic inspection condition is established while printing based on print data is performed when a check pattern automatic print mode is set in which, when printing based on the print data is performed, a check pattern for confirming whether or not the fluid is ejected from the nozzles is printed, together with the print data, the nozzle inspection is not performed during the period from when one of printing based on the print data and printing of the check pattern is started until the other is finished. As such, even if the automatic nozzle inspection mode is set, when the check pattern automatic print mode is set, the check pattern is printed with no nozzle inspection, in which the nozzle cleaning may be performed, during the period from when one of printing based on the print data and printing of the check pattern is started until the other is finished. For this reason, at the beginning or end of printing based on the print data, the check pattern is printed with the nozzle states reflected. Therefore, it is possible to print a check pattern, from which information according to a user's intention is obtained. The term “predetermined automatic inspection condition” used herein may be established, for example, each time an empirically determined time at which the fluid may not be ejected from the nozzles elapses, each time an empirically determined number of jobs in which the fluid may not be ejected from the nozzles are processed, each time an empirically determined number of pages in which the fluid may not be ejected from the nozzles are processed, or each time an empirically determined number of print passes in which the fluid may not be ejected from the nozzles are processed. Printing of the check pattern may be performed after or before printing based on the print data.
In the printing apparatus according to the aspect of the invention, when the automatic nozzle inspection mode is set, and when the check pattern automatic print mode is set while printing based on the print data is performed, if printing of the check pattern is to be performed before printing based on the print data, the control unit may control the nozzle inspection unit so as to perform the nozzle inspection before printing of the check pattern. With this configuration, with no nozzle that does not eject the fluid, printing is performed on the basis of the print data after the check pattern is printed. Therefore, it is possible to print a check pattern ensuring that an image at the beginning of printing based on the print data is an image with no nozzle not ejecting the fluid.
In the printing apparatus according to the aspect of the invention, when the automatic nozzle inspection mode is set, and when the check pattern automatic print mode is set while printing based on the print data is performed, if printing of the check pattern is to be performed after printing based on the print data, the control unit may control the nozzle inspection unit so as to perform the nozzle inspection before printing based on the print data. With this configuration, with no nozzle that does not eject the fluid, printing based on the print data is started. Therefore, an image at the beginning of printing based on the print data can be regarded as an image with no nozzle not ejecting the fluid.
In the printing apparatus according to the aspect of the invention, when printing based on the print data is to be performed in a state in which the automatic nozzle inspection mode is set, and when a predetermined midstream inspection condition is established while print data consisting of multiple pages is printed, if printing of the check pattern is to be performed before printing based on the print data, the control unit may control the ejection unit so as to pause printing at a point of time at which printing of a page being printed is completed and control the nozzle inspection unit so as to perform the nozzle inspection, and subsequently control the ejection unit so as to print the check pattern and to resume printing based on the print data. If printing of the check pattern is to be performed after printing based on the print data, the control unit may control the ejection unit so as to print the check pattern after printing of the page being printed is completed, then control the ejection unit so as to pause printing at a point of time at which the check pattern is printed and control the nozzle inspection unit so as to perform the nozzle inspection, and subsequently control the ejection unit so as to resume printing based on the print data and print the check pattern. With this configuration, when printing based on print data consisting of multiple pages is performed, it is possible to reduce the number of pages to be printed in a state in which a nozzle not capable of ejecting the fluid occurs. The term “predetermined midstream inspection condition is established” refers to, for example, each time an empirically determined number of pages in which the fluid may not be ejected from the nozzles are printed, each time an empirically determined time at which the fluid may not be ejected from the nozzles elapses, or each time an empirically determined number of print passes in which the fluid may not be ejected from the nozzles are processed.
In the printing apparatus according to the aspect of the invention, the automatic print setting unit may set, as the check pattern automatic print mode, a mode in which, when printing based on the print data is to be performed, the check pattern is printed before or after the print data, together with the print data. With this configuration, it is possible to print a check pattern with the nozzle state immediately before or after printing based on the print data.
In the printing apparatus according to the aspect of the invention, the check pattern may be a pattern that enables visual confirmation of whether or not the fluid is ejected. With this configuration, a user can confirm with his/her eyes whether or not the fluid is ejected.
The printing apparatus according to the aspect of the invention may further include an instruction input unit that inputs a check pattern print instruction for printing the check pattern. In this case, when the automatic nozzle inspection mode is set, if the check pattern print instruction is input and printing of the check pattern is performed separately from printing based on the print data, the nozzle inspection unit may be controlled so as not to perform the nozzle inspection even if the automatic inspection condition is established during a period from when the check pattern print instruction is input until the check pattern is printed. With this configuration, even if the automatic nozzle inspection mode is set, when the check pattern print instruction is input, the check pattern is printed with no nozzle inspection in which nozzle cleaning may be performed. Therefore, a check pattern having reflected therein the nozzle states at that time is printed. As a result, it is possible to print a check pattern, from which information according to a user's intention is obtained.
In the printing apparatus according to the aspect of the invention, the nozzle inspect unit may include a voltage application unit that applies a predetermined voltage to a fluid receiving area where the fluid ejected from the nozzles is received and between the ejection unit and the fluid receiving area, and an electrical change detection unit that detects an electrical change in the ejection unit or the fluid receiving area. In this case, the control unit may control the nozzle inspection unit so as to perform the nozzle inspection, or may control the ejection unit so as to sequentially eject the fluid from the nozzles onto the fluid receiving area in a state in which the voltage application voltage applies the predetermined voltage between the ejection unit and the fluid receiving area, and on the basis of the electrical change detected by the electrical change detection unit, perform the nozzle inspection as to whether or not the fluid is ejected from the nozzles. With this configuration, it is possible to perform the nozzle inspection without performing printing. Alternatively, the nozzle inspection unit may include a fluid receiving area where the fluid ejected from the nozzles is received, a light emitting unit that emits light beams, and a light receiving unit that receives the light beams. In this case, the control unit may control the nozzle inspection unit so as to perform the nozzle inspection, or may control the ejection unit so as to sequentially eject the fluid from the nozzles onto the fluid receiving area in a state in which light beams in a direction intersecting to an ejection direction of the fluid are emitted from the light emitting unit toward the light receiving unit between the ejection unit and the fluid receiving area, and on the basis of a change in the amount of light received by the light receiving unit, determine whether or not the light beams are shielded by ejected ink, to thereby perform the nozzle inspection as to whether or not the fluid is ejected from the nozzles. With this configuration, it is possible to perform the nozzle inspection without performing printing.
According to another aspect of the invention, there is provided a method of controlling a printing apparatus, which includes an ejection unit for ejecting a fluid from nozzles onto a target, by using computer software. The method includes, when the result of a nozzle inspection as to whether or not the fluid is ejected from the nozzles indicates that there is an abnormal nozzle, performing nozzle cleaning to clean the nozzles, and when an automatic nozzle inspection mode in which the nozzle inspection is performed is set while a predetermined automatic inspection condition is established, if the automatic inspection condition is established while printing based on print data is being performed when a check pattern automatic print mode is set in which, when printing based on the print data is performed, a check pattern for confirming whether or not the fluid is ejected from the nozzles is printed, together with the print data, controlling such that the nozzle inspection is not performed during the period from when one of printing based on the print data and printing of the check pattern is started until the other is finished.
