The present invention relates to a printing apparatus and a method of judging the nozzle discharge state of the printing apparatus and particularly to, for example, a printing apparatus for executing printing by transferring, to a print medium, an image formed by discharging ink from a printhead to a transfer member, and a method of judging the nozzle discharge state of the printing apparatus.
Conventionally, there is known an inkjet printing apparatus for printing an image on a print medium by discharging ink droplets from a printhead. For the printing apparatus having this arrangement, there is proposed a technique of inspecting the discharge state of each ink discharge nozzle (to be referred to as a nozzle hereinafter) provided in the printhead using ink droplet discharge from the printhead.
Japanese Patent Laid-Open No. 2008-000914 discloses a technique in which when a printhead including a plurality of nozzles and heaters corresponding to the nozzles is used, a change in temperature of each heater when driving each heater by applying pulse to the heater is monitored and the discharge state of each nozzle is judged based on the presence/absence of the inflection point of the change in temperature.
However, according to the examinations of the inventors, in a method of judging a discharge state by driving an element to discharge ink, if inspection is executed by driving the element under the same drive conditions as those for the element when printing an image, sufficient accuracy may not be obtained.
Accordingly, the present invention is conceived as a response to the above-described disadvantages of the conventional art.
For example, a printing apparatus and a method of judging the nozzle discharge state of the printing apparatus according to this invention are capable of precisely performing inspection on a discharge state from a nozzle of a printhead.
According to one aspect of the present invention, there is provided a printing apparatus comprising: a printhead including a plurality of nozzles each configured to discharge ink and a plurality of sensors, corresponding to the plurality of nozzles, for detecting a discharge state of ink from the plurality of nozzles; a print unit configured to print, based on print data, an image by driving the printhead under a first drive condition to discharge ink from the printhead to a first area, and discharge ink to a second area different from the first area by driving the printhead, based on inspection data, under a second drive condition different from the first drive condition; and a judgement unit configured to judge a discharge state of each of the plurality of nozzles, based on an output from each of the plurality of sensors at a timing of driving the printhead by the print unit under the second drive condition.
According to another aspect of the present invention, there is provided a method of judging a nozzle discharge state of a printing apparatus having a printhead including a plurality of nozzles each configured to discharge ink and a plurality of sensors, corresponding to the plurality of nozzles, for detecting a discharge state of ink from the plurality of nozzles, the method comprising: printing, based on print data, an image by driving the printhead under a first drive condition to discharge the ink from the printhead to a first area; discharging ink to a second area different from the first area by driving the printhead, based on inspection data, under a second drive condition different from the first drive condition; and judging a discharge state of each of the plurality of nozzles based on an output from each of the plurality of sensors at a timing of driving the printhead under the second drive condition.
The invention is particularly advantageous since it is possible to precisely perform inspection on a discharge state from a nozzle of a printhead.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Exemplary embodiments of the present invention will now be described in detail in accordance with the accompanying drawings. Note that in each drawing, arrows X and Y indicate horizontal directions perpendicular to each other, and an arrow Z indicates an up/down direction.
In this specification, the terms “print” and “printing” not only include the formation of significant information such as characters and graphics, but also broadly includes the formation of images, figures, patterns, and the like on a print medium, or the processing of the medium, regardless of whether they are significant or insignificant and whether they are so visualized as to be visually perceivable by humans.
Also, the term “print medium” not only includes a paper sheet used in common printing apparatuses, but also broadly includes materials, such as cloth, a plastic film, a metal plate, glass, ceramics, wood, and leather, capable of accepting ink.
Furthermore, the term “ink” (to be also referred to as a “liquid” hereinafter) should be broadly interpreted to be similar to the definition of “print” described above. That is, “ink” includes a liquid which, when applied onto a print medium, can form images, figures, patterns, and the like, can process the print medium, and can process ink. The process of ink includes, for example, solidifying or insolubilizing a coloring agent contained in ink applied to the print medium. Note that this invention is not limited to any specific ink component, however, it is assumed that this embodiment uses water-base ink including water, resin, and pigment serving as coloring material.
Further, a “print element” generically means an ink orifice or a nozzle including a liquid channel communicating with it, and a discharge element for generating energy used to discharge ink, unless otherwise specified.
An element substrate for a printhead (head substrate) used below means not merely a base made of a silicon semiconductor, but an arrangement in which elements, wirings, and the like are arranged.
Further, “on the substrate” means not merely “on an element substrate”, but even “the surface of the element substrate” and “inside the element substrate near the surface”. In the present invention, “built-in” means not merely arranging respective elements as separate members on the base surface, but integrally forming and manufacturing respective elements on an element substrate by a semiconductor circuit manufacturing process or the like.
The printing apparatus 1A includes a print unit 3, a transfer unit 4, peripheral units 5A to 5D, and a supply unit 6.
The print unit 3 includes a plurality of printheads 30 and a carriage 31. A description will be made with reference to
In this embodiment, each printhead 30 is a full-line head elongated in the Y direction, and nozzles are arrayed in a range where they cover the width of an image printing area of a print medium having a usable maximum size. Each printhead 30 has an ink discharge surface with the opened nozzle on its lower surface, and the ink discharge surface faces the surface of the transfer member 2 via a minute gap (for example, several mm). In this embodiment, the transfer member 2 is configured to move on a circular orbit cyclically, and thus the plurality of printheads 30 are arranged radially.
Each nozzle includes a discharge element. The discharge element is, for example, an element that generates a pressure in the nozzle and discharges ink in the nozzle, and the technique of an inkjet head in a well-known inkjet printer is applicable. For example, an element that discharges ink by causing film boiling in ink with an electrothermal transducer and forming a bubble, an element that discharges ink by an electromechanical transducer (piezoelectric element), an element that discharges ink by using static electricity, or the like can be given as the discharge element. A discharge element that uses the electrothermal transducer can be used from the viewpoint of high-speed and high-density printing.
In this embodiment, nine printheads 30 are provided. The respective printheads 30 discharge different kinds of inks. The different kinds of inks are, for example, different in coloring material and include yellow ink, magenta ink, cyan ink, black ink, and the like. One printhead 30 discharges one kind of ink. However, one printhead 30 may be configured to discharge the plurality of kinds of inks. When the plurality of printheads 30 are thus provided, some of them may discharge colorless ink (for example, clear ink) that does not include a coloring material.
