1. Technical Field
The present invention relates to a technique for ejecting a liquid such as an ink onto a medium.
2. Related Art
Ink jet printing apparatuses have been proposed that eject ink containing a colorant such as a pigment or dye onto various media, such as printing paper. For example, JP-A-2005-22329 describes a technique to improve the fixing properties of ink to a medium by ejecting a reactant liquid containing an aggregation agent together with the ink, such that the two mix together on the surface of the medium.
However, an issue exists in which the abrasion resistance of printed images actually falls if excessive reactant liquid is ejected with respect to the ejection amount of the ink. In particular, for example, in cases in which a non-absorbent medium formed from a material such as polyvinyl chloride is employed, the fall in abrasion resistance can become pronounced in a state in which there is a low ink ejection amount.
An advantage of some aspects of the invention is that a fall in abrasion resistance as a result of excessive reactant liquid ejection is suppressed.
A printing apparatus of an aspect of the invention includes a liquid ejecting section that is capable of ejecting a reactant liquid and an ink, and a control section that controls operation of the liquid ejecting section. The control section sets an ejection duty of the reactant liquid according to an ejection duty of the ink. In the above aspect, the ejection duty of the reactant liquid is controlled according to the ejection duty of the ink. This thereby enables a fall in abrasion resistance as a result of excessive reactant liquid ejection to be suppressed.
In a preferable aspect of the invention, the control section sets the reactant liquid ejection duty according to the ink ejection duty such that the reactant liquid ejection duty is a second value when the ink ejection duty is a first value, and such that the reactant liquid ejection duty is a fourth value greater than the second value when the ink ejection duty is a third value greater than the first value. In the above aspect, the reactant liquid ejection duty is the second value when the ink ejection duty is the first value, and the reactant liquid ejection duty is the fourth value greater than the second value when the ink ejection duty is the third value greater than the first value. This thereby enables a fall in abrasion resistance to be suppressed, while maintaining print quality.
A printing apparatus according to a preferable aspect of the invention further includes a heating section that heats a medium on which the reactant liquid and the ink have landed. In the above aspect, the medium on which the reactant liquid and the ink have landed is heated by the heating section. Due to heating the medium with the heating section, the ejection amount of reactant liquid required to maintain print quality is reduced, thereby enabling a reduction in the amount of reactant liquid consumed, while satisfying both print quality and abrasion resistance.
In a preferable aspect of the invention, the liquid ejecting section is capable of ejecting the reactant liquid and the ink using plural ejection amounts including a first ejection amount and a second ejection amount greater than the first ejection amount. The control section controls the liquid ejecting section such that the reactant liquid is ejected using the first ejection amount. In the above aspect, the reactant liquid is ejected using the first ejection amount lower than the second ejection amount, thereby enabling a fall in abrasion resistance as a result of excessive reactant liquid ejection to be effectively suppressed.
A program according to another aspect of the invention is a program that causes a computer connected to, or installed in, a printing apparatus provided with a liquid ejecting section capable of ejecting a reactant liquid and an ink, to function as a control section that controls operation of the liquid ejecting section. The control section controls an ejection duty of the reactant liquid according to an ejection duty of the ink. In the above aspect, the ejection duty of the reactant liquid is controlled according to the ejection duty of the ink. This thereby enables a fall in abrasion resistance as a result of excessive reactant liquid ejection to be suppressed.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
As illustrated in
As illustrated in
The transport mechanism 32 transports the medium 22 in a Y direction under the control of the control unit 30. The transport mechanism 32 of the first embodiment includes a feed roller 322, a discharge roller 324, and a medium retention section 326. The feed roller 322 and the discharge roller 324 transport the medium 22 in the Y direction. The medium retention section 326 is a flat plate shaped structural body (platen) on which the medium 22 being transported by the feed roller 322 and the discharge roller 324 is mounted. The medium 22 is transported across a surface of the medium retention section 326. Note that the structure of the transport mechanism 32 is not limited to the above example, and any configuration capable of transporting the medium 22 in the Y direction may be employed.
The moving mechanism 34 is a mechanism that moves the liquid ejecting section 36 back and forth in an X direction, under the control of the control unit 30. The X direction in which the liquid ejecting section 36 moves back and forth in a direction intersecting (typically orthogonal to) the Y direction in which the medium 22 is transported. The moving mechanism 34 of the first embodiment includes a carriage 342 that supports the liquid ejecting section 36, and a conveyor belt 344 provided spanning across in the X direction. The conveyor belt 344 circulates under the control of the control unit 30, thereby moving the liquid ejecting section 36 back and forth in the X direction together with the carriage 342. Note that the structure of the moving mechanism 34 is not limited to the above example, and any configuration capable of moving the liquid ejecting section 36 back and forth in the X direction may be employed. Moreover, the liquid holder 24 may be installed to the carriage 342, together with the liquid ejecting section 36.
The liquid ejecting section 36 is a liquid ejecting head that ejects the reactant liquid and the ink supplied from the liquid holder 24 onto the medium 22 under the control of the control unit 30. The liquid ejecting section 36 ejects the reactant liquid and ink onto the medium 22, in parallel with the transportation of the medium 22 by the transport mechanism 32 and the back and forth movement of the moving mechanism 34, so as to form a desired image on the surface of the medium 22.
The first nozzle row L1 is a collection of plural nozzles N that eject the reactant liquid supplied from the liquid holder 24 onto the medium 22. Each of the plural second nozzle rows L2 is a collection of plural nozzles N that eject ink supplied from the liquid holder 24 onto the medium 22. Specifically, as can be seen from
The flow path substrate 71 is formed with an opening portion 712, branched flow paths (restriction flow paths) 714 and communication flow paths 716. The branched flow paths 714 and the communication flow paths 716 are through holes formed for each of the respective nozzles N, and the opening portion 712 is an opening running continuously past the plural nozzles N. A space where both a housing portion (recess) 752 formed in the support body 75 and the opening portion 712 of the flow path substrate 71 are in communication with each other functions as a common liquid chamber (reservoir) SR that stores the reactant liquid or ink supplied from the liquid holder 24 through an entry flow path 754 in the support body 75.
The pressure chamber substrate 72 is formed with opening portions 722 corresponding to each of the respective nozzles N. The diaphragm 73 is an elastically deformable flat plate member disposed on a surface of the pressure chamber substrate 72 on the opposite side to the flow path substrate 71. Spaces interposed between the diaphragm 73 and the flow path substrate 71 at the inside of the opening portions 722 of the pressure chamber substrate 72 function as pressure chambers (cavities) SC that are filled with the reactant liquid or ink supplied from the common liquid chamber SR through the branched flow paths 714. Each pressure chamber SC is in communication with the corresponding nozzle N through the communication flow path 716 of the flow path substrate 71.
The piezoelectric elements 74 are formed for each of the respective nozzles N, on a surface of the diaphragm 73 on the opposite side to the pressure chamber substrate 72. Each piezoelectric element 74 is a drive element in which a piezoelectric body is interposed between mutually opposing electrodes. The piezoelectric element 74 deforms when supplied with drive signals, causing the diaphragm 73 to oscillate, such that the pressure inside the pressure chamber SC fluctuates, and the reactant liquid or ink inside the pressure chamber SC is ejected through the nozzle N. The above is a specific structure of the liquid ejecting section 36.
As described above, uneven aggregation is suppressed due to the ink reacting with the reactant liquid on the surface of the medium 22. However, there is a tendency for the abrasion resistance of the printed image to fall if excessive reactant liquid is ejected with respect to the amount of ejected ink. If the medium 22 employed is formed from polyvinyl chloride, as in the example of the first embodiment, the fall in abrasion resistance due to the reactant liquid becomes particularly evident. It is speculated that the cause of this fall in abrasion resistance may be, for example, due to the reactive component of the reactant liquid (aggregation agent) being present between the surface of the medium 22 and the resin material contained in the ink, reducing the adhesive force, or due to the strength of an ink film being reduced as a result of a reduction in ink density caused by the presence of the reactive component therein. As these explanations suggest, there is a tendency for the fall in abrasion resistance to become greater the greater the increase in the reactant liquid ejection amount with respect to the ink ejection amount.
In consideration of the above tendency, the control section 40 of the first embodiment controls an ejection duty DOp (Op: optimizer) of the reactant liquid according to an ejection duty DInk of the ink in the liquid ejecting section 36. The ejection duties are each an index of an ejection amount per unit time per unit surface area of the medium 22, and are each expressed as ratio (%) with respect to specific reference values. Specific relationships between the ink ejection duty DInk and the reactant liquid ejection duty DOp are described in detail below.
Specifically, as the ink ejection duty DInk falls compared to the reactant liquid ejection duty DOp, the abrasion resistance falls, but there is also a tendency for uneven aggregation to decrease. Accordingly, as the ejection duty DInk falls, priority is given to suppressing a fall in abrasion resistance by lowering the reactant liquid ejection duty DOp. On the other hand, as the ink ejection duty DInk gets higher compared to the reactant liquid ejection duty DOp, the abrasion resistance rises, but there is also a tendency for uneven aggregation to be exacerbated. Accordingly, as the ejection duty DInk becomes higher, priority is given to reducing uneven aggregation by raising the reactant liquid ejection duty DOp.
As described above, the control section 40 of the first embodiment controls operation of the liquid ejecting section 36 so as to lower the reactant liquid ejection duty DOp as the ink ejection duty DInk falls.
As illustrated in
When the ejection duty DInk has been computed, the control section 40 sets the reactant liquid ejection duty DOp according to the ejection duty DInk (SA2). Specifically, the control section 40 refers to a table of respective ejection duty DInk values associated with respective ejection duty DOp values in order to identify the ejection duty DOP associated with the ejection duty DInk. The relationship between the ejection duty DInk and the ejection duty DOp is as illustrated in
As described above, in the first embodiment, the reactant liquid ejection duty DOp is set according to the ink ejection duty DInk. This thereby enables a fall in abrasion resistance resulting from excessive reactant liquid ejection to be suppressed. In particular, in the first embodiment, the ejection duty DOp is set according to the ejection duty DInk, such that the reactant liquid ejection duty DOp is the value d2 when the ejection duty DInk is the value d1, and the reactant liquid ejection duty DOp is the value d4 greater than the value d2 when the ejection duty DInk is the value d3 greater than the value d1. This thereby enables a fall in abrasion resistance to be suppressed, while maintaining print quality.
Explanation follows regarding a second embodiment of the invention. Note that in each of the embodiments described below, elements having similar operation and functions to those of the first embodiment are allocated the same reference numerals as in the description of the first embodiment, and detailed explanation thereof is omitted where appropriate.
In consideration of the relationship illustrated in
The second embodiment obtains similar advantageous effects to the first embodiment. Moreover, in the second embodiment, the ejection amount of the reactant liquid required to maintain print quality is reduced due to heating the medium 22 with the heating section 38. This thereby enables the amount of the reactant liquid consumed to be reduced, while satisfying both print quality and abrasion resistance.
Explanation follows regarding a third embodiment of the invention. A liquid ejecting section 36 of the third embodiment is capable of ejecting the reactant liquid and ink using plural types of ejection amount, including an ejection amount QS (first ejection amount) and an ejection amount QL (second ejection amount). The ejection amount QL is greater than the ejection amount QS (QL>QS). Specifically, the ejection amount QL corresponds to large dots, and the ejection amount QS corresponds to small dots. A control section 40 of the third embodiment controls the liquid ejecting section 36 so as to eject the reactant liquid using the ejection amount QS (small dots). Note that the heating section 38 described in the second embodiment is not provided in the third embodiment.
Various modifications may be made to the respective embodiments described above. Explanation follows regarding specific modifications. Any two or more selected from the following may be combined as appropriate within a range in which they do not contradict each other.
(1) The heating section 38 of the second embodiment may be applied to a configuration (the third embodiment) in which the liquid ejecting section 36 is capable of ejecting reactant liquid and ink using plural types of ejection amount, including the ejection amount QS and the ejection amount QL, as in the third embodiment.
As can be seen by comparing
(2) The structure of the liquid ejecting section 36 may be modified as appropriate. For example, the respective embodiments described above give the example of the piezoelectric type liquid ejecting section 36 employing the piezoelectric elements 74 that apply mechanical oscillation to the pressure chamber SC. However, a heat type liquid ejecting section employing heat generating elements that generate air bubbles inside the pressure chambers by heating may also be employed.
(3) The respective embodiments described above use the example of the serial type printing apparatus 10 that moves the carriage 342 installed with the liquid ejecting section 36 back and forth in the X direction. However, the invention may also be applied to a line type printing apparatus in which plural nozzles N are distributed across the entire width direction of the medium 22. The printing apparatus 10 given as an example in the respective embodiments described above may also be employed in various devices such as fax machines and copy machines, as well as in dedicated printing machines.
(4) The respective embodiments described above give an example of a configuration in which the control section 40 is installed in the printing apparatus 10. However, the control section 40 may be implemented by the management device 12 connected to the printing apparatus 10. As is understood from the above explanation, a program (printer driver) according to a preferable aspect of the invention is a program that causes a computer (control unit 30, management device 12) connected to, or installed with, the printing apparatus 10 provided with the liquid ejecting section 36 capable of ejecting a reactant liquid and an ink, to function as the control section 40 that controls the operation of the liquid ejecting section 36. The control section 40 controls the reactant liquid ejection duty DOp according to the ink ejection duty DInk.
The program in the above example may be provided in a format stored on a computer-readable storage medium and installed to a computer. A storage medium is, for example, a non-transitory storage medium, of which a preferable example is an optical storage medium (optical disk) such as a CD-ROM. However, the storage media encompass any known format, such as semiconductor storage media or magnetic storage media. The program in the above example may also be provided in a format distributed through a communication network and installed to a computer.
The entire disclosure of Japanese Patent Application No. 2015-181705, filed Sep. 15, 2015 is expressly incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-181705 | Sep 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20100328388 | Takekoshi | Dec 2010 | A1 |
20140092157 | Yoshida | Apr 2014 | A1 |
20140132662 | Katsuragi | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2005-007649 | Jan 2005 | JP |
2005-22329 | Jan 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20170072707 A1 | Mar 2017 | US |