An inkjet printing apparatus configured to perform a circulation of sedimentary ink at predetermined time intervals is suggested. When the ink is circulated, an ink concentration is uniformly restored. However, during the circulation of ink, a meniscus of the ink nozzle of an inkjet head is affected by a pressure variation and the like, and there is a concern that normal ink ejection cannot be performed. For this reason, a cleaning operation for the inkjet head is performed after the circulation.
In the above printing apparatus, when the circulation operation of ink that is performed at predetermined time intervals is stopped, a purging of discharging the ink in the inkjet head from the ink nozzle is performed, and then, a nozzle surface of the inkjet head is cleaned. Since the cleaning operation such as purging is always performed after the circulation operation of ink, there is a problem that ink consumption resulting from the cleaning operation increases.
An object of the present disclosure is to provide a printing apparatus and a non-transitory computer-readable storage medium storing a computer program, which enable to reduce ink consumption resulting from a cleaning operation in the printing apparatus performing a circulation of ink and the cleaning operation for an inkjet head.
A first aspect of the present disclosure is a printing apparatus including a reservoir, an inkjet head and a controller. The reservoir is configured to store ink. The inkjet head is connected to the reservoir via a flow path. The controller is configured to perform circulation timing determination processing, print timing determination processing and circulation processing. In the circulation timing determination processing, the controller determines whether or not to arrive at a circulation timing for performing a circulation of the ink via at least one of the flow path or the inkjet head. In the print timing determination processing, the controller determines whether or not to arrive at a print timing, in a case where it is determined that the circulation timing comes to be arrived. In the circulation processing, the controller causes the printing apparatus to perform the circulation and a subsequent cleaning operation for the inkjet head in a case where it is determined that the print timing comes to be arrived, and to perform the circulation and not perform the subsequent cleaning operation in a case where it is not determined that the print timing comes to be arrived.
In the printing apparatus, in the case where the controller does not determine that the print timing comes to be arrived, the controller performs the circulation and does not perform the subsequent cleaning operation. Therefore, the ink consumption resulting from the cleaning operation is reduced.
A second aspect of the present disclosure is a non-transitory computer-readable storage medium storing a computer program. The computer program is executed by a processor of a printing apparatus including a reservoir, an inkjet head and a processor. The reservoir is configured to store ink. The inkjet head is connected to the reservoir via a flow path. The computer program causes the processor to perform circulation timing determination processing, print timing determination processing and circulation processing. In the circulation timing determination processing, the processor determines whether or not to arrive at a circulation timing for performing a circulation of the ink via at least one of the flow path or the inkjet head. In the print timing determination processing, the processor determines whether or not to arrive at a print timing, in a case where it is determined that the circulation timing comes to be arrived. In the circulation processing, the processor causes the printing apparatus to perform the circulation and a subsequent cleaning operation for the inkjet head in a case where it is determined that the print timing comes to be arrived, and to perform the circulation and not to perform the subsequent cleaning operation in a case where it is not determined that the print timing comes to be arrived.
In the case where the processor does not determine that the print timing comes to be arrived, the processor performs the circulation and does not perform the subsequent cleaning operation. Therefore, the ink consumption resulting from the cleaning operation is reduced.
A schematic configuration of a printing apparatus 1 will be described with reference to
As shown in
The white ink is mainly ejected to an entire or partial printing area, as a base in printing, when a color of the printing medium is a deep color. The color ink is mainly used for printing after the white ink is ejected. The white ink is a liquid containing a component having a higher sedimentation property than a component contained in the color ink. The component having a high sedimentation property is, for example, titanium oxide. Titanium oxide is an inorganic pigment with a relatively high specific gravity. Pigment particles tend to settle in the white ink containing a component having a high sedimentation property For this reason, when performing printing by the white ink, it is necessary to maintain favorable flowability in a flow path of the white ink of the white ink by keeping the white ink in a sufficiently agitated state.
As shown in
An operation panel 5 for operating the printing apparatus 1 is provided at a position on the right front side of the housing 2. The operation panel 5 includes a display 50 and an operation button 52. The operation button 52 is operated when an operator inputs instructions regarding various operations of the printing apparatus 1.