The carriage 31 supports the plurality of printheads 30. The end of each printhead 30 on the side of an ink discharge surface is fixed to the carriage 31. This makes it possible to maintain a gap on the surface between the ink discharge surface and the transfer member 2 more precisely. The carriage 31 is configured to be displaceable while mounting the printheads 30 by the guide of each guide member RL. In this embodiment, the guide members RL are rail members elongated in the Y direction and provided as a pair separately in the X direction. A slide portion 32 is provided on each side of the carriage 31 in the X direction. The slide portions 32 engage with the guide members RL and slide along the guide members RL in the Y direction.
The guide member RL is elongated over the recovery unit 12 from the side of the transfer member 2. By the guide of the guide member RL, the print unit 3 is displaceable between a discharge position POS1 at which the print unit 3 is indicated by a solid line and a recovery position POS3 at which the print unit 3 is indicated by a broken line, and is moved by a driving mechanism (not shown).
The discharge position POS1 is a position at which the print unit 3 discharges ink to the transfer member 2 and a position at which the ink discharge surface of each printhead 30 faces the surface of the transfer member 2. The recovery position POS3 is a position retracted from the discharge position POS1 and a position at which the print unit 3 is positioned above the recovery unit 12. The recovery unit 12 can perform recovery processing on the printheads 30 when the print unit 3 is positioned at the recovery position POS3. In this embodiment, the recovery unit 12 can also perform the recovery processing in the middle of movement before the print unit 3 reaches the recovery position POS3. There is a preliminary recovery position POS2 between the discharge position POS1 and the recovery position POS3. The recovery unit 12 can perform preliminary recovery processing on the printheads 30 at the preliminary recovery position POS2 while the printheads 30 move from the discharge position POS1 to the recovery position POS3.
The transfer unit 4 will be described with reference to
The transfer drum 41 is a support member that supports the transfer member 2 on its outer peripheral surface. The transfer member 2 is provided on the outer peripheral surface of the transfer drum 41 continuously or intermittently in a circumferential direction. If the transfer member 2 is provided continuously, it is formed into an endless swath. If the transfer member 2 is provided intermittently, it is formed into swaths with ends dividedly into a plurality of segments. The respective segments can be arranged in an arc at an equal pitch on the outer peripheral surface of the transfer drum 41.
The transfer member 2 moves cyclically on the circular orbit by rotating the transfer drum 41. By the rotational phase of the transfer drum 41, the position of the transfer member 2 can be discriminated into a processing area R1 before discharge, a discharge area R2, processing areas R3 and R4 after discharge, a transfer area R5, and a processing area R6 after transfer. The transfer member 2 passes through these areas cyclically.
The processing area R1 before discharge is an area where preprocessing is performed on the transfer member 2 before the print unit 3 discharges ink and an area where the peripheral unit 5A performs processing. In this embodiment, a reactive liquid is applied. The discharge area R2 is a formation area where the print unit 3 forms an ink image by discharging ink to the transfer member 2. The processing areas R3 and R4 after discharge are processing areas where processing is performed on the ink image after ink discharge. The processing area R3 after discharge is an area where the peripheral unit 5B performs processing, and the processing area R4 after discharge is an area where the peripheral unit 5C performs processing. The transfer area R5 is an area where the transfer unit 4 transfers the ink image on the transfer member 2 to the print medium P. The processing area R6 after transfer is an area where post processing is performed on the transfer member 2 after transfer and an area where the peripheral unit 5D performs processing.
In this embodiment, the discharge area R2 is an area with a predetermined section. The other areas R1 and R3 to R6 have narrower sections than the discharge area R2. Comparing to the face of a clock, in this embodiment, the processing area R1 before discharge is positioned at almost 10 o'clock, the discharge area R2 is in a range from almost 11 o'clock to 1 o'clock, the processing area R3 after discharge is positioned at almost 2 o'clock, and the processing area R4 after discharge is positioned at almost 4 o'clock. The transfer area R5 is positioned at almost 6 o'clock, and the processing area R6 after transfer is an area at almost 8 o'clock.
The transfer member 2 may be formed by a single layer but may be an accumulative body of a plurality of layers. If the transfer member 2 is formed by the plurality of layers, it may include three layers of, for example, a surface layer, an elastic layer, and a compressed layer. The surface layer is an outermost layer having an image formation surface where the ink image is formed. By providing the compressed layer, the compressed layer absorbs deformation and disperses a local pressure fluctuation, making it possible to maintain transferability even at the time of high-speed printing. The elastic layer is a layer between the surface layer and the compressed layer.
As a material for the surface layer, various materials such as a resin and a ceramic can be used appropriately. In respect of durability or the like, however, a material high in compressive modulus can be used. More specifically, an acrylic resin, an acrylic silicone resin, a fluoride-containing resin, a condensate obtained by condensing a hydrolyzable organosilicon compound, and the like can be given. The surface layer that has undergone a surface treatment may be used in order to improve wettability of the reactive liquid, the transferability of an image, or the like. Frame processing, a corona treatment, a plasma treatment, a polishing treatment, a roughing treatment, an active energy beam irradiation treatment, an ozone treatment, a surfactant treatment, a silane coupling treatment, or the like can be given as the surface treatment. A plurality of them may be combined. It is also possible to provide any desired surface shape in the surface layer.
For example, acrylonitrile-butadiene rubber, acrylic rubber, chloroprene rubber, urethane rubber, silicone rubber, or the like can be given as a material for the compressed layer. When such a rubber material is formed, a porous rubber material may be formed by blending a predetermined amount of a vulcanizing agent, vulcanizing accelerator, or the like and further blending a foaming agent, or a filling agent such as hollow fine particles or salt as needed. Consequently, a bubble portion is compressed along with a volume change with respect to various pressure fluctuations, and thus deformation in directions other than a compression direction is small, making it possible to obtain more stable transferability and durability. As the porous rubber material, there are a material having an open cell structure in which respective pores continue to each other and a material having a closed cell structure in which the respective pores are independent of each other. However, either structure may be used, or both of these structures may be used.