With this method, when the result of a nozzle inspection as to whether or not a fluid is ejected from nozzles indicates that there is an abnormal nozzle, nozzle cleaning is performed to clean the nozzle. And, when an automatic nozzle inspection mode in which the nozzle inspection is performed is set while a predetermined automatic inspection condition is established, if the automatic inspection condition is established while printing based on print data is being performed when a check pattern automatic print mode is set in which, when printing based on the print data is performed, a check pattern for confirming whether or not the fluid is ejected from the nozzles is printed, together with the print data, the nozzle inspection is not performed during the period from when one of printing based on the print data and printing of the check pattern is started until the other is finished. As such, even if the automatic nozzle inspection mode is set, when the check pattern automatic print mode is set, the check pattern is printed with no nozzle inspection, in which the nozzle cleaning may be performed, during the period from when one of printing based on the print data and printing of the check pattern is started until the other is finished. For this reason, at the beginning or end of printing based on the print data, the check pattern is printed with the nozzle states reflected. Therefore, it is possible to print a check pattern, from which information according to a user's intention is obtained. The method may further include the steps for implementing the functions of the printing apparatus. The invention may be implemented as a program for causing one or a plurality of computers to execute the method.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Next, an exemplary embodiment of the invention will be described with reference to the drawings.
The printer 20 of this embodiment includes, as shown in
The printer mechanism 21 includes a carriage 22 that reciprocates in a horizontal direction (main scanning direction) along a guide 28 by means of a carriage belt 32 and a carriage motor 34, ink cartridges 26 that are mounted on the carriage 22 and respectively contain ink of colors of yellow (Y), magenta (M), cyan (c), and black (K), a print head 24 that applies pressure to ink supplied from the respective ink cartridges 26, nozzles 23 that serve as ejection holes for ejecting the ink droplets pressurized by the print head 24 onto the recording sheet S, and a platen 44 that serves as a support member for supporting the recording sheet S being printed. Around the carriage 22, a linear-type encoder 25 is disposed to detect the position of the carriage 22. The use of the linear-type encoder 25 enables the position of the carriage 22 to be managed. Though not shown, the ink cartridges 26 are constructed as containers that respectively contain ink for printing, such as cyan (C), magenta (M), yellow (Y), and black (K) in which a colorant, such as a pigment or a dye, is mixed in water serving as a solvent, and are detachably mounted on the carriage 22. At a left end of the platen 44 outside of a printable area, a flushing area 42 is formed. The flushing area 42 is used to perform a so-called flushing operation to eject the ink droplets regularly or at a predetermined timing, regardless of print data, so as to prevent ink from being dried and solidified at the front end of each nozzle 23.
Many components (the carriage 22 and the like) of the printer mechanism 21 are well known, and thus the detailed descriptions thereof will be omitted. Hereinafter, only the print head 24 closely associated with the invention will be described. The print head 24 is provided with, as shown in
The print head 24 includes a plurality of mask circuits 47 that are provided to correspond to a plurality of piezoelectric elements 48 for respectively driving the nozzles 23K. An original signal ODRV or a print signal PRTn which is generated in the controller 70 is input to the mask circuits 47. The character n at the end of the print signal PRTn is a number which is used to specify a nozzle in the nozzle array. In this embodiment, since the nozzle array includes 360 nozzles, n may be an integer between 1 and 360. As shown in the lower part of
The nozzle inspection device 50 includes, as shown in
The voltage application circuit 53 electrically connects the electrode member 57 and the print head 24 through a direct-current power source (for example, 400 V) and a resistive element (for example, 1 MΩ) such that the former will be a positive electrode and the latter a negative electrode. As the electrode member 57 is in contact with the conductive upper ink absorber 55, the surface of the upper ink absorber 55, that is, the ink receiving area 52 also has the same potential as the electrode member 57. The voltage application circuit 53 has a switch SW for making and breaking a circuit. The switch SW is turned on when a head inspection routine, which will be described below, is performed. Otherwise, the switch SW is turned off. The voltage detection circuit 54 is connected so as to detect the voltage of the electrode member 57, which is considered the same as that of the ink receiving area 52. The voltage detection circuit 54 includes an integration circuit 54a that integrates and outputs a voltage signal of the electrode member 57, an inverting amplification circuit 54b that inverts, amplifies, and outputs the signal from the integration circuit 54a, and an A/D conversion circuit 54c that A/D converts the signal from the inverting amplification circuit 54b and outputs it to the controller. Since a change in voltage resulting from jetting and landing of one ink droplet is small, the integration circuit 54a outputs a large change in voltage by integrating changes in voltage caused by jetting and landing of a plurality of ink droplets ejected from the same nozzle 23. The inverting amplification circuit 54b inverts the positive and negative of the change in voltage, and amplifies and outputs the signals from the integration circuit at a predetermined amplification rate. The A/D conversion circuit 54c converts an analog signal from the inverting amplification circuit 54b into a digital signal and outputs the digital signal to the controller 70.
As shown in
The buttons 85 includes an automatic nozzle inspection mode setting switch 80, a check pattern automatic print switch 81, a check pattern position setting switch 82, and a check pattern print button 83. The automatic nozzle inspection mode setting switch 80 is a user operable slide switch. The automatic nozzle inspection mode setting switch 80 is exclusively switched between a position where an automatic nozzle inspection mode is set, in which the nozzle inspection device 50 is configured to perform inspection of the nozzles 23 regularly (for example, every 15 minutes) and a position where the automatic nozzle inspection mode is not set. The check pattern automatic print switch 81 is a user operable slide switch. The check pattern automatic print switch 81 is exclusively switched between a position where a check pattern automatic print mode is set, in which a check pattern 90 is automatically printed when printing is performed on the basis of user print data, and a position where the check pattern automatic print mode is not set. The check pattern position setting switch 82 is a user operable slide switch. The check pattern position setting switch 82 is exclusively switched between a position where, when the check pattern 90 is automatically printed while printing is performed on the basis of user print data as desired data to be printed, the check pattern 90 is printed before the user print data, and a position where the check pattern 90 is printed after the user print data. The check pattern print button 83 is a push button that, when being pushed by the user, inputs a check pattern print instruction, which instructs the printer mechanism 21 to print the check pattern 90.
As shown in
Next, the operation of the printer 20 of this embodiment that has thus been configured will be described.
The nozzle inspection routine will now be described. As shown in
If in Step S230 the output level is smaller than the threshold value Vthr, taking into consideration that abnormality, such as clogging, occurs at the present nozzle 23, the CPU 72 stores in the RAM 74 information specifying the nozzle 23 (for example, information specifying what nozzle array is involved and what nozzle in the nozzle array is involved) (Step S240). If after Step S240 or in Step S230 the output level is equal to or larger than the threshold value Vthr (that is, the nozzle 23 is normal), it is determined whether or not all of the nozzles 23 included in the nozzle array 43 being currently inspected have been inspected (Step S250). If any nozzle 23 in the nozzle array being currently inspected remains uninspected, the CPU 72 updates the nozzles 23 to be inspected with the uninspected nozzle (Step S260), and then Steps S210 to S260 are executed again. Meanwhile, if in Step S250 all the nozzles 23 in the nozzle array being currently inspected have been inspected, it is determined whether or not all the nozzle arrays 43 included in the print head 24 have been inspected (Step S270). If any nozzle array 43 remains uninspected, the CPU 72 updates the nozzle array 43 to be inspected with the uninspected nozzle array 43 (Step S280), and Steps S210 to S280 are executed again. That is, in Steps S210 to S280, after the print head 24 is moved to a predetermined inspection position, ink is ejected from the all the nozzles 23 in the nozzle array 43, and then on the basis of the voltage detected by the voltage detection circuit 54, it is determined whether or not ink is ejected from the nozzles 23.
If in Step S270 all the nozzle arrays 43 included in the print head 24 have been inspected, the CPU 72 turns off the switch SW of the voltage application circuit 53 (Step S290), and determines on the basis of the contents stored in the RAM 74 whether or not any nozzle is abnormal (Step S300). If any abnormal nozzle 23 exists, the CPU 72 determines that clogging has caused abnormality, and cleans the print head 24. However, before doing so, the CPU 72 determines whether or not the number of cleaning processes previously conducted is less than a predetermined number (for example, three times) (Step S310). If the number of cleaning processes previously conducted is less than the predetermined number, the CPU 72 performs the cleaning process of the print head 24 (Step S320). Specifically, the CPU 72 drives the carriage motor 34 to move the carriage 22 to the home position where the print head 24 is opposed to the capping device 40, and operates the capping device 40 such that the capping device 40 covers the nozzle forming surface of the print head 24. Then, negative pressure of the suction pump (not shown) acts on the nozzle forming surface, and thus ink that has clogged is sucked and discharged from the nozzles 23. After the cleaning process is finished, information about an abnormal nozzle stored in the RAM 74 is cleared (Step S330), the process returns to Step S200 in order to check whether or not abnormality in the nozzle 23 has been eliminated. In Step S200 and later, although only the abnormal nozzle 23 may be reexamined, all the nozzles 23 in the print head 24 need to be reexamined since the nozzles 23 that were normal at the time of cleaning may have clogged for some reason. Meanwhile, if in Step S310 the number of cleaning processes is equal to or more than the predetermined number, the CPU 72 determines that the abnormal nozzle 23 is not normal even after cleaning, and displays an error message on an operation panel (not shown) (Step S340). Thus, the process returns to the automatic nozzle inspection routine shown in
Next, a print process routine that is executed in parallel with the automatic nozzle inspection routine shown in
If in Step S400 the check pattern print button 83 is not pushed, the CPU 72 determines whether or not user print data that needs to be printed exists (Step S440). It is assumed that the user print data that needs to be printed is stored in the print buffer (not shown) of the RAM 74, and when user print data is stored in the print buffer, it is determined that the user print data that needs to be printed exists. If no user print data that needs to be printed exists, this routine is ended. Meanwhile, when a print job is input from the user PC 10 and user print data is stored in the RAM 74, it is determined that user print data that needs to be printed exists. In this case, it is desirable to confirm the set state of a position where the check pattern is to be printed (Step S450). Here, the set state of the position where the check pattern is to be printed is confirmed in such a manner that the switched state of the check pattern position setting switch 82 is confirmed by means of a sensor (not shown). When the set state is a state in which the check pattern is to be printed before the user print data is printed, the nozzle inspection routine is executed (Step S460) to make all the nozzles 23 possible to eject ink, and sets the automatic inspection prohibition flag FAuto to “1” (Step S470). That is, until the flag FAuto is reset to “0”, even if a predetermined timing comes in the automatic nozzle inspection routine shown in
When Step S450 the set state of the position where the check pattern is to be printed is a state in which the check pattern is to be printed after printing, the CPU 72 executes the nozzle inspection routine (Step S500) to make all the nozzles 23 possible to eject ink, and sets the automatic inspection prohibition flag FAuto to “1” (Step S510). Next, the CPU 72 controls the printer mechanism 21 to perform printing on the basis of the user print data (Step S520), and subsequently controls the printer mechanism to print the check pattern 90 (Step S530). After printing is ended, in Step S430, the automatic inspection prohibition flag FAuto is reset to “0”, and this routine is ended. As such, when the set state of the position where the check pattern 90 is to be printed is a state in which the check pattern is to be printed after printing, after printing is performed on the basis of the user print data, the check pattern 90 is printed without performing nozzle inspection or nozzle cleaning. Therefore, a check pattern having reflected therein the nozzle states when printing based on the user print data is completed is printed. In the nozzle inspection routine of Step S460 or S500, when the number of cleaning processes has reached the predetermined number, an error is displayed (after Step S340 in
The printed state of the recording sheet S when the print process routine is executed will now be described.
Next, the relationship between the components of this embodiment and those of the invention will be clarified. The printer 20 of this embodiment corresponds to a printing apparatus of the invention. The print head 24 corresponds to an ejection unit. The nozzle inspection device 50 corresponds to a nozzle inspection unit. The capping device 40, the suction pump (not shown), and the controller 70 correspond to a cleaning unit. The check pattern print button 83 corresponds to an instruction input unit. The check pattern automatic print switch 81 corresponds to an automatic print setting unit. The automatic nozzle inspection mode setting switch 80 corresponds to an automatic inspection setting unit. The controller 70 corresponds to a control unit. The recording sheet S corresponds to a target. The ink receiving area 52 corresponds to a liquid receiving area. The voltage application circuit 53 corresponds to a voltage application unit. The voltage detection circuit 54 corresponds to an electrical change detection unit.
According to the printer 20 of this embodiment, even if the automatic nozzle inspection mode is set, when the user inputs the check pattern print instruction, the check pattern 90 is printed, without performing nozzle inspection and nozzle cleaning. Therefore, the check pattern 90 having reflected therein the state of the nozzle 23 at that time is printed. In addition, when the check pattern automatic print mode is set, the check pattern 90 is printed, without performing nozzle inspection and nozzle cleaning, during a period from when one of printing based on the user print data 91 and printing of the check pattern 90 is started until the other is finished. Therefore, the check pattern 90 with the nozzle state reflected is printed at the beginning or end of printing based on the user print data 91. As a result, it is possible to print the check pattern 90, from which information according to the user's intention is obtained.
When the automatic nozzle inspection mode is set, and when the check pattern automatic print mode is set while printing based on the user print data 91 is being performed, if the check pattern 90 is printed before printing based on the user print data 91, nozzle inspection is executed before the check pattern 90 is printed. At this time, when any nozzle 23 not ejecting ink exists, nozzle cleaning is executed. In a state in which no nozzle 23 not ejecting ink exists, the check pattern 90 is printed and then printing based on the user print data 91 is performed. Therefore, it is possible to print the check pattern 90 for confirming and ensuring that an image at the beginning of printing based on the user print data 91 is an image with no nozzle 23 not ejecting ink. In addition, when the automatic nozzle inspection mode is set, and when the check pattern automatic print mode is set while printing based on the user print data is being performed, if the check pattern 90 is printed after printing based on the user print data 91 is performed, nozzle inspection is executed before printing based on the user print data 91. At this time, when any nozzle 23 not ejecting ink exists, nozzle cleaning is executed. In a state in which no nozzle 23 not ejecting ink exists, printing based on the user print data 91 is started. Thus, it is possible to ensure that an image at the beginning of printing based on the user print data 91 is an image with no nozzle 23 not ejecting ink. Furthermore, the nozzle inspection device 50 includes the ink receiving area 52, the voltage application circuit 53, and the voltage detection circuit 54. With this configuration, for nozzle inspection is executed, in a state in which the voltage application circuit 53 applies a predetermined voltage between the print head 24 and the ink receiving area 52, the nozzles 23 sequentially eject ink onto the ink receiving area 52. And, on the basis of a change in voltage detected by the voltage detection circuit 54, the nozzle inspection device 50 executes nozzle inspection as to whether or not ink is ejected from the nozzles. That is, nozzle inspection can be executed, without performing printing.
It should be noted that the invention is not limited to the foregoing embodiment, but it can be implemented in various aspects without the technical scope of the invention.
In the foregoing embodiment, when the automatic nozzle inspection mode is set, if check pattern 90 is printed before printing based on the user print data 91, the nozzle inspection routine is executed before the check pattern 90 is printed. In addition, when the check pattern 90 is printed after printing based on the user print data 91, the nozzle inspection routine is executed before printing based on the user print data. However, in one or both cases, the nozzle inspection routine may not be executed. In any case, it is possible to print the check pattern 90, from which information according to the user's intention is obtained. The reason is as follows. That is, a nozzle 23 that does not eject ink rarely occurs during printing based on the user print data or printing of the check pattern. In addition, if a predetermined automatic inspection timing comes in the automatic nozzle inspection routine shown in
In the embodiment, when the automatic nozzle inspection mode is set, and when the check pattern automatic print mode is set while printing based on the user print data 91 is being performed, if the check pattern 90 is to be printed before printing based on the user print data, as shown in
In the embodiment, in the print process routine shown in
In the embodiment, when the automatic nozzle inspection mode is set, and when the check pattern 90 is printed after printing based on the user print data 91, the nozzle inspection routine is executed before printing based on the user print data 91. However, as shown in
In the embodiment, in a state in which the automatic inspection prohibition flag FAuto is “1”, nozzle inspection is not executed while printing based on the user print data 91 is being performed. However, when a predetermined midstream inspection condition is established, printing based on the user print data 91 may be paused and nozzle inspection may be executed. For example, when a predetermined midstream inspection condition is established, if the set state is the state that the check pattern is to be printed before printing based on the user print data, printing may be paused at a point of time at which a page being printed is printed, and nozzle inspection may be executed. At this time, when a nozzle not ejecting ink exists, after nozzle cleaning is executed, the check pattern may be printed and printing may be resumed. The term “predetermined midstream inspection condition is established” may be, for example, each time an empirically determined number of pages in which ink may not be ejected from the nozzles 23 are printed, each time an empirically determined time at which ink may not be ejected from the nozzles 23 elapses, or each time an empirically determined number of passes in which ink may not be ejected from the nozzles 23 pass. Specifically, as shown in
In the embodiment, the automatic nozzle inspection routine shown in
In the embodiment, in the nozzle inspection routine shown in
In the embodiment, in the nozzle inspection routine shown in
Although in the embodiment a case in which the automatic nozzle inspection mode is set has been described, when the automatic nozzle inspection mode is not set, if the user pushes a cleaning button (not shown), the CPU 72 may execute the cleaning process of the nozzles 23 and then may execute the nozzle inspection routine. If doing so, it is possible to set a state in which no nozzle not ejecting ink exists, as intended by the user.
Although in the embodiment the printer 20 has been described in which printing is performed while the print head 24 reciprocates in the main scanning direction, a printer including a line head, in which nozzles arranged at the width of the recording sheet S or more in the main scanning direction may be used.
In the foregoing embodiment, a printing apparatus is implemented to the printer 20, but it may be implemented to a printing apparatus ejecting a liquid other than ink, a liquid material (dispersion liquid), in which particles of a function material are dispersed, or a fluid, such as gel, or a printing apparatus ejecting a solid material, which can be ejected as a fluid. For example, it may be a liquid ejecting apparatus ejecting a liquid, in which an electrode material or a color material is dissolved, and which is used in manufacturing a liquid crystal display, an EL (Electro Luminescence) display, a surface emission display, or color filters, a liquid material ejecting apparatus ejecting a liquid material, in which an electrode material or a color material is dispersed, or a liquid ejecting apparatus ejecting a liquid which is a sample as a precision pipette. In addition, it may be a liquid ejecting apparatus ejecting on a substrate a transparent resin liquid, such as UV curable resin, to form a fine hemispheric lens (optical lens) for use in an optical communication element, a fluid material ejecting apparatus ejecting gel, or a power ejection-type recording apparatus ejecting powder, such as toner.
Number | Date | Country | Kind |
---|---|---|---|
2007-227160 | Aug 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7186448 | Yokoyama et al. | Mar 2007 | B2 |
20020171699 | Choi | Nov 2002 | A1 |
20040056915 | Miyazawa | Mar 2004 | A1 |
20060066660 | Johnson | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
07-327124 | Dec 1995 | JP |
2002-283672 | Oct 2002 | JP |
2004-079663 | Mar 2004 | JP |
2004-230640 | Aug 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090058920 A1 | Mar 2009 | US |