The frame body 10 has a substantially rectangular frame shape, as seen from above, and is installed on an upper part of the housing 2. The frame body 10 is configured to support the guide shaft 9 (refer to
The carriage 20 is supported so as to be able to be conveyed in the right and left direction along the guide shaft 9. As shown in FIGs.1 and 2, the head units 100 and 200 are arranged in a front and rear direction and mounted on the carriage 20. The head unit 100 is located behind the head unit 200. As shown in FIGs.1 to 3, the head units 100 and 200 have a housing 30, respectively. As shown in
The head part 110 includes a nozzle surface (not shown) that is a surface having a plurality of fine nozzles (not shown) capable of ejecting ink downward. The nozzle surface is a flat surface extending in the right and left and front and rear directions, and forms a bottom surface of each of the head units 100 and 200.
As shown in
The platen drive mechanism 6 includes a pair of guide rails (not shown) and a platen (not shown). The pair of guide rails extends in the front and rear direction inside the platen drive mechanism 6 and is configured to support the platen so as to be movable in the front and rear direction along the pair of guide rails. The platen has a substantially rectangular plate shape where a longitudinal direction is the front and rear direction, as seen from above, and is provided below the frame body 10. The platen is configured to hold the printing medium at an upper part. The platen drive mechanism 6 is configured to convey the printing medium in the front and rear direction (sub-scanning direction) by moving the platen in the front and rear direction by using a motor (not shown) provided at a rear end portion of the printing apparatus 1 as a drive source. Printing is performed on the printing medium by ejecting ink from the head part 110 that reciprocally moves in the right and left direction (main scanning direction). A human detecting sensor 23 configured to detect a human is provided at a front end portion of the platen drive mechanism 6.
As shown in
As shown in
As shown in
As shown in
In the below, an ink supply unit 700 configured to supply the white ink to the head unit 100 is described with reference to
The head part 110 includes a first nozzle row W1 and a second nozzle row W2 for ejecting white ink, and a flow path 670. The flow path 670 has one end connected to the fourth supply flow path 714, and the other end connected to the fifth supply flow path 715. In addition, the flow path 670 is configured to connect the first nozzle row W1 and the second nozzle row W2. The head unit 100 includes another head part having a third nozzle row and a fourth nozzle row (not shown) having a similar configuration to that described above. A flow path for supplying white ink to the third nozzle row and the fourth nozzle row has a similar configuration to the flow path for supplying white ink to the first nozzle row W1 and the second nozzle row W2. Therefore, in descriptions below, the head part 110 including the first nozzle row W1 and the second nozzle row W2 is described, and the descriptions of the head part including the third nozzle row and the fourth nozzle row are omitted.
As an example, the sub-pouch 8 has a flexible bag shape and is configured to accommodate the white ink supplied from the white ink cartridges 311 and 312. In addition, the sub-pouch 8 is configured to supply the white ink to the head part 110. The head part 110 is configured to eject the white ink supplied from the sub-pouch 8 to perform printing on a printing target.
The first bypass flow path 801, the second bypass flow path 802, the first supply flow path 711, the second supply flow path 712, the third supply flow path 713, the fourth supply flow path 714, the fifth supply flow path 715, and the first circulation flow path 721 are formed by, for example, hollow tubes. The first supply flow path 711 is a flow path connected to the white ink cartridges 311 and 312 (refer to
The second supply flow path 712 is connected to the sub- pouch 8, the fourth supply flow path 714 and the fifth supply flow path 715. The second supply flow path 712 is a flow path configured to supply the white ink from the sub-pouch 8 to the head part 110 via the fourth supply flow path 714 and the fifth supply flow path 715. The third supply flow path 713 is a flow path connected to the sub-pouch 8 and configured to supply the white ink from the sub-pouch 8 to the head part including the third nozzle row and the fourth nozzle row (not shown). The fourth supply flow path 714 is a flow path connected to the second supply flow path 712 and the first nozzle row W1 of the head part 110 and configured to supply the white ink to the first nozzle row W1. The fifth supply flow path 715 is a flow path connected to the second supply flow path 712 and the second nozzle row W2 of the head part 110 and configured to supply the white ink to the second nozzle row W2.
The first circulation flow path 721 is a flow path connected to the first supply flow path 711 or the white ink cartridges 311 and 312 and the sub-pouch 8 and configured to circulate the white ink from the sub-pouch 8 to the first supply flow path 711 or the white ink cartridges 311 and 312. The fourth supply flow path 714 has the opening/closing valve 763 and the filter 771. The opening/closing valve 763 is controlled by the CPU 11 to open/close the fourth supply flow path 714. The filter 773 is configured to remove foreign matters contained in the white ink flowing through the fourth supply flow path 714. The fifth supply flow path 715 has the opening/closing valve 766 and the filter 773. The opening/closing valve 766 is controlled by the CPU 11 to open/close the fifth supply flow path 715. The filter 773 is configured to remove foreign matters contained in the white ink flowing through the fifth supply flow path 715.
In the ink supply unit 700 shown in
In the printing apparatus 1 shown in
As shown in
The ROM 12 is configured to store a control program, initial values, and the like for the CPU 11 to control an operation of the printing apparatus 1. The RAM 13 is configured to temporarily store a variety of data, a previous circulation time, a previous printing time, print data, a flag and the like, which are used in the control program. The head drive unit 14 is electrically connected to the head units 100 and 200 configured to eject inks, and is configured to drive a piezoelectric element provided in each ejection channel of the head units 100 and 200 (refer to
The main scanning drive unit 15 includes a drive motor 19 (refer to
The cap drive unit 18 includes a cap drive motor (not shown), a gear, and the like, and is configured to move the cap support part 69 in the upper and lower direction, thereby moving the cap 67 in the upper and lower direction. Driving the cap drive unit 18 moves the cap support part 69 of the maintenance unit 141 and the cap support part 69 of the maintenance unit 142 in the upper and lower direction at the same time. The pump drive unit 21 is configured to drive the pump 752 and the suction pump 199. The operation panel 5 includes a display 50 and an operation button 52. An input from the operation button 52 is input to the CPU 11.
The human detecting sensor 23 is configured to detect a human, for example. An output from the human detecting sensor 23 is input to the CPU 11, and the CPU 11 is configured to determine whether or not a human is present in front of the printing apparatus 1, based on the input from the human detecting sensor 23. The cartridge sensors 24 are each provided in the mounting frame unit 4, and configured to detect the mounting of the cartridges 311 to 324. The valve drive unit 780 is configured to control the opening/closing valves 766, 763 and 31, which are opening/closing valves. The clock 26 is configured to generate a clock signal for measuring a time. The storage device 27 is a writable non-volatile storage device such as an HDD or a flash memory.
Circulation processing of ink includes ‘ink circulation processing without passing through the head part 110’ and ‘ink circulation processing passing through the head part 110’. First, the ‘ink circulation processing without passing through the head part 110’ is described with reference to
The flow path 670 of the head part 110 has a narrower flow path than the second bypass flow paths 802A and 802B, has a complicated structure, and makes it difficult for ink to flow. Therefore, a flow path resistance of the flow path 670 is larger than the second bypass flow paths 802A and 802B. Therefore, the ink flows through the second bypass flow path 802A in a direction of an arrow 404 rather than through the flow path 670. Subsequently, the ink passes through the opening/closing valve 31 in a direction of an arrow 405 and flows through the second bypass flow path 802B in a direction of an arrow 406. The ink then flows back through the fifth supply flow path 715A in a direction of an arrow 407, and flows into the first bypass flow path 801. The ink flowing into the first bypass flow path 801 flows from the pump 752 in the direction of the arrow 401 and circulates in a similar manner to that described above. The CPU 11 stops the pump 752 after performing the circulation processing of ink for a first predetermined time, which will be described later. When printing print data, the CPU 11 closes the opening/closing valve 31 and opens the opening/closing valve 766 and the opening/closing valve 763.
Next, the circulation processing passing through the head part 110 is described. First, the CPU 11 closes the opening/closing valve 31, the opening/closing valve 766, and the opening/closing valve 763. The CPU 11 then drives the pump 752.
The ink flows from the pump 752 in the direction of the arrow 401, and flows through the fourth supply flow path 714A in the direction of the arrow 403. Since the opening/closing valve 31 is closed, the ink flows through the flow path 670 of the head part 110 in the directions of the arrows 411, 412 and 413. The ink then flows back through the fifth supply flow path 715A in the direction of the arrow 407, and flows into the first bypass flow path 801. The ink flowing into the first bypass flow path 801 flows from the pump 752 in the direction of the arrow 401 and circulates in a similar manner to that described above. The CPU 11 stops the pump 752 after performing the ink circulation processing for the first predetermined time.
The details of control on the circulation processing by the CPU 11 of the printing apparatus 1 are described with reference to
The CPU 11 operates based on the control program stored in the ROM 12, thereby controlling the printing apparatus 1 to perform circulation processing shown in
In the case where it is determined that the circulation timing has been arrived (S3: YES), the CPU 11 performs a circulation of the ink. The CPU 11 performs at least one of ‘ink circulation processing without passing through the head part 110’ and ‘ink circulation processing passing through the head part 110’. The CPU 11 may also perform both the processing. After performing the circulation, the CPU 11 determines whether the circulation is completed (S5). In the case where it is not determined that the circulation is completed (S5: NO), the CPU 11 returns the processing to S5. In the case where the circulation of ink is performed for the first predetermined time, for example, 10 minutes, and the circulation is over, the CPU 11 determines that the circulation is completed (S5: YES). Next, the CPU 11 acquires a current time from the clock 26 (S6). The current time acquired in the processing of S6 is a time at which this circulation is completed. Next, the CPU 11 stores the current time acquired in the processing of S6 in the storage device 27, as the previous circulation time (S7).
Next, the CPU 11 acquires the previous printing time from the storage device 27 (S8). The previous printing time is a time at which printing is completed in print processing, which will be described later, and is a time stored in the storage device 27 as the previous printing time.
Next, the CPU 11 determines whether or not to arrive at a print timing (S9). Whether or not to arrive at the print timing is determined based on whether a possibility that printing will be performed from now on is high. As an example, the CPU 11 determines that the print timing has been arrived, in the case where the previous printing time acquired in S8 is within a preset third predetermined time from the previous circulation time stored in S7. That is, in the case where printing has been performed within the third predetermined time from the time at which the circulation (S4) is completed, it is determined that the print timing has been arrived. An example of the third predetermined time is 30 minutes. This is because in the case where the printing has been performed within 30 minutes, a possibility that next printing will be performed is high.
Next, in the case where it is determined that the print timing has been arrived (S9: YES), the CPU 11 performs head cleaning (S10). An example of the head cleaning is purging. In the case where the CPU 11 determines that the print timing has been arrived, a possibility that next printing will be performed is high. Therefore, menisci of the first nozzle row W1 (refer to
In the case where the CPU 11 does not determine that the print timing has been arrived (S9: NO), the CPU 11 does not perform head cleaning, and the CPU 11 stores an OFF status of the head cleaning execution flag in the storage device 27 (S12) and proceeds to the processing to S1. Since a possibility that next printing will be performed is not high, the head cleaning is not performed. Therefore, the ink consumption resulting from the head cleaning is reduced.
Subsequently, details of the print processing by the CPU 11 of the printing apparatus 1 are described with reference to refer to 6. The CPU 11 operates based on the control program stored in the ROM 12, thereby controlling the printing apparatus 1 to perform print processing. First, the CPU 11 determines whether a print instruction is received (S21). As an example, in the case where an input of a print instruction is received from the operation panel 5, or in the case where an input of a print instruction is received from a terminal device such as a personal computer (not shown) connected to the printing apparatus 1, the CPU 11 determines that the print instruction is received (S21: YES). In the case where it is not determined that the print instruction is received (S21: NO), the CPU 11 returns the processing to S1.
In the case where it is determined that the print instruction is received (S21: YES), the CPU 11 determines whether the head cleaning has been performed from the precious circulation to the present time (S22). As an example, the CPU 11 does not determine that the head cleaning has been performed from the previous circulation to the present time, in the case where the OFF status of the head cleaning execution flag is stored in the storage device 27 (S22: NO). In the case where the CPU 11 does not determine that the head cleaning has been performed from the previous circulation to the present time (S22: NO), the CPU performs the head cleaning (S23). The menisci of the first nozzle row W1 to the fourth nozzle row (not shown) are aligned by the head cleaning, so that a possibility that normal ink ejection from the first nozzle row W1 to the fourth nozzle row (not shown) will be performed during next printing increases.