As a member for the elastic layer, the various materials such as the resin and the ceramic can be used appropriately. In respect of processing characteristics, various materials of an elastomer material and a rubber material can be used. More specifically, for example, fluorosilicone rubber, phenyl silicone rubber, fluorine rubber, chloroprene rubber, urethane rubber, nitrile rubber, and the like can be given. In addition, ethylene propylene rubber, natural rubber, styrene rubber, isoprene rubber, butadiene rubber, the copolymer of ethylene/propylenobutudiene, nitrile-butadiene rubber, and the like can be given. Ira particular, silicone rubber, fluorosilicone rubber, and phenyl silicon rubber are advantageous in terms of dimensional stability and durability because of their small compression set. They are also advantageous in terms of transferability because of their small elasticity change by a temperature.
Between the surface layer and the elastic layer and between the elastic layer and the compressed layer, various adhesives or double-sided adhesive tapes can also be used in order to fix them to each other. The transfer member 2 may also include a reinforce layer high in compressive modulus in order to suppress elongation in a horizontal direction or maintain resilience when attached to the transfer drum 41. Woven fabric may be used as a reinforce layer. The transfer member 2 can be manufactured by combining the respective layers formed by the materials described above in any desired manner.
The outer peripheral surface of the pressurizing drum 42 is pressed against the transfer member 2. At least one grip mechanism which grips the leading edge portion of the print medium P is provided on the outer peripheral surface of the pressurizing drum 42. A plurality of grip mechanisms may be provided separately in the circumferential direction of the pressurizing drum 42. The ink image on the transfer member 2 is transferred to the print medium P when it passes through a nip portion between the pressurizing drum 42 and the transfer member 2 while being conveyed in tight contact with the outer peripheral surface of the pressurizing drum 42.
The transfer drum 41 and the pressurizing drum 42 share a driving source such as a motor that drives them. A driving force can be delivered by a transmission mechanism such as a gear mechanism.
The peripheral units 5A to 5D are arranged around the transfer drum 41. In this embodiment, the peripheral units 5A to 5D are specifically an application unit, an absorption unit, a heating unit, and a cleaning unit in order.
The application unit 5A is a mechanism which applies the reactive liquid onto the transfer member 2 before the print unit 3 discharges ink. The reactive liquid is a liquid that contains a component increasing an ink viscosity. An increase in ink viscosity here means that a coloring material, a resin, and the like that form the ink react chemically or suck physically by contacting the component that increases the ink viscosity, recognizing the increase in ink viscosity. This increase in ink viscosity includes not only a case in which an increase in viscosity of entire ink is recognized but also a case in which a local increase in viscosity is generated by coagulating some of components such as the coloring material and the resin that form the ink.
The component that increases the ink viscosity can use, without particular limitation, a substance such as metal ions or a polymeric coagulant that causes a pH change in ink and coagulates the coloring material in the ink, and can use an organic acid. For example, a roller, a printhead, a die coating apparatus (die coater), a blade coating apparatus (blade coater), or the like can be given as a mechanism which applies the reactive liquid. If the reactive liquid is applied to the transfer member 2 before the ink is discharged to the transfer member 2, it is possible to immediately fix ink that reaches the transfer member 2. This makes it possible to suppress bleeding caused by mixing adjacent inks.
The absorption unit 5B is a mechanism which absorbs a liquid component from the ink image on the transfer member 2 before transfer. It is possible to suppress, for example, a blur of an image printed on the print medium P by decreasing the liquid component of the ink image. Describing a decrease in liquid component from another point of view, it is also possible to represent it as condensing ink that forms the ink image on the transfer member 2. Condensing the ink means increasing the content of a solid content such as a coloring material or a resin included in the ink with respect to the liquid component by decreasing the liquid component included in the ink.
The absorption unit 5B includes, for example, a liquid absorbing member that decreases the amount of the liquid component of the ink image by contacting the ink image. The liquid absorbing member may be formed on the outer peripheral surface of the roller or may be formed into an endless sheet-like shape and run cyclically. In terms of protection of the ink image, the liquid absorbing member may be moved in synchronism with the transfer member 2 by making the moving speed of the liquid absorbing member equal to the peripheral speed of the transfer member 2.
The liquid absorbing member may include a porous body that contacts the ink image. The pore size of the porous body on the surface that contacts the ink image may be equal to or smaller than 10 μm in order to suppress adherence of an ink solid content to the liquid absorbing member. The pore size here refers to an average diameter and can be measured by a known means such as a mercury intrusion technique, a nitrogen adsorption method, an SEM image observation, or the like. Note that the liquid component does not have a fixed shape, and is not particularly limited if it has fluidity and an almost constant volume. For example, water, an organic solvent, or the like contained in the ink or reactive liquid can be given as the liquid component.
The heating unit 5C is a mechanism which heats the ink image on the transfer member 2 before transfer. A resin in the ink image melts by heating the ink image, improving transferability to the print medium P. A heating temperature can be equal to or higher than the minimum film forming temperature (MFT) of the resin. The MFT can be measured by each apparatus that complies with a generally known method such as JIS K 6828-2: 2003 or ISO 2115: 1996. From the viewpoint of transferability and image robustness, the ink image may be heated at a temperature higher than the MFT by 10° C. or higher, or may further be heated at a temperature higher than the MFT by 20° C. or higher. The heating unit 5C can use a known heating device, for example, various lamps such as infrared rays, a warm air fan, or the like. An infrared heater can be used in terms of heating efficiency.
The cleaning unit 5D is a mechanism which cleans the transfer member 2 after transfer. The cleaning unit 5D removes ink remaining on the transfer member 2, dust on the transfer member 2, or the like. The cleaning unit 5D can use a known method, for example, a method of bringing a porous member into contact with the transfer member 2, a method of scraping the surface of the transfer member 2 with a brush, a method of scratching the surface of the transfer member 2 with a blade, or the like as needed. A known shape such as a roller shape or a web shape can be used for a cleaning member used for cleaning.
As described above, in this embodiment, the application unit 5A, the absorption unit 5B, the heating unit 5C, and the cleaning unit 5D are included as the peripheral units. However, cooling functions of the transfer member 2 may be applied, or cooling units may be added to these units. In this embodiment, the temperature of the transfer member 2 may be increased by heat of the heating unit 5C. If the ink image exceeds the boiling point of water as a prime solvent of ink after the print unit 3 discharges ink to the transfer member 2, performance of liquid component absorption by the absorption unit 5B may be degraded. It is possible to maintain the performance of liquid component absorption by cooling the transfer member 2 such that the temperature of the discharged ink is maintained below the boiling point of water.
