The present application claims priority from Japanese Patent Application No. 2005-216922, filed on Jul. 27, 2005, the disclosure of which is incorporated herein by reference in its entirely.
1. Field of the Invention
The present invention relates to a printing apparatus which performs printing by transporting a liquid onto a printing medium such as a recording paper
2. Description of the Related Art
A printing apparatus which includes an ink-jet head discharging an ink on to a printing medium, has been hitherto used widely as a printing apparatus which performs printing on various printing media such as a recording paper. Here, printing apparatuses with various structures of the ink-jet head are available, and a printing apparatus in which an ink-jet head includes a channel unit provided with a plurality of individual ink channels including a pressure chamber communicating with a nozzle, and a piezoelectric actuator which applies a pressure to an ink in the pressure chamber is an example of such printing apparatus (refer to U.S. Pat. No. 6,926,382 (corresponding to Japanese Patent Application Laid-open No. 2003-326712)).
A general piezoelectric actuator includes a plurality of individual electrodes corresponding with a plurality of pressure chambers, a common electrode facing the individual electrodes, and a piezoelectric layer sandwiched between the individual electrode and the common electrode, which is formed by a piezoelectric material such as lead zirconate titanate (PZT). Moreover, when a drive voltage is supplied to a predetermined individual electrode, an electric field is generated in a portion of the piezoelectric layer sandwiched between the individual electrode and the common electrode. As the electric field is generated, the piezoelectric layer is deformed partially, and with the deformation of the piezoelectric layer, a pressure is applied to the ink in the pressure chamber. As the pressure is applied to the ink, the ink is discharged from the nozzle communicating with the pressure chamber.
However, in the ink-jet head mentioned above, an actuator in which a plurality of individual ink channels of a complicated shape, in which a channel unit includes a nozzle and a pressure chamber, is formed, and a plurality of individual electrodes, a common electrode, and a piezoelectric layer are provided on a surface of the channel unit, is arranged. Since such structure is quite complicated, there is an increase in a manufacturing cost. Moreover, for discharging a certain amount of ink, it is necessary to ensure a volume of the pressure chamber more that a predetermined quantity. Therefore, it is difficult to arrange densely (compactly) the individual ink channels of the complicated shape which include the nozzle and the pressure chamber, in the channel unit (it is difficult to have highly integrated individual ink channels of the complicated shape, in the channel unit).
An object of the present invention is to provide a printing apparatus having a simple formation, and of which a size can be reduced easily.
According to a first aspect of the present invention, there is provided a printing apparatus which performs printing by discharging an electroconductive liquid onto a printing medium, including a liquid transporting section which includes a channel forming surface on which a liquid channel through which the liquid flows, and a discharging section communicating with the channel unit are formed, a first electrode which is arranged on the channel forming surface, and an insulating layer formed on a surface of the electrode, which has a liquid repellent property higher than a liquid repellent property of the channel forming surface when a voltage is applied to the first electrode, and
According to the first aspect of the present invention, the liquid transporting section transports the liquid up to the discharging section by using a phenomenon in which, when there is an electric potential difference developed between the first electrode and the liquid, the liquid repellent property (wetting angle of the liquid) of the insulating layer on the surface of the first electrode is declined (electrowetting phenomenon: refer to Japanese Patent Application Laid-open No. 2003-177219). Therefore, as compared to the conventional ink-jet head having the complicated structure, the structure of the liquid channel and a formation of the actuator transporting the liquid are simplified, and it is possible to arrange the liquid channels and the discharging section highly densely, thereby facilitating to reduce the size of the liquid transporting section. Moreover, it is possible to transport the liquid at a comparatively lower drive voltage.
In the printer of the present invention, a distance between the discharging section of the liquid transporting apparatus and the transferring mechanism may be less than a diameter of a liquid which is discharged at one time from the discharging section. The transferring mechanism may be a transfer drum, and the transfer drum may be rotatably supported such that a surface of the transfer drum is close to the discharging section of the liquid transporting section.
Particularly, in a case in which the printing medium is a medium having a large number of minute recesses and projections on a surface, when the liquid discharged from the discharging section is let to be adhered directly to the printing medium, it is difficult to make the uniform amount of ink to be adhered stably due to the roughness on the surface of the printing medium, and there is a possibility of decline in a printing quality due to a variation in an amount of liquid adhered. However, in the printing apparatus of the present invention, after the ink is allowed to be adhered once on the surface of the transfer drum from the liquid transporting section, the transfer drum is rotated and the ink on the surface of the transfer drum is transferred to the printing medium. Therefore, it is possible to make the uniform amount of the liquid to be adhered stably to the printing medium. Moreover, since the distance between the discharging section of the liquid transporting apparatus and the transferring mechanism is less than the diameter of the liquid which is discharged at a time from the discharging section, the liquid which is discharged from the discharging section is adhered assuredly to the transfer drum.
Here, “the diameter of the liquid which is discharged at a time from the discharging section” means a diameter of a liquid drop having a spherical shape having a volume same as a volume of the liquid discharged at a time from the discharging section.
In the printing apparatus of the present invention, the liquid repellent property of the surface of the transfer drum may be lower than a liquid repellent property of an area around the discharging section of the liquid transporting section. In this case, the liquid discharged from the discharging section is not adhered to the area around the discharging section, and is transferred assuredly to the surface of the transfer drum.
In the printing apparatus of the present invention, the surface of the transfer drum may be provided with a liquid adhering area to which the liquid discharged from the discharging section is adhered, and a highly liquid repellent area surrounding the liquid adhering area, which has a liquid repellent property higher than a liquid repellent property of the liquid adhering area. In this case, on the surface of the transfer drum, even when the liquid is shifted away from an original liquid adhering position at which the liquid is supposed to be adhered, and adhered spreading across up to the highly liquid repellent area, the liquid moves naturally from the highly liquid repellent area having a superior (higher) liquid repellent property, to a liquid adhering position having an inferior liquid repellent property. Therefore, an adhering position of liquid droplets on the surface of the transfer drum is corrected, and a printing quality when the liquid is transferred to the printing medium, is improved.
In the printing apparatus of the present invention, a second electrode which is kept at a predetermined electric potential all the time, and which is in direct contact with the liquid may be formed on the channel forming surface of the liquid channel. In this case, an electric potential of the liquid in the liquid channel is fluctuated, and it is possible to generate assuredly a predetermined electric potential difference between the first electrode and the liquid, when a voltage is applied to the first electrode.
In the printing apparatus of the present invention, the liquid transporting section may transport the liquid vertically downward from the discharging section toward the transfer drum. