Printing apparatus and printing method

Information

  • Patent Grant
  • 11738553
  • Patent Number
    11,738,553
  • Date Filed
    Monday, June 28, 2021
    3 years ago
  • Date Issued
    Tuesday, August 29, 2023
    a year ago
Abstract
A printing apparatus includes a printing head including a nozzle configured to discharge a dot of a first size and a dot of a second size smaller than the first size, the dots being ink dots, and a control unit configured to control the printing head to print, on a printing medium, a test pattern for inspecting a state of ink discharge by the nozzle. The test pattern includes a first pattern element formed by a plurality of the dots of the first size and a second pattern element formed by a plurality of the dots of the second size. The control unit causes the printing head to print the test pattern where a number of the dots of the second size forming the second pattern element is greater than a number of the dots of the first size forming the first pattern element.
Description

The present application is based on, and claims priority from JP Application Serial Number 2020-112568, filed Jun. 30, 2020, the disclosure of which is hereby incorporated by reference herein in its entirety.


BACKGROUND
1. Technical Field

The present disclosure relates to a printing apparatus and a printing method.


2. Related Art

Technology has been disclosed of an inkjet type printing apparatus in which a test pattern is printed on a print sheet by a recording head, the test pattern is read by a scanner, interpolation processing is performed on read data, and a nozzle abnormality is determined on the basis of the interpolated read data (see JP-A-2007-54970).


However, when printing a test pattern onto a printing medium using a head capable of discharging a plurality of dots of a plurality of sizes from a nozzle, a difference in density with the printed medium may be reduced for portions of the test pattern printed with relatively small dots of the plurality of sizes. As a result, reading of a test pattern necessary for inspecting nozzles, and inspection based on read data can sometimes not be performed appropriately. Thus, there is a need for a suitable test pattern for appropriately performing the reading and the inspection after the reading.


SUMMARY

A printing apparatus includes a printing head including a nozzle configured to discharge a dot of a first size and a dot of a second size smaller than the first size, the dots being ink dots, and a control unit configured to control the printing head to print, on a printing medium, a test pattern for inspecting a state of ink discharge by the nozzle. The test pattern includes a first pattern element formed by a plurality of the dots of the first size and a second pattern element formed by a plurality of the dots of the second size. The control unit causes the printing head to print the test pattern where a number of the dots of the second size forming the second pattern element is greater than a number of the dots of the first size forming the first pattern element.


The printing method includes a printing step of printing a test pattern on a printing medium, using a printing head including a nozzle configured to discharge a dot of a first size and a dot of a second size smaller than the first size, the dots being ink dots, and the test pattern being used to inspect a state of ink discharge by the nozzle. The test pattern includes a first pattern element formed by a plurality of the dots of the first size and a second pattern element formed by a plurality of the dots of the second size. The printing step causes the printing head to print the test pattern where a number of the dots of the second size forming the second pattern element is greater than a number of the dots of the first size forming the first pattern element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a device configuration in a simplified manner.



FIG. 2 is a diagram illustrating a specific example of a configuration including a transport unit and a printing head.



FIG. 3 is a view illustrating a relationship between the printing medium and the printing head, as seen from above.



FIG. 4 is a flowchart illustrating a flow from TP printing to an inspection of nozzles.



FIG. 5 is a diagram illustrating an example of TP image data.



FIG. 6 is a diagram illustrating an enlarged portion of a TP.



FIG. 7 is a diagram illustrating an example of a size-specific dot count table.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Embodiments of the present disclosure will be described below with reference to the accompanying drawings. Note that each of the drawings is merely illustrative for describing the embodiment. Since the drawings are illustrative, proportions and shapes may not be precise, match each other, or some may be omitted.


1. Apparatus Configuration


FIG. 1 illustrates a configuration of a printing apparatus 10 according to the embodiment, in a simplified manner.


The printing apparatus 10 is provided with a control unit 11, a display unit 13, an operation receiving unit 14, a communication IF 15, a transport unit 16, a carriage 17, a printing head 18, a reading unit 19, and the like. IF is an abbreviation for interface. The control unit 11 is configured to include, as a processor, one or more ICs including a CPU 11a, a ROM 11b, a RAM 11c, and the like, another non-volatile memory, and the like.


In the control unit 11, the processor, that is, the CPU 11a executes arithmetic processing in accordance with one or more programs 12 stored in the ROM 11b, the other memory, or the like, using the RAM 11c or the like as a work area, to realize various functions such as a printing control unit 12a, a reading control unit 12b, an inspection unit 12c, and the like. Note that the processor is not limited to the single CPU, and a configuration may be adopted in which the processing is performed by a hardware circuit such as a plurality of CPUs, an ASIC, or the like, or a configuration may be adopted in which the CPU and the hardware circuit work in concert to perform the processing.


The display unit 13 is a device for displaying visual information, and is configured, for example, by a liquid crystal display, an organic EL display, or the like. The display unit 13 may be configured to include a display and a drive circuit for driving the display. The operation receiving unit 14 is a device for receiving an operation by a user, and is realized, for example, by a physical button, a touch panel, a mouse, a keyboard, or the like. Of course, the touch panel may be realized as a function of the display unit 13.


The display unit 13 and the operation receiving unit 14 may be part of the configuration of the printing apparatus 10, or may be peripheral devices externally coupled to the printing apparatus 10. The communication IF 15 is a generic term for one or a plurality of IFs for coupling the printing apparatus 10 with the outside in a wired or wireless manner, in accordance with a prescribed communication protocol including a known communication standard provide.


The transport unit 16 is a device for transporting the printing medium, and includes a roller, a motor for rotating the roller, and the like. The printing head 18 ejects ink from nozzles onto the printing medium, using an inkjet method, to perform printing. The reading unit 19 is a device for reading a printing result on the printing medium. The reading unit 19 is also referred to as a scanner. However, the printing apparatus 10 may have a configuration that does not include the reading unit 19.


The carriage 17 is a mechanism capable of reciprocating along a predetermined direction as a result of receiving power from a carriage motor (not illustrated). The predetermined direction in which the carriage 17 moves is referred to as a main scanning direction. As illustrated in FIG. 2 and FIG. 3, the printing head 18 is mounted on the carriage 17.


The configuration of the printing apparatus 10 illustrated in FIG. 1 may be realized by a single printer, or may be realized by a plurality of communicatively coupled devices.


In other words, the printing apparatus 10 may be the printing system 10 in actuality. The printing system 10 includes, for example, an information processing device that functions as the control unit 11, and a printer including the transport unit 16, the carriage 17, the printing head 18, and further, the reading unit 19. A printing method according to the embodiment is realized in this way by the printing apparatus 10 or the printing system 10.


Further, a portion of the control unit 11 that functions as the printing control unit 12a and a portion of the control unit 11 that functions as the reading control unit 12b and the inspection unit 12c may be separate information processing devices.



FIG. 2 illustrates a specific example of a configuration mainly including the transport unit 16 and the printing head 18, which are part of the printing apparatus 10. In FIG. 2, the specific example is illustrated using a perspective orthogonal to a transport direction D2 of a printing medium 30.


The transport unit 16 is provided with a feeding shaft 22 upstream in the transport direction, and a winding shaft 25 downstream in the transport direction. Upstream and downstream in the transport direction are simply denoted using upstream and downstream. The long printing medium 30 wound in a roll shape around the feeding shaft 22 and the winding shaft 25 is stretched along the transport direction D2. The printing medium 30 is transported in the transport direction D2. The printing medium 30 may be a paper sheet or may be a medium made from a material other than paper.


In the example illustrated in FIG. 2, the printing medium 30 wound around the feeding shaft 22 is fed downstream by the feeding shaft 22 rotating in the clockwise direction. A front driving roller 23 is provided at a position downstream of the feeding shaft 22, and a rear driving roller 24 is provided at a position upstream of the winding shaft 25. By rotating in the clockwise direction, the front driving roller 23 transports downstream the printing medium 30 fed out from the feeding unit 22. A nip roller 23n is provided with respect to the front driving roller 23. The nip roller 23n comes into contact with the printing medium 30 so as to clamp the printing medium 30 between the nip roller 23n and the front driving roller 23.


By rotating in the clockwise direction, the rear driving roller 24 transports further downstream the printing medium 30 transported downstream by the front driving roller 23. Note that a nip roller 24n is provided with respect to the rear driving roller 24. The nip roller 24n comes into contact with the printing medium 30 so as to clamp the printing medium 30 between the nip roller 24n and the rear driving roller 24.


The printing head 18 that discharges ink onto the printing medium 30 from above is disposed between the front driving roller 23 and the rear driving roller 24. As illustrated in FIG. 2, the printing head 18 is mounted on the carriage 17. The printing head 18 is capable of discharging a plurality of colors of ink, such as cyan (C), magenta (M), yellow (Y), black (K), light cyan (LC), and light magenta (LM), for example.


Each of the nozzles of the printing head 18 is open in a nozzle surface 20, of the printing head 18, facing the printing medium 30, and the printing head 18 discharges or does not discharge the ink from the nozzles on the basis of print data. The ink discharged by the nozzle is also referred to as an ink droplet, or as a dot. The printing head 18 may also be referred to as a print head, an inkjet head, a liquid discharging head, a recording head, and the like.


As a result of the winding shaft 25 rotating in the clockwise direction, the winding shaft 25 takes up the printing medium 30 after printing that is transported by the rear driving roller 24.


The feeding shaft 22, the winding shaft 25, each of the rollers, the motor (not illustrated) for rotating these members as appropriate, and the like are a specific example of the transport unit 16 that transports the printing medium 30. A number and arrangement of the rollers provided along the transport path for transporting the printing medium 30 is not limited to the mode illustrated in FIG. 2. Further, the colors of the inks discharged by the printing head 18 are not limited to the colors described above. It goes without saying that a flat platen or the like, which supports, from below, the printing medium 30 that receives the ink discharge from the printing head 18, may be provided between the front driving roller 23 and the rear driving roller 24. Further, the portion of the printing medium 30 on which the printing by the printing head 18 has been performed need not necessarily be wound into the roll shape by the winding shaft 25, and may be cut away from the printing medium 30 that is upstream of the printed portion, using a cutter (not illustrated).


In the example illustrated in FIG. 2, the reading unit 19 is provided at a position downstream of the carriage 17 and the printing head 18 and upstream of the rear driving roller 24. Using an image sensor, the reading unit 19 optically reads the printing medium 30 on which the printing has been performed by the printing head 18, and outputs image data as a reading result. The reading unit 19 may be configured to read the printing medium 30 while being moved by the carriage in a similar manner to the printing head 18, or may be configured to read the printing medium 30 in a stationary state.



FIG. 3 illustrates a relationship between the printing medium 30 and the printing head 18 in a simplified manner, as seen from above. The printing head 18 mounted on the carriage 17 moves, together with the carriage 17, from one end of a main scanning direction D1 to the other end (a forward movement) and from the other end to the one end (a return movement). The main scanning direction D1 and the transport direction D2 intersect each other. The intersection may be understood to be orthogonal. Accordingly, FIG. 2 illustrates the printing head 18 and the like from a perspective facing in the main scanning direction D1. However, due to various errors in the printer as a manufactured product, for example, the main scanning direction D1 and the transport direction D2 may not be precisely orthogonal.


In FIG. 3, an example is illustrated of an array of nozzles 21 in the nozzle surface 20. Each of small circles in the nozzle surface 20 is the nozzle 21. The printing head 18 is provided with a plurality of nozzle rows 26 in a configuration in which each color of the inks is discharged from the nozzles 21 after being supplied from a liquid holding unit (not illustrated) that is referred to as an ink cartridge, an ink tank, or the like. FIG. 3 is an example of the printing head 18 configured to discharge CMYK inks. The nozzle row 26 including the nozzles 21 that discharge the C ink is also described as a nozzle row 26C. Similarly, the nozzle row 26 including the nozzles 21 that discharge the M ink may also be described as a nozzle row 26M, the nozzle row 26 including the nozzles 21 that discharge the Y ink may also be described as a nozzle row 26Y, and the nozzle row 26 including the nozzles 21 that discharge the K ink may also be described as a nozzle row 26K. The nozzle rows 26C, 26M, 26Y, and 26K are aligned along the main scanning direction D1.


Each of the nozzle rows 26 is configured by the plurality of nozzles 21 for which a nozzle pitch, which is an interval between the nozzles 21 in the transport direction D2, is constant or substantially constant. The direction in which the plurality of nozzles 21 configuring the nozzle row 26 are aligned is referred to as a nozzle row direction D3. In the example illustrated in FIG. 3, the nozzle row direction D3 is parallel with the transport direction D2. In the configuration in which the nozzle row direction D3 is parallel with the transport direction D2, the nozzle row direction D3 and the main scanning direction D1 are orthogonal. However, the nozzle row direction D3 need not necessarily be parallel with the transport direction D2, and a configuration may be adopted in which the nozzle row direction D3 obliquely intersects the main scanning direction D1.


Further, each of the plurality of nozzles 21 may be capable of discharging the dots of a plurality of sizes in which a volume per droplet is different. In the embodiment, when the dot of a given size is referred to as a “first size” dot, the dot having a size smaller than the first size is referred to as a “second size” dot. Hereinafter, for convenience, the first size dot is referred to as a “large dot”, and the second size dot is referred to as a “small dot”. The size of each of the large dot and the small dot is set in terms of design considerations.


The respective positions of the nozzle rows 26C, 26M, 26Y, and 26K in the transport direction D2 match each other. The printing apparatus 10 prints an image on the printing medium 30 by performing a combination of transport of the printing medium 30 in the transport direction D2, and ink discharge by the printing head 18 in accordance with movement of the carriage 17 along the main scanning direction D1. The operation of the ink discharge by the printing head 18 in accordance with the forward movement and the return movement of the carriage 17 is referred to as a “scan” or a “pass”. The movement of the printing head 18 in the main scanning direction D1 by the carriage 17 corresponds to one of relative movements between the printing head 18 and the printing medium 30.


2. Test Pattern Printing


FIG. 4 illustrates, using a flowchart, a flow executed by the control unit 11 in accordance with the program 12, from printing of a TP to an inspection of the nozzles 21 on the basis of the TP. TP is an abbreviation for test pattern. The flowchart consists, in overview, of TP printing processing (step S100), acquisition of a reading result of the printed TP (step S200), and an inspection based on the reading result of the TP (step S300). Step S100 corresponds to a TP printing step. In FIG. 4, step S100 is illustrated in detail while being divided into steps S110 to S150.


At step S110, the printing control unit 12a acquires TP image data, which is image data representing the TP, from a storage source such as a predetermined memory or storage device with which the control unit 11 can communicate. The TP image data is, for example, image data in a bitmap format defining the color of each of pixels in a predetermined color system. As the color system referred to here, for example, there are various color systems, such as an RGB (red, green, blue) color system, a CMYK color system, or the like.


At step S120, the printing control unit 12a sets TP printing conditions. The printing control unit 12a sets the printing conditions when performing normal printing as the TP printing conditions. The normal printing refers to a process in which an object such as a photo, text, CG, or the like chosen by the user is printed, rather than the TP. The user can set the printing conditions for the normal printing by operating the operation receiving unit 14 while viewing a user interface (UI) screen displayed on the display unit 13. The printing conditions include, for example, the type of the printing medium 30 and a printing quality.


The print quality is presented to the user as subjective options, such as high resolution, normal, fast, and the like, and the printing control unit 12a sets each of items necessary for execution of the printing in accordance with the selected printing quality, such as a movement velocity of the carriage 17, a transport velocity of the transport unit 16, a waveform of drive signals used to drive the nozzles 21, and a driving period of the nozzles 21 in the pass. Further, if a default setting is provided for the printing conditions, and the user does not specifically change the default setting, the printing control unit 12a applies the default setting to the TP printing or the normal printing.


The order of execution of steps S110 and S120 may be reversed from that illustrated in FIG. 4, or may be substantially simultaneous.


At step S130, the printing control unit 12a generates the print data for the TP printing, from the TP image data. The printing control unit 12a generates the print data that prescribes ink discharge (dot on) or ink non-discharge (dot off) for each of the pixels and each of the ink colors, by performing predetermined image processing, such as color conversion processing and halftone processing, on the TP image data. Here, “dot on” refers to either large dot on or small dot on. As illustrated in FIG. 3, assuming that the printing head 18 uses the four colors of ink of CMYK, at step S130, the printing control unit 12a generates the print data prescribing the dot on and off for each of the pixels and for each of CMYK, based on the TP image data.



FIG. 5 illustrates an example of TP image data 40 acquired at step S110. The TP image data 40 is image data representing a TP 41. In FIG. 5, and FIG. 6 to be described below, a correspondence relationship between the TP image data 40 and the directions D1 and D2 is also illustrated. The TP 41 includes a TP for each of the ink colors. According to FIG. 5, TPs 41CL and 41CS are the TPs represented by the color C. Similarly, TPs 41ML and 41MS are the TPs of the color M, TPs 41YL and 41YS are the TPs of the color Y, and TPs 41KL and 41KS are the TPs of the color K. Further, the TPs 41CL, 41ML, 41YL, and 41KL are the TPs printed by the large dots of the corresponding color, and the TPs 41CS, 41MS, 41YS, and 41KS are the TPs printed by the small dots of the corresponding color.


In the TP image data 40, the TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL and 41KS for each of the ink colors and for each of the dot sizes are aligned in the main scanning direction D1, and the positions thereof in the transport direction D2 are the same as each other. The TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL, and 41KS are each a collection of a plurality of “pattern elements”. In the example illustrated in FIG. 5, each of the pattern elements is a ruled line parallel to the main scanning direction D1. Each one of the pattern elements is an image printed using one of the nozzles 21 of the corresponding ink color.



FIG. 6 illustrates an enlarged portion of the TP 41 represented by the TP image data 40. Specifically, FIG. 6 illustrates portions of the TP 41CL and the TP 41CS, respectively. The TP 41CL is configured by a plurality of pattern elements 42CL arranged at equal intervals in the transport direction D2, and the TP 41CS is configured by a plurality of pattern elements 42CS arranged at equal intervals in the transport direction D2. In FIG. 6, for ease of understanding, as well as the TPs 41CL and 41CS, a portion of the nozzle row 26C used for printing the TPs 41CL and 41CS is also illustrated. In other words, each of the pattern elements 42CL is disposed at an interval similar to the nozzle pitch in the transport direction D2, such that each one of the pattern elements 42CL configuring the TP 41CL is printed by one of the nozzles 21 configuring the nozzle row 26C. Similarly, each of the pattern elements 42CS is disposed at an interval similar to the nozzle pitch in the transport direction D2, such that each one of the pattern elements 42CS configuring the TP 41CS is printed by one of the nozzles 21 configuring the nozzle row 26C.


Further, in the example illustrated in FIG. 6, in order to easily verify each one of the pattern elements 42CL at the time of inspection, each of the pattern elements 42CL is disposed with a position thereof being offset in the main scanning direction D1, such that the positions thereof in the main scanning direction D1 coincide every three cycles. Similarly, each of the pattern elements 42CS is also disposed with a position thereof being offset in the main scanning direction D1, such that the positions thereof in the main scanning direction D1 coincide every three cycles. However, the pattern elements configuring the TP corresponding to one combination of the ink color and the dot size may all have the same position in the main scanning direction D1.


Further, in the example illustrated in FIG. 6, the pattern elements 42CL and the pattern elements 42CS are disposed with the positions thereof offset in the main scanning direction D1 in order to reduce bleeding of each one of the pattern elements 42C and the pattern elements 42LC. For example, when the pattern element 42CL is printed in two passes, the dots printed in a first pass are disposed at odd-numbered pixel positions in the main scanning direction D1, and the dots printed in a second pass are disposed at even-numbered pixel positions in the main scanning direction D1. Further, for example, when the pattern elements 42CS are printed in six passes, the dots printed in the first pass, a third pass, and a fifth pass are disposed at the odd-numbered pixel positions in the main scanning direction D1, and the dots printed in the second pass, a fourth pass, and a sixth pass are disposed at the even-numbered pixel positions in the main scanning direction D1. However, when printing on the printing medium 30 in which bleed-through is not likely to occur, the dots may be formed in all of the pixels in each pass.


The print data generated at step S130 is image data in which the TP 41 represented by the TP image data 40 is expressed using the dot on and off. Each of the pattern elements configuring each of the TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL, and 41KS are formed only of dots of the corresponding ink color and size.


At step S140, the printing control unit 12a determines, a number of passes and a thinning ratio when printing the TP, for each of the dot sizes. As illustrated in FIG. 5, since the TP 41 is formed of the TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL, and 41KS, the printing control unit 12a determines the number of passes and the thinning ratio according to the dot size for each of the TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL, and 41KS.


In the embodiment, the pattern element formed by the plurality of dots of the first size is referred to as a “first pattern element”, and the pattern element formed by the plurality of dots of the second size is referred to as a “second pattern element”. Each of the pattern elements 42CL configuring the TP 41CL illustrated in FIG. 6 is an example of the first pattern element, and each of the pattern elements 42CS configuring the TP 41CS is an example of the second pattern element.



FIG. 7 illustrates an example of a size-specific dot count table 50. The size-specific dot number table 50 is stored in advance in a memory or a storage device, either in or outside the printing apparatus 10, so as to be accessible by the control unit 11. The size-specific dot count table 50 is a table defining parameters for directly or indirectly determining the number of dots for printing the TP on the printing medium 30, for each of the dot sizes. According to FIG. 7, the size-specific dot count table 50 prescribes the number of passes and the thinning ratio for each of the large dot and the small dot that are the dot sizes. At step S140, the printing control unit 12a refers to the size-specific dot count table 50, to determine the number of passes and the thinning ratio for each of the dot sizes.


The number of passes is the number of the passes used to print the TP. For example, if the number of passes is 2 for a given dot size, this does not mean that the TP of the one color of the given dot size represented by the print data generated at step S130 is printed in two passes, but that the pass to print the TP of the one color of the given dot size represented by the print data is repeated twice. Thus, the greater the number of passes, the greater the number of dots forming the TP reproduced on the printing medium 30. According to the size-specific dot count table 50, the print control unit 12a determines the number of passes for the large dots to be 2, and determines the number of passes for the small dots to be 6.


The thinning ratio is the thinning ratio in a single pass. For example, when the thinning ratio relating to the given dot size is 50%, in one pass, during a period for printing the TP of the one ink color of the given dot size represented by the print data generated at step S130, regardless of whether the original dot is dot on or dot off, for 50% of the pixels, dot off is forcibly applied and the ink is not discharged. Therefore, the higher the thinning ratio, the fewer the number of dots forming the TP reproduced on the printing medium 30. Further, it can be said that the higher the thinning ratio, the more a discharge rate of the ink by the nozzle 21 is reduced, and the lower the thinning ratio, the more the discharge rate of the ink by the nozzle 21 is increased. Thus, by changing the thinning ratio for each of the dot sizes, a discharge rate of the nozzles 21 can be controlled for each of the dot sizes. According to the size-specific dot count table 50, the print control unit 12a determines the thinning ratio for the large dots to be 50%, and determines the thinning ratio for the small dots to be 0%. When the thinning ratio is 0%, this means that the printing is performed as per the print data for each of the passes.


Here, in the print data generated at step S130, it is assumed that all of the individual pattern elements that configure any of the TPs 41CL, 41CS, 41ML, 41MS, 41YL, 41YS, 41KL, and 41KS is configured by approximately the same number of dots. According to step S140 at which the size-specific dot count table 50 is referred to, for the TPs 41CL, 41ML, 41YL, and 41KL that are the TPs formed by the large dots, the number of passes is determined to be 2 and the thinning ratio is determined to be 50%, and, for the TPs 41CS, 41MS, 41YS and 41KS that are the TPs formed by the small dots, the number of passes is determined to be 6 and the thinning ratio is determined to be 0%. As a result, when comparing the number of dots between the pattern elements printed on the printing medium 30 based on the determination at step S140, the number of dots of one of the second pattern elements, such as the number of dots of the small dots of the C ink forming one of the pattern elements 42CS, for example, is approximately six times the number of dots of one of the first pattern elements, such as the number of dots of the large dots of the C ink forming one of the pattern elements 42CL.


At step S150, the printing control unit 12a prints the TP 41 on the printing medium 30 by controlling the movement of the carriage 17 and the ink discharge by the printing head 18, in accordance with the printing conditions set at step S120, the print data generated at step S130, and the number of passes and the thinning ratio for each of the dot sizes determined at step S140. Specifically, based on the size-specific dot count table 50, the printing head 18 performs six passes to print the TP 41 on the printing medium 30. Of the six passes, in each of the six passes, the printing head 18 discharges the small dots of the CMYK inks from the respective nozzles 21 of the nozzle rows 26C, 26M, 26Y, and 26K to print the TPs 41CS, 41MS, 41YS, and 41KS on the basis of the print data and at the thinning ratio of 0%. Further, in each of two passes, of the six passes, the printing head 18 discharges the large dots of the CMYK inks from the respective nozzles 21 of the nozzle rows 26C, 26M, 26Y, and 26K to print the TPs 41CL, 41ML, 41YL, and 41KL on the basis of the print data and at the thinning ratio of 50%.


As a result, when performing a comparison at a pattern element level, the printing control unit 12a has printed the TP 41 such that the number of dots of the second size forming the second pattern element is greater than the number of dots of the first size forming the first pattern element. Note that the printing control unit 12a does not cause the transport unit 16 to transport the printing medium 30 during a period of time from a first pass for the printing head 18 to print the TP 41 to the end of a last pass.


The above is a description of step S100. Steps S200 and S300 will be briefly described.


At step S200, the reading control unit 12b controls the reading unit 19 to read the printing medium 30 on which the TP 41 has been printed at step S100, and retrieves the image data from the reading unit 19 as the reading result. It goes without saying that the transport unit 16 performs the transport necessary for the reading unit 19 to read the printing medium 30 after the printing.


However, at step S200, it is sufficient that the reading result of the printing medium 30 on which the TP 41 has been printed can be acquired. Thus, the user may cause an external scanner to read the printing medium 30 on which the TP 41 has been printed, and the printing apparatus 10 may acquire the reading result via the communication IF 15.


At step S300, the inspection unit 12c inspects a state of the ink discharge by the nozzles 21 of the printing head 18, based on the image data acquired as the reading result at step S200. The state of the ink discharge is divided into normal and abnormal. Abnormal applies to a discharge failure in which the dot cannot be discharged, landing position displacement in which the landing positions of the dots are displaced from ideal landing positions, and the like. The inspection unit 12c inspects whether the ink discharge for each of the dot sizes by each of the nozzles 21 is normal or abnormal, by analyzing the image data and identifying a density and position of each of the pattern elements, and stores inspection results as data.


The flowchart illustrated in FIG. 4 ends here.


3. Summary and Description of Effects

As described above, according to the embodiment, the printing apparatus 10 is provided with the printing head 18 including the nozzles 21 that discharge the dots of the two sizes that are the ink dots, namely, the dots of the first size and the dots of the second size that is smaller than the first size, and the control unit 11 that, by controlling the printing head 18, causes the TP to be printed on the printing medium 30 for the inspection of the state of the ink discharge by the nozzles 21. The TP includes the first pattern elements formed by the plurality of dots of the first size, and the second pattern elements formed by the plurality of dots of the second size. In other words, the control unit 11 causes the printing head 18 to print the TP where the number of dots of the second size forming the second pattern element is greater than the number of dots of the first size forming the first pattern element.


According to the configuration, the second pattern element formed by the small dots that are the dots of the second size is printed using a greater number of dots than the first pattern element formed by the large dots that are the dots of the first size. As a result, the second pattern element can also be printed with a certain degree of density. In this way, even when a difference in brightness is small between the printing medium 30 and a portion, of the TP for inspecting each of the nozzles 21, printed using the relatively small dots, the failure resulting from not being able to appropriately perform the inspection based on the reading result of the reading can be eliminated. Specifically, for the pattern element having the small difference in brightness with the printing medium 30 that is white or of a color having a high degree of brightness, it is difficult to accurately identify the position and the like of the pattern element at the time of the inspection based on the reading result. Thus, the determination relating to normal or abnormal as described above cannot be performed with a high degree of accuracy. However, using the TP printed at step S100 of the embodiment, the inspection can be performed with a high degree of accuracy based on the pattern elements resulting from the discharge of the dots of the respective differing sizes by the nozzles 21.


Further, according to the embodiment, the printing head 18 is capable of performing the scan that discharges the inks from the nozzles 21 as the printing head 18 moves in the predetermined direction, and the control unit 11 causes the printing head 18 to print the TP in which the number of scans for printing the second pattern element is greater than the number of scans for printing the first pattern element. In other words, the control unit 11 causes the printing head 18 to print the TP in which the number of scans for printing the second pattern element is greater than the number of scans for printing the first pattern element.


According to the configuration described above, by causing the number of scans for printing the second pattern element to be greater than the number of scans for printing the first pattern element, the control unit 11 can easily print the TP in which the number of dots of the second size forming the second pattern element is greater than the number of dots of the first size forming the first pattern element.


Further, according to the embodiment, the control unit 11 may cause the printing head 18 to print the TP in which a discharge rate of the dots of the second size for printing the second pattern element is higher than a discharge rate of the dots of the first size for printing the first pattern element. In other words, the control unit 11 causes the printing head 18 to print the TP in which the discharge rate of the dots of the second size for printing the second pattern element is higher than the discharge rate of the dots of the first size for printing the first pattern element.


According to the configuration described above, by causing the discharge rate of the dots of the second size for printing the second pattern element to be higher than the discharge rate of the dots of the first size for printing the first pattern element, the control unit 11 can easily print the TP in which the number of dots of the second size forming the second pattern element is greater than the number of dots of the first size forming the first pattern element.


The number of passes and numerical values of the thinning ratio for each of the dot sizes in the size-specific dot number table 50 illustrated in FIG. 7 are merely examples. Further, the size-specific dot count table 50 may be, for example, a table in which the number of passes is the same regardless of the dot size, and the difference between the first size and the second size is provided in terms of the thinning ratio. Alternatively, the size-specific dot count table 50 may be a table in which the thinning ratio is the same regardless of the dot size, and the difference between the first size and the second size is provided in terms of the number of passes.


Further, according to the embodiment, the printing conditions when printing the TP are the same as the printing conditions when performing the normal printing.


In other words, the control unit 11 sets a velocity of a relative movement between the printing head 18 and the printing medium 30 when printing the TP to be the same as the velocity of the relative movement when performing the normal printing. According to the above description, the velocity of the relative movement referred to here is the movement velocity of the carriage 17 when performing the pass.


Further, the control unit 11 sets a waveform of a drive signal used to drive the nozzle 21 when printing the TP to be the same as the waveform of the drive signal used to drive the nozzle 21 when performing the normal printing. The drive signal used to drive the nozzle 21 is a pulse wave, and the drive signal is applied to a driving element of each of the nozzles 21 in accordance with the dot on information, thus causing the dot to be discharged from the nozzle 21. If the waveform of the drive signal is different, a size of the dot discharged by the nozzle 21 in a single drive is also different. Thus, in the embodiment, the waveform of the drive signal for discharging the first dots from the nozzles 21 when printing the TP is the same as the waveform of the drive signal for discharging the first dots from the nozzles 21 when performing the normal printing. Similarly, the waveform of the drive signal for discharging the second dots from the nozzles 21 when printing the TP is the same as the waveform of the drive signal for discharging the second dots from the nozzles 21 when performing the normal printing.


In this way, by setting the velocity of the relative movement and the drive signal to be the same for the printing of the TP and for the normal printing, the TP suitable for performing the inspection of the nozzle 21 can be printed under the same conditions as when performing the normal printing.


The embodiment also discloses an invention of each of categories, such as a method other than the printing apparatus 10 and the printing system 10, and the program 12.


The printing method includes the printing step of printing the TP on the printing medium, using the printing head 18 including the nozzles 21 that discharge the dots of the first size, and the dots of the second size smaller than the first size, which are the ink dots, the TP being used to inspect the state of the ink discharge by the nozzles 21. The test pattern includes the first pattern element formed by the plurality of dots of the first size and the second pattern element formed by the plurality of dots of the second size, and the printing step causes the printing head 18 to print the TP in which the number of the dots of the second size forming the second pattern element is greater than the number of the dots of the first size forming the first pattern element.


4. Other Embodiments

The embodiment is not limited to the modes described above.


Each of the plurality of nozzles 21 included in the printing head 18 may be capable of discharging more than two types of the dot sizes. The nozzle 21 may be capable of discharging the large dots, medium dots, and the small dots in descending order of the volume per droplet. In this case, in the embodiment, the large dots may be treated as the first size, and the medium dots and small dots may be treated as the second size, or the large dots and the medium dots may be treated as the first size, and the small dots may be treated as the second size.


Further, the printing apparatus 10 may print the TP such that, for each of the pattern elements formed of the large dots, pattern elements formed of the medium dots, and the pattern elements formed of the small dots, the smaller the dot size, the greater the number of dots per pattern element.


Further, the “large dot” that is the dot of the first size, may be formed by discharging a plurality of the “small dots” that are the dots of the second size.


Further, in the embodiment, the first size and the second size of dots are discharged from the same nozzles, but the configuration is not limited thereto, and the printing head 18 may be separately provided with nozzles for discharging the dots of the first size and nozzles for discharging the dots of the second size.