The cooling unit may be an air blowing mechanism which blows air to the transfer member 2, or a mechanism which brings a member (for example, a roller) into contact with the transfer member 2 and cools this member by air-cooling or water-cooling. The cooling unit may be a mechanism which cools the cleaning member of the cleaning unit 5D. A cooling timing may be a period before application of the reactive liquid after transfer.
The supply unit 6 is a mechanism which supplies ink to each printhead 30 of the print unit 3. The supply unit 6 may be provided on the rear side of the printing system 1. The supply unit 6 includes a reservoir TK that reserves (stores) ink for each kind of ink. Each reservoir TK may be made of a main tank and a sub tank. Each reservoir TK and a corresponding one of the printheads 30 communicate with each other by a liquid passageway 6a, and ink is supplied from the reservoir TK to the printhead 30. The liquid passageway 6a may circulate ink between the reservoirs TK and the printheads 30. The supply unit 6 may include, for example, a pump that circulates ink. A deaerating mechanism which deaerates bubbles in ink may be provided in the middle of the liquid passageway 6a or in each reservoir TK. A valve that adjusts the fluid pressure of ink and an atmospheric pressure may be provided in the middle of the liquid passageway 6a or in each reservoir TK. The heights of each reservoir TK and each printhead 30 in the Z direction may be designed such that the liquid surface of ink in the reservoir TK is positioned lower than the ink discharge surface of the printhead 30.
The conveyance apparatus 1B is an apparatus that feeds the print medium P to the transfer unit 4 and discharges, from the transfer unit 4, the printed product P′ to which the ink image was transferred. The conveyance apparatus 1B includes a feeding unit 7, a plurality of conveyance drums 8 and 8a, two sprockets 8b, a chain 8c, and a collection unit 8d. In
The feeding unit 7 includes a stacking unit where the plurality of print media P are stacked and a feeding mechanism which feeds the print media P one by one from the stacking unit to the most upstream conveyance drum 8. Each of the conveyance drums 8 and 8a is a rotating body that rotates about the rotation axis in the Y direction and has a columnar outer peripheral surface. At least one grip mechanism which grips the leading edge portion of the print medium P (printed product P′) is provided on the outer peripheral surface of each of the conveyance drums 8 and 8a. A gripping operation and release operation of each grip mechanism may be controlled such that the print medium P is transferred between the adjacent conveyance drums.
The two conveyance drums 8a are used to reverse the print medium P. When the print medium P undergoes double-side printing, it is not transferred to the conveyance drum 8 adjacent on the downstream side but transferred to the conveyance drums 8a from the pressurizing drum 42 after transfer onto the surface. The print medium P is reversed via the two conveyance drums 8a and transferred to the pressurizing drum 42 again via the conveyance drums 8 on the upstream side of the pressurizing drum 42. Consequently, the reverse surface of the print medium P faces the transfer drum 41, transferring the ink image to the reverse surface.
The chain 8c is wound between the two sprockets 8b. One of the two sprockets 8b is a driving sprocket, and the other is a driven sprocket. The chain 8c runs cyclically by rotating the driving sprocket. The chain 8c includes a plurality of grip mechanisms spaced apart from each other in its longitudinal direction. Each grip mechanism grips the end of the printed product P′. The printed product P′ is transferred from the conveyance drum 8 positioned at a downstream end to each grip mechanism of the chain 8c, and the printed product P′ gripped by the grip mechanism is conveyed to the collection unit 8d by running the chain 8c, releasing gripping. Consequently, the printed product P′ is stacked in the collection unit 8d.
The conveyance apparatus 1B includes post processing units 10A and 10B. The post processing units 10A and 10B are mechanisms which are arranged on the downstream side of the transfer unit 4, and perform post processing on the printed product P′. The post processing unit 10A performs processing on the obverse surface of the printed product P′, and the post processing unit 10B performs processing on the reverse surface of the printed product P′. The contents of the post processing include, for example, coating that aims at protection, providing glossiness, and the like of an image on the image printed surface of the printed product P′. For example, liquid application, sheet welding, lamination, and the like can be given as examples of coating.
The conveyance apparatus 1B includes inspection units 9A and 9B. The inspection units 9A and 9B are mechanisms which are arranged on the downstream side of the transfer unit 4, and inspect the printed product P′.
In this embodiment, the inspection unit 9A is an image capturing apparatus that captures an image printed on the printed product P′ and includes an image sensor, for example, a CCD sensor, a CMOS sensor, or the like. The inspection unit 9A captures a printed image while a printing operation is performed continuously. Based on the image captured by the inspection unit 9A, it is possible to confirm a temporal change in tint or the like of the printed image and determine whether to correct image data or print data. In this embodiment, the inspection unit 9A has an imaging range set on the outer peripheral surface of the pressurizing drum 42 and is arranged to be able to partially capture the printed image immediately after transfer. The inspection unit 9A may inspect all printed images or may inspect the images every predetermined number of sheets.
In this embodiment, the inspection unit 9B is also an image capturing apparatus that captures an image printed on the printed product P′ and includes an image sensor, for example, a CCD sensor, a CMOS sensor, or the like. The inspection unit 9B captures a printed image in a test printing operation. The inspection unit 9B can capture the entire printed image. Based on the image captured by the inspection unit 9B, it is possible to perform basic settings for various correction operations regarding print data. In this embodiment, the inspection unit 9B is arranged at a position to capture the printed product P′ conveyed by the chain 8c. When the inspection unit 9B captures the printed image, it captures the entire image by temporarily suspending the run of the chain 8c. The inspection unit 9B may be a scanner that scans the printed product P′.
A control unit of the printing system 1 will be described next.
The host apparatus HC1 may be, for example, a PC (Personal Computer) serving as an information processing apparatus, or a server apparatus. A communication method between the host apparatus HC1 and the higher level apparatus HC2 may be, without particular limitation, either wired or wireless communication.
Original data to be the source of a printed image is generated or saved in the host apparatus HC1. The original data here is generated in the format of, for example, an electronic file such as a document file or an image file. This original data is transmitted to the higher level apparatus HC2. In the higher level apparatus HC2, the received original data is converted into a data format (for example, RGB data that represents an image by RGB) available by the control unit 13. The converted data is transmitted from the higher level apparatus HC2 to the control unit 13 as image data. The control unit 13 starts a printing operation based on the received image data.
In this embodiment, the control unit 13 is roughly divided into a main controller 13A and an engine controller 13B. The main controller 13A includes a processing unit 131, a storage unit 132, an operation unit 133, an image processing unit 134, a communication I/F (interface) 135, a buffer 136, and a communication I/F 137.
The processing unit 131 is a processor such as a CPU, executes programs stored in the storage unit 132, and controls the entire main controller 13A. The storage unit 132 is a storage device such as a RAM, a ROM, a hard disk, or an SSD, stores data and the programs executed by the processing unit (CPU) 131, and provides the processing unit (CPU) 131 with a work area. An external storage unit may further be provided in addition to the storage unit 132. The operation unit 133 is, for example, an input device such as a touch panel, a keyboard, or a mouse and accepts a user instruction. The operation unit 133 may be formed by an input unit and a display unit integrated with each other. Note that a user operation is not limited to an input via the operation unit 133, and an arrangement may be possible in which, for example, an instruction is accepted from the host apparatus HC1 or the higher level apparatus HC2.
The image processing unit 134 is, for example, an electronic circuit including an image processing processor. The buffer 136 is, for example, a RAM, a hard disk, or an SSD. The communication I/F 135 communicates with the higher level apparatus HC2, and the communication I/F 137 communicates with the engine controller 13B. In
As shown in
The engine control unit 14 controls the entire engine controller 13B. The printing control unit 15A converts print data received from the main controller 13A into raster data or the like in a data format suitable for driving of the printheads 30. The printing control unit 15A controls discharge of each printhead 30.
The transfer control unit 15B controls the application unit 5A, the absorption unit 5B, the heating unit 5C, and the cleaning unit 5D.
The reliability control unit 15C controls the supply unit 6, the recovery unit 12, and a driving mechanism which moves the print unit 3 between the discharge position POS1 and the recovery position POS3.
The conveyance control unit 15D controls driving of the transfer unit 4 and controls the conveyance apparatus 1B. The inspection control unit 15E controls the inspection unit 9B and the inspection unit 9A.
Of the sensor group/actuator group 16, the sensor group includes a sensor that detects the position and speed of a movable part, a sensor that detects a temperature, an image sensor, and the like. The actuator group includes a motor, an electromagnetic solenoid, an electromagnetic valve, and the like.
The ink image IM on the transfer member 2 moves along with the rotation of the transfer member 2. When the ink image IM reaches the absorption unit 5B, as shown in a state ST3, the absorption unit 5B absorbs a liquid component from the ink image IM. When the ink image IM reaches the heating unit 5C, as shown in a state ST4, the heating unit 5C heats the ink image IM, a resin in the ink image IM melts, and a film of the ink image IM is formed. In synchronism with such formation of the ink image IM, the conveyance apparatus 1B conveys the print medium P.
As shown in a state ST5, the ink image IM and the print medium P reach the nip portion between the transfer member 2 and the pressurizing drum 42, the ink image IM is transferred to the print medium P, and the printed product P′ is formed. Passing through the nip portion, the inspection unit 9A captures an image printed on the printed product P′ and inspects the printed image. The conveyance apparatus 1B conveys the printed product P′ to the collection unit 8d.
When a portion where the ink image IM on the transfer member 2 is formed reaches the cleaning unit 5D, it is cleaned by the cleaning unit 5D as shown in a state ST6. After the cleaning, the transfer member 2 rotates once, and transfer of the ink image to the print medium P is performed repeatedly in the same procedure. The description above has been given such that transfer of the ink image IM to one print medium P is performed once in one rotation of the transfer member 2 for the sake of easy understanding. It is possible, however, to continuously perform transfer of the ink image IM to the plurality of print media P in one rotation of the transfer member 2.
Each printhead 30 needs maintenance if such a printing operation continues.
The printhead 30 is a full-line printhead that arrays a plurality of element substrates 10 each capable of discharging one-color ink on a line (arranges them in line) and has a print width corresponding to the width of a print medium.
As shown in
As shown in
Note that in this embodiment, an ink circulation type printhead in which ink between an inside of a nozzle and an outside of the nozzle is circulated so as to suppress an increase of ink viscosity is used. However, a conventional ink consumption type printhead without an ink circulation mechanism may be used.
If a plurality of head chips are arranged in a predetermined direction to form a full-line printhead with a longer print width while having a uniform nozzle pitch, a joint is created between the head chips. To effectively use all nozzles integrated in the head chips, this embodiment adopts the head chips each having a parallelogram shape.
Each head chip includes a plurality of nozzle arrays 114, as shown in
Therefore, a drive pulse is input to each heater of each head chip forming the printhead, and a change in temperature of each heater is monitored based on an output from the temperature sensor corresponding to each heater, thereby making it possible to judge the discharge state of each nozzle based on the change characteristic.
An arrangement of inspecting the discharge state of each nozzle of the printhead 30 in the printing system having the above-described arrangement will be described next.
In the x-x′ sectional view shown in
Next, the interlayer insulation film 307 is formed below the temperature detection element 306. The wiring 303 and the print element 309 serving as a heating resistor formed by a tantalum silicon nitride film or the like are electrically connected via conductive plugs 308 which penetrate through the interlayer insulation film 304 and the interlayer insulation film 307, and made of tungsten or the like.
Note that when connecting the conductive plugs in the lower layer and those in the upper layer, they are generally connected by sandwiching a spacer formed by an intermediate wiring layer. When applied to this embodiment, since the film thickness of the temperature detection element serving as the intermediate wiring layer is as small as about several ten nm, the accuracy of overetching control with respect to a temperature detection element film serving as the spacer is required in a via hole process. In addition, the thin film is also disadvantageous in pattern miniaturization of a temperature detection element layer. In consideration of this situation, in this embodiment, the conductive plugs which penetrate through the interlayer insulation film 304 and the interlayer insulation film 307 are employed.
To ensure the reliability of conduction in accordance with the depths of the plugs, in this embodiment, each conductive plug 305 including one interlayer insulation film has a bore of 0.4 μm, and each conductive plug 308 in which the interlayer insulation film penetrates the two films has a larger bore of 0.6 μm.
Next, a head substrate (element substrate) is obtained by forming a protection film 310 such as a silicon nitride film, and then forming an anti-cavitation film 311 that contains tantalum or the like on the protection film 310. Furthermore, an orifice 313 is formed by a nozzle forming material 312 containing a photosensitive resin or the like.