Next, the CPU 11 performs printing (S24), and acquires a current time at which printing is completed from the clock 26 (S25). Next, The CPU 11 stores the current time acquired in S25 in the storage device 27, as the previous printing time (S26). Note that, in the case where the ON status of the head cleaning execution flag is stored in the storage device 27, the CPU 11 determines that the head cleaning has been performed from the previous circulation to the present time (S22: YES), performs printing (S24) without performing the head cleaning (S23), and performs processing of S25 and S26. After the processing of S26, the CPU 11 returns the processing to S21.
In the present embodiment, the CPU 11 of the printing apparatus 1 performs the circulation timing determination step (S3) of determining whether or not to arrive at the circulation timing for performing at least of the circulation of ink without passing through the head part or the circulation of the ink passing through the head part. In the case where it is determined that the circulation timing has been arrived (S3: YES), the CPU 11 performs circulation (S4). Next, the CPU 11 performs the print timing determination step (S9), and in the case where it is determined that the print timing has been arrived (S9: YES), the CPU 11 performs cleaning for the head part (S10). In the case where it is not determined that the print timing has been arrived (S9: NO), the CPU 11 does not perform the head cleaning. Therefore, in the case where it is not determined that the print timing has been arrived (S9: NO), the CPU 11 does not perform the head cleaning after the circulation (S4). Therefore, the ink consumption resulting from the head cleaning is reduced. That is, in the case where it is determined in the determination processing of S21 that the print instruction has been received (S21: YES), and in the case where it is determined in the determination processing of S22 that the head cleaning has been performed (S22: YES), the CPU 11 can start printing (S24) without performing the head cleaning (S23). Therefore, printing can be started without waiting for the head cleaning (S23).
The CPU 11 performs the print instruction determination step (S21) of determining whether or not to arrive at the print instruction, and the print step (S24) of performing the head cleaning (S23) and performing printing in the case where it is determined that the print instruction has been received (S21: YES). Therefore, even though the head cleaning is not performed after the circulation, the CPU 11 performs the head cleaning (S23) in the case where it is determined that the print instruction has been received (S21: YES). Therefore, a possibility that normal ink ejection from the head part will be performed during printing increases.
In the print processing, in the case where the head cleaning has not been performed from the previous circulation to the present time (S22: NO), the CPU 11 performs the head cleaning (S23) and performs printing (S24). Therefore, even though the head cleaning has not been performed from the previous circulation of the ink to the present time (S22: NO), the CPU 11 performs the head cleaning (S23) and then performs printing (S24). Therefore, a possibility that normal ink ejection from the head part will be performed during printing increases.
In the print timing determination step (S9), in the case where printing has been performed within the third predetermined time, the CPU 11 determines that the print timing has been arrived (S29: YES) because there is a high possibility that printing will be performed again. Therefore, the CPU 11 can more accurately determine the print timing, based on a time at which printing has been performed.
The present disclosure is not limited to the above embodiment, and can be variously changed. For example, the CPU 11 of the printing apparatus 1 may determine that the print timing has been arrived (S9: YES) in the print timing determination step (S9), in the case where an operation is received on the operation panel 5 within a preset fourth predetermined time. In the case where the operation is received on the operation panel 5 within the fourth predetermined time, there is a high possibility that printing will be performed, so that the CPU 11 determines that the print timing has been arrived. Therefore, the CPU 11 can more accurately determine the print timing, based on a time at which the operation is received on the operation panel 5. Therefore, in the case where the operation is received on the operation panel 5 before the fourth predetermined time, the CPU 11 performs the head cleaning (S10) after the circulation (S4). The CPU 11 performs only the circulation (S4), in the case where the operation is not received on the operation panel 5 before the fourth predetermined time.
In the case where the storage device 27 stores an operation schedule for operating the printing apparatus 1 registered by the operator, the CPU 11 may determine in the print timing determination step (S9) that the print timing has been arrived (S9: YES), in the case where it is determined that it is within a period of the operation schedule. An example of the operation schedule is circulation execution at 7:30 am, printing start at 8:00 am, circulation execution at 12:00 am, printing end at 6:00 pm, and the like. Therefore, in the case of this operation schedule, the CPU 11 determines that 7:30 am to 6:00 pm is within the operation schedule. In this case, the CPU 11 can more accurately determine the print timing, based on the operation schedule. Therefore, the CPU 11 performs the head cleaning (S10) after the circulation (S4), in the case where it is determined that it is within the period of the operation schedule (S10). The CPU 11 performs only the circulation (S4), in the case where it is not determined that it is within the period of the operation schedule.
In the print timing determination step (S9), the CPU 11 may determine that the print timing has been arrived, in the case where received print data has not been processed. The case where the print data has not been processed is, for example, a case where the printing data stored in the RAM 13 is not printed by a number of print instructions instructed from the operation panel 5 or the terminal device connected to the printing apparatus 1. In this case, the CPU 11 may determine that the print timing has been arrived (S9: YES). In the case where the print data has not been processed, there is a high possibility that printing will be performed. Therefore, the CPU 11 can more accurately determine the print timing, based on a processing status of the print data. Therefore, the CPU 11 performs the head cleaning (S10) after the circulation (S4), in the case where it is determined that the received print data has not been processed. In the case where it is determined that the print data has been printed by the number or more of print instructions, the CPU 11 only performs the circulation (S4).
In the print timing determination step (S9), the CPU 11 may determine that the print timing has been arrived, in the case where the human detector configured to detect a human detects a human. For example, in the case where a human detecting signal is input from the human detecting sensor 23, it is determined that the print timing has been arrived (S9: YES). In the case where a human who operates the printing apparatus 1 is present, there is a high possibility that printing will be performed. Therefore, the CPU 11 can more accurately determine the print timing, based on a detection result of the human detecting sensor 23. Note that, in the case where the human detector such as a camera of the terminal device connected to the printing apparatus 1 detects a human, the CPU 11 may receive a human detecting signal from the terminal device and determine that the print timing has been arrived. Therefore, in the case where the human detector detects a human (S9: YES), the CPU 11 performs the head cleaning (S10) after the circulation (S4). The CPU 11 performs only the circulation (S4) in the case where the human detector does not detect a human (S9: NO). Note that, a position where the human detecting sensor 23 is provided is not limited to the front part of the printing apparatus 1, and may be the upper surface of the operation panel 5, the upper surface or the side surface of the housing 2, or the like.
Further, the CPU 11 may store a printing execution history of the printing apparatus 1 in the storage device 27, analyze the printing execution history by using an AI or the like, and estimate an operation pattern of a standard printing of the printing apparatus 1. As an example, the CPU 11 estimates that printing is performed only from 8:00 am to 8:00 pm, printing is not performed on Sunday, and the like. The CPU 11 determines that the print timing has been arrived (S9: YES) when it is within a time zone during which printing is performed. In addition, the CPU 11 does not determine that the print timing has been arrived (S9: NO) when it is outside the time zone during which printing is performed. Therefore, the CPU 11 performs the head cleaning (S10) after the circulation (S4), in the case where it is determined that it is within the time zone during which printing is performed. The CPU 11 performs only the circulation (S4), in the case where it is determined that it is outside the time zone during which printing is performed.
Further, the CPU 11 may determine that the print timing has been arrived (S9: YES), even in the case where the operation button 52 of the operation panel 5 is operated within the first predetermined time before the previous circulation time stored in the processing of S7 and an operation including a print instruction is performed after the circulation (S4) is over. A time at which the operation including a print instruction is performed is stored in the storage device 27. This is because in the case where the operation button 52 of the operation panel 5 is operated within the first predetermined time before the previous circulation time and the operation including the print instruction is performed, there is a high possibility that printing will be performed again. An example of the first predetermined time is 30 minutes.
Note that, the head cleaning is not limited to purging, and may be wiping of the nozzle surfaces (not shown) of the first nozzle row W1 (refer to
Further, the previous circulation time, the previous printing time, the head cleaning execution flag, and the like may be stored in the RAM 13 in the case where a power supply of the printing apparatus 1 is not turned off. Note that, in the determination of S3 shown in
Further, the ink circulation processing passing through the head part 110 may be performed inside the head part 110. That is, a circulation flow path having a drive unit such as a pump or an actuator is provided in the head part 110. The CPU 11 may perform an ink circulation processing passing through the circulation flow path inside the head part 110.
Number | Date | Country | Kind |
---|---|---|---|
2019-180162 | Sep 2019 | JP | national |
This is a continuation application of International Application No. PCT/JP2020/034862 filed on Sep. 15, 2020 which claims the benefit of priority from Japanese patent application No. 2019-180162 filed on Sep. 30, 2019. The entire contents of the earlier applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/034862 | Sep 2020 | US |
Child | 17703222 | US |