The printing apparatus 10 need not necessarily be a so-called serial inkjet printer in which the printing head 18 is mounted on the carriage 17 that moves in the main scanning direction D1, as described above.


A so-called line type inkjet printer for discharging the ink may be assumed, using the printing head 18 including the nozzle rows 26 for each of the ink colors, where the nozzle rows 26 extend in the main scanning direction D1 intersecting the transport direction D2 and are long enough to cover the width of the printing medium 30. In the line type inkjet printer, the nozzle row direction D3 may be understood to be parallel with the main scanning direction D1 rather than with the transport direction D2.


When describing the embodiment assuming that the printing apparatus 10 is the line type inkjet printer, the TP 41 illustrated in FIG. 5 is printed on the printing medium 30 such that each of the pattern elements, which is the ruled line, is parallel with the transport direction D2 rather than with the main scanning direction D1. Further, the plurality of passes of the printing head 18 described above are achieved using back feed by the transport unit 16. The back feed is processing in which the transport unit 16 transports the printing medium 30 from downstream to upstream. In other words, when the printing medium 30 passes under the printing head 18 in the process of transporting the printing medium 30 from upstream to downstream, printing is performed once on the printing medium 30. Thereafter, the transport unit 16 returns the portion of the printing medium 30 that has once been printed, back to a position upstream of the printing head 18, and once more starts transporting the printing medium 30 downstream. By repeating this, the TP 41 can be repeatedly printed in the same manner as the serial inkjet printer prints the TP 41 in the superimposed manner by the plurality of passes.


When the printing apparatus 10 is the line type inkjet printer, the transport of the printing medium 30 by the transport unit 16 during the printing period by the printing head 18 corresponds to the relative movement between the printing head 18 and the printing medium 30. In other words, when the printing apparatus 10 is the line type inkjet printer, the transport velocity of the transport unit 16 during the printing period by the printing head 18 is the same when printing the TP and when performing the normal printing.


It goes without saying that the printing medium 30 need not necessarily be the continuous sheet wound into the roll, as exemplified in FIG. 2, or the like. The printing medium 30 may be a single sheet cut into page units, or the like.

Claims
  • 1. A printing apparatus comprising: a printing head including a plurality of nozzles with a first nozzle configured to discharge a plurality of dots of a first size and a second nozzle configured to discharge a plurality of dots of a second size smaller than the first size, the dots being ink dots; anda control unit configured to control the printing head to print, on a printing medium, a test pattern for inspecting a state of ink discharge by the nozzles, whereinthe test pattern includes a first pattern element formed by the plurality of the dots of the first size using the first nozzle and a second pattern element formed by the plurality of the dots of the second size using the second nozzle, andthe control unit causes the printing head to print the test pattern where a number of the dots of the second size forming the second pattern element using the second nozzle is greater than a number of the dots of the first size forming the first pattern element using the first nozzle.
  • 2. The printing apparatus according to claim 1, wherein the printing head is configured to perform a scan to discharge the ink from the nozzles in accordance with movement in a predetermined direction, andthe control unit causes the printing head to print the test pattern where a number of the scans for printing the second pattern element is greater than a number of the scans for printing the first pattern element.
  • 3. The printing apparatus according to claim 1, wherein the control unit causes the printing head to print the test pattern where a discharge rate by the second nozzle of the dots of the second size for printing the second pattern element is higher than a discharge rate by the first nozzle of the dots of the first size for printing the first pattern element.
  • 4. The printing apparatus according to claim 1, wherein when printing the test pattern by a relative movement between the printing head and the printing medium, the control unit causes a velocity of the relative movement to be the same as a velocity of the relative movement when performing normal printing.
  • 5. The printing apparatus according to claim 1, wherein the control unit causes a waveform of a drive signal used to drive the nozzles when printing the test pattern to be the same as a waveform of a drive signal used to drive the nozzles when performing normal printing.
  • 6. A printing method comprising: a printing step of printing a test pattern on a printing medium, using a printing head including a plurality of nozzles with a first nozzle configured to discharge a plurality of dots of a first size and a second nozzle configured to discharge a plurality of dots of a second size smaller than the first size, the dots being ink dots, and the test pattern being used to inspect a state of ink discharge by the nozzles, whereinthe test pattern includes a first pattern element formed by the plurality of the dots of the first size using the first nozzle and a second pattern element formed by the plurality of the dots of the second size using the second nozzle, andthe printing step causes the printing head to print the test pattern where a number of the dots of the second size forming the second pattern element using the second nozzle is greater than a number of the dots of the first size forming the first pattern element using the first nozzle.
Priority Claims (1)
Number Date Country Kind
2020-112568 Jun 2020 JP national
US Referenced Citations (1)
Number Name Date Kind
20070040878 Ikefuji et al. Feb 2007 A1
Foreign Referenced Citations (2)
Number Date Country
2007-054970 Mar 2007 JP
2016-221835 Dec 2016 JP
Related Publications (1)
Number Date Country
20210402759 A1 Dec 2021 US