As described above, the multilayer wiring structure in which an independent intermediate layer of the temperature detection element 306 is provided between the layer of the wiring 303 and the layer of the print element 309 is employed.
With the above arrangement, in the element substrate used in this embodiment, it is possible to obtain, for each print element, temperature information by the temperature detection element provided, in correspondence with each print element, immediately below the print element.
Based on the temperature information detected by the temperature detection element and a change in temperature, a logic circuit (inspection unit) provided in the element substrate can obtain a determination result signal RSLT indicating the status of ink discharge from the corresponding print element. The determination result signal RSLT is a 1-bit signal, and “1” indicates normal discharge and “0” indicates a discharge failure.
As shown in
For temperature detection, when the printing control unit 15A issues an instruction to the signal generation unit 70, the signal generation unit 70 outputs a clock signal CLK, a latch signal LT, a block signal BLE, a print data signal DATA, and a heat enable signal HE to the element substrate 10. The signal generation unit 70 also outputs a sensor selection signal SDATA, a constant current signal Diref, and a discharge inspection threshold signal Ddth.
The discharge inspection threshold signal Ddth is configured to set a threshold for a print element group in which the plurality of print elements integrated in the printhead 30 are divided into a plurality of groups each formed from a plurality of print elements located close to each other, and to change the setting value in one column cycle. In this embodiment, this group will be referred to as a discharge inspection threshold setting group hereinafter. For the sake of descriptive convenience, assume that the number of print elements integrated in the printhead 30 is 256, and a threshold voltage (TH) for discharge inspection is settable for each of 16 groups each formed from 16 print elements located close to each other.
Note that an arrangement in which a unique threshold voltage for discharge inspection is settable for each of all the print elements or an arrangement in which a setting value is changeable for each latch is possible. However, in such arrangement, the circuit scale of the head I/F 427 increases, and a significant increase in cost cannot be avoided. To solve this problem, this embodiment adopts an arrangement in which a threshold voltage (TH) for discharge inspection is settable for each group.
The sensor selection signal SDATA includes selection information for selecting the temperature detection element to detect the temperature information, energization quantity designation information to the selected temperature detection element, and information pertaining to an output instruction of the judgment result signal RSLT. If, for example, the element substrate 10 is configured to integrate five print element arrays each including a plurality of print elements, the selection information included in the sensor selection signal SDATA includes array selection information for designating an array and print element selection information for designating a print element of the array. On the other hand, the element substrate 10 outputs the 1-bit judgment result signal RSLT based on the temperature information detected by the temperature detection element corresponding to the one print element of the array designated by the sensor selection signal SDATA.
Note that this embodiment employs an arrangement in which the 1-bit judgment result signal RSLT is output for the print elements of the five arrays. Therefore, in an arrangement in which the element substrate 10 integrates 10 print element arrays, the judgment result signal RSLT is a 2-bit signal, and this 2-bit signal is serially output to the judgment result extraction unit 9 via one signal line.
As is apparent from
The printing control unit 15A erases a signal for the discharge failure nozzle from the print data signal DATA of a corresponding block based on the block signal BLE and the sensor selection signal SDATA which have been used to drive the discharge failure nozzle and stored in the storage unit 132. The printing control unit 15A adds a nozzle for complementing a non-discharge nozzle to the print data signal DATA of the corresponding block instead, and outputs the signal to the signal generation unit 70.
Note that in
As shown in
The lowermost timing chart of
In the waveform 203, a peak 210 deriving from the highest temperature drop rate after the feature point 209 of the waveform 201 appears. The waveform (dT/dt) 203 is compared with a discharge inspection threshold voltage (TH) preset in a comparator integrated in the element substrate 10, and a pulse indicating normal discharge in a period (dT/dt≥TH) in which the waveform 203 exceeds the discharge inspection threshold voltage (TH) appears in a judgment signal (CMP) 213.
On the other hand, since no feature point 209 appears in the waveform 202, the temperature drop rate is low, and the peak appearing in the waveform 204 is lower than the discharge inspection threshold voltage (TH). The waveform (dT/dt) 202 is also compared with the discharge inspection threshold voltage (TH) preset in the comparator integrated in the element substrate 10. In a period (dT/dt<TH) in which the waveform 202 is below the discharge inspection threshold voltage (TH), no pulse appears in the judgment signal (CMP) 213.
Therefore, by obtaining this judgment signal (CMP), it is possible to grasp the discharge state of each nozzle. This judgment signal (CMP) serves as the above-described judgment result signal RSLT.
In the printing system 1, an image is formed on the transfer member 2 by ink discharged from the printhead 30, and the image is transferred from the transfer member 2 to the print medium P. Therefore, an actual image area L1 and an inspection area L2 shown in
The above-described printing control unit 15A sets the actual image area L1 and the inspection area L2 on the print medium P (or the transfer member 2) based on information of an image size and a paper size set by the user. The printing control unit 15A switches over between a drive pulse used to drive each heater for printing the image in the actual image area L1 and a drive pulse used to drive each heater for inspecting the discharge state of each nozzle of the printhead 30 using the inspection area L2. That is, the printing control unit 15A starts the operation of a counter from the leading end of the print medium with respect to the conveyance direction of the print medium during a print operation, and switches over the drive pulse based on the information of the actual image area L1 in accordance with a timing after printing of lines the number of which corresponds to the actual image area L1.
Referring to
As shown in
When printing the actual image area, the time during which a droplet floats is advantageously shortened since the droplet can be accurately adhered at a target position. Therefore, a drive pulse is applied so as to increase the kinetic energy of ink. On the other hand, in the inspection mode, since the principle of cooling the interface of the print element 309 when the satellite of an ink droplet drops is used, the kinetic energy of ink is decreased to facilitate a drop of the satellite on the interface of the print element 309. The pulse has the feature in which the speed can be suppressed while maintaining the energy by applying the drive pulse PLS1 as a single pulse during a time almost equal to a time (t1−t0)+(t3−t2) during which the drive pulse PLS0 is applied. Note that to further suppress the speed, in fact, a single pulse may be used such that the time is slightly shorter than (t1−t0)+(t3−t2).
Furthermore, the drive pulse PLS2 can be used for printing in the inspection area L2. Although, similar to the drive pulse PLS1, the drive pulse PLS2 causes foaming as soon as an electric current of a single-pulse portion (T1) flows into the heater, so it is possible to improve the inspection accuracy by heating the heater by energizing a small pulse with a micro time difference (t5−t4).
Furthermore, in fact, a response speed becomes an issue. For example, a drive voltage to be applied to the heater may be changed. If, for example, heater warm-up control is executed, a heater warm-up temperature may be changed to a lower temperature.
In this embodiment, the discharge state of each nozzle can be inspected by switching over the operation mode of the printhead to the inspection mode after printing the image in the actual image area L1, and executing an ink discharge operation in the inspection area L2 using the drive pulse dedicated for inspection. At this time, the discharge state of each nozzle can be inspected while continuously operating the printing system without the need to stop rotation of the transfer member 2. Thus, while the printhead 30 forms an image in the actual image area L1 of the transfer member 2, that is, while the printhead operates in the printing mode, the operation of the temperature sensor is turned off, and then the operation mode of the printhead is switched over to the inspection mode when the ink discharge position of the printhead 30 enters the inspection area L2. The operation of the temperature sensor is turned on when the operation mode of the printhead 30 is switched over to the inspection mode, thereby monitoring a change in temperature of each heater.
Note that although the drive pulse is one of the drive conditions under which the printhead 30 is driven, a drive voltage, a head adjustment temperature, and like are also included in the drive conditions.
During a print operation, the transfer member 2 continuously rotates, and print data is continuously read out from the storage unit 132 to the printhead 30.
In this embodiment, a wiring of an electrical signal is provided so that a common drive pulse is applied to the heaters corresponding to the nozzles of each nozzle array 114 of the element substrate 10. Then, for one head substrate, the drive pulse of the printing mode or that of the inspection mode is input to all the elements. If such head substrate is used, it is not desirable to drive some elements with the drive pulse for the inspection mode when some nozzles of the head substrate have not ended ink discharge operations for printing.
On the other hand, as described with reference to
To cope with the continuous data readout operation, in this embodiment, the data storage area is set in the storage unit 132, as shown in
Note that with respect to each nozzle array 114 of the element substrate 10, a drive pulse may be settable for each nozzle array or each nozzle. In this case, while an actual image is printed using part of the same head substrate, the elements of a portion that has ended the print area of the actual image can be shifted to the inspection mode. In this way, the range, in the conveyance direction, of the mode switchover buffer area can be shortened.
Referring to
Therefore, even if a print operation in the actual image area by the leading end nozzle has ended, a print operation in the actual image area by the tail end nozzle has not ended. Therefore, it is necessary to switch over the operation of the printhead from the printing mode to the inspection mode after the print operation in the actual image area by the tail end nozzle ends.
For the above reason, in a data readout operation, the timing shift is absorbed by providing the data storage area 132b corresponding to the mode switchover buffer area in the storage unit 132, as shown in
Since the influence of drying of a nozzle surface or the like can be reduced by performing a preliminary discharge operation before (if possible, immediately before) inspection in the inspection area, a time necessary for preliminary discharge is desirably considered to improve the judgement accuracy of the nozzle discharge state. In consideration of this, before all the nozzle arrays enter the inspection area, it is desirable to provide a buffer area of the same size and to perform a preliminary discharge operation in the buffer area.
As shown in
An ink color conversion unit 221 as part of the image processing unit 134 converts input image data from RGB data into ink color data. A quantization unit 222 as part of the image processing unit 134 quantizes the converted ink color data into print data. A nozzle data generation unit 224 of the printing control unit 15A allocates the quantized print data to each nozzle. The printhead 30 discharges ink in accordance with the nozzle data allocated to each nozzle.
The nozzle data allocated to each nozzle is input to a nozzle count unit 225 of the printing control unit 15A to count the number of nozzles that concurrently discharge ink at each discharge timing. The number of nozzles counted for each discharge timing is sent to a drive pulse control unit 227 of the printing control unit 15A. The drive pulse control unit 227 loads, from a drive pulse table 226 stored in a memory such as a ROM, a drive pulse setting corresponding to the number of nozzles counted by the nozzle count unit 225, and drives the printhead 30 at each discharge timing.
In this embodiment, the printhead 30 discharges ink based on a preliminary discharge pattern and a discharge detection pattern, instead of the image data. The preliminary discharge pattern is a pattern used to recover the status of a nozzle, and the discharge detection pattern is a pattern used to judge the discharge state of each nozzle. The preliminary discharge pattern and the discharge detection pattern are stored in a pattern storage memory 223 in a form of nozzle data. In this embodiment, the preliminary discharge pattern is a pattern in which the number of nozzles that concurrently discharge ink is always equal to or larger than 17, and the discharge detection pattern is a pattern in which the number of nozzles that concurrently discharge ink is always equal to or smaller than 16.
Similar to a case in which printing is executed based on image data, with respect to the preliminary discharge pattern and the discharge detection pattern, the nozzle count unit 225 counts the number of nozzles that concurrently discharge ink. The drive pulse control unit 227 selects a drive pulse table from the drive pulse table 226 in accordance with the number of nozzles counted by the nozzle count unit 225. As for the discharge detection pattern, the counted number is always equal to or smaller than 16. Therefore, a drive pulse table of level 0 is always selected. Furthermore, as for the preliminary discharge pattern, the counted number is always equal to or larger than 17, and therefore, a driving pulse table of one of levels 1 to 15 is selected.
In the examples shown in
At the time of normal printing, the discharge state is simply judged based on page data with the arrangement shown in
Note that when executing preliminary discharge, it is desirable to perform the same registration adjustment as that used for printing in the actual image area in order to reduce an area necessary for the transfer member (print medium).
An inspection pattern used for inspection printing in the inspection area will be described next.
If a number of nozzles (heaters) are concurrently driven, this may highly probably adversely influence the inspection result of the discharge state of each nozzle. Thus, to improve the inspection accuracy, if an electric circuit of the same system is connected to a plurality of nozzle arrays, one nozzle is selectively caused to perform discharge.
The plurality of heaters integrated in the head substrate 10 are time-divisionally driven.
In the example shown in
Since the inspection time is different in accordance with the discharged ink and the circuit characteristic, as a matter of course, the nozzle driving order need not be limited to the example shown in
If the nozzle array shown in
The above description assumes that the inspection area is provided after the actual image area with respect to the conveyance direction of the print medium, as shown in
Furthermore, since the printing system 1 can perform double side printing on the print medium P, inspection printing may be performed on the front surface or the back surface of the print medium.
If an image is formed on the transfer member 2 by discharging ink from the printhead 30, and then the formed image is transferred to the print medium, the size of the transfer member 2 is generally larger than the size of the print medium.
As shown in
Finally, the above-described processing of inspecting the nozzle discharge state will be described with reference to a flowchart.
This inspection processing is executed during execution of a series of processes of forming an image on the surface of the transfer member 2 by discharging ink from the printhead 30 while continuously rotating the transfer member 2 and transferring the formed image to the fed print medium P.
In step S10, image printing is executed by discharging ink from the printhead 30 to the actual image area of the transfer member 2. At this time, the printing control unit 15A counts, from the leading end of the transfer member 2 (print medium P), the number of lines having undergone printing with respect to the rotation direction of the transfer member (the conveyance direction of the print medium). In step S20, it is checked whether the counted number has reached the number of lines corresponding to the actual image area L1. If the counted number is smaller than the number of lines corresponding to the actual image area L1, the process returns to step S10 to continue image printing. On the other hand, if it is judged that the counted number has reached the number of lines corresponding to the actual image area L1, the process advances to step S30.
In step S30, in consideration of the fact that the nozzle arrays of the head substrate intersect the conveyance direction of the print medium and discharge timings of the respective nozzles are different with respect to the conveyance direction, the process waits until the discharge operations of all the nozzles end, and the operation mode of the printhead is switched over. That is, the operation mode of the printhead 30 is switched over from the printing mode to the inspection mode. Furthermore, in step S40, the drive pulse used in the inspection mode is selected. This selects, as a drive pulse, the drive pulse PLS1 or PLS2 shown in
In step S50, the printhead 30 is driven using the selected drive pulse to print the inspection pattern by selectively, time-divisionally driving the nozzles (heaters) based on the inspection data, as described with reference to
In step S80, it is judged whether to continue printing. If it is judged to end printing, the process ends. However, if it is judged to continue printing, the process advances to step S90. In step S90, the operation mode of the printhead 30 is switched over again from the inspection mode to the printing mode. Furthermore, in step S100, a drive pulse to be used in the printing mode is selected. This selects, as the drive pulse, the drive pulse PLS0 shown in
Note that if, as a result of the above-described inspection processing, the inspected nozzle is judged as a failure nozzle, when a normal nozzle exists near the failure nozzle, complementary printing is desirably performed by discharging ink from the nearby nozzle. However, if the number of nozzles that are judged as failure nozzles is very large and it is difficult to continue high-quality printing, the operation of the printing apparatus is stopped to display a message for prompting the user to replace or maintain the printhead.
Therefore, according to the above-described embodiment, it is possible to inspect the nozzle discharge state of the printhead while continuing image printing. Specifically, in inspection, drive conditions such as the drive pulse dedicated for inspection are used, thereby enabling accurate inspection.
In the above embodiment, the print unit 3 includes the plurality of printheads 30. However, a print unit 3 may include one printhead 30. The printhead 30 may not be a full-line head but may be of a serial type that forms an ink image while scanning the printhead 30 in a Y direction.
A conveyance mechanism of the print medium P may adopt another method such as a method of clipping and conveying the print medium P by the pair of rollers. In the method of conveying the print medium P by the pair of rollers or the like, a roll sheet may be used as the print medium P, and a printed product P′ may be formed by cutting the roll sheet after transfer.
In the above embodiment, the transfer member 2 is provided on the outer peripheral surface of the transfer drum 41. However, another method such as a method of forming a transfer member 2 into an endless swath and running it cyclically may be used.
Furthermore, the printing system according to the above embodiment adopts the method of forming an image on the transfer member and transferring the image to the print medium. The present invention, however, is not limited to this. For example, the present invention is also applicable to a printing apparatus that adopts a method of forming an image by discharging ink from the printhead to the print medium directly. In this case, the printhead used may be a full-line head or a serial type printhead that reciprocally moves.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2018-148715, filed Aug. 7, 2018, and No. 2019-036837, filed Feb. 28, 2019, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-148715 | Aug 2018 | JP | national |
JP2019-036837 | Feb 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6089695 | Takagi | Jul 2000 | A |
7806503 | Aoki et al. | Oct 2010 | B2 |
8186798 | Aoki et al. | May 2012 | B2 |
8845060 | Azuma et al. | Sep 2014 | B2 |
9340009 | Murayama et al. | May 2016 | B2 |
9434196 | Fukasawa et al. | Sep 2016 | B2 |
20070291067 | Aoki | Dec 2007 | A1 |
20100053249 | Matsushita et al. | Mar 2010 | A1 |
20110141188 | Morita | Jun 2011 | A1 |
20120033006 | Murayama | Feb 2012 | A1 |
20120194587 | Teshigawara et al. | Aug 2012 | A1 |
20150091960 | Nakazawa | Apr 2015 | A1 |
20150097885 | Hosokawa | Apr 2015 | A1 |
20170232770 | Akiyama et al. | Aug 2017 | A1 |
20190009546 | Sakamoto et al. | Jan 2019 | A1 |
20190009594 | Sakamoto et al. | Jan 2019 | A1 |
20200047492 | Umezawa et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
101092082 | Dec 2007 | CN |
101665021 | Mar 2010 | CN |
110816054 | Feb 2020 | CN |
2008-000914 | Jan 2008 | JP |
2010-120301 | Jun 2010 | JP |
Entry |
---|
Extended European Search Report dated Jan. 30, 2020, in European Patent Application No. 19190478.8. |
U.S. Appl. No. 16/529,196, Daisuke Ishii, Yoshiaki Murayama, Shigeyasu Nagoshi, Takeshi Murase, Satoshi Tada, Kenji Kubozono, filed Aug. 1, 2019. |
U.S. Appl. No. 16/530,598, Yoshiaki Murayama, Shigeyasu Nagoshi, Daisuke Ishii, filed Aug. 2, 2019. |
U.S. Appl. No. 16/533,862, Masahiko Umezawa, Kouichi Serizawa, Satoshi Kitai, Yoshiaki Murayama, Takeshi Murase, filed Aug. 7, 2019. |
Office Action dated Feb. 3, 2021, in Chinese Patent Application No. 201910724882.9. |
Number | Date | Country | |
---|---|---|---|
20200047491 A1 | Feb 2020 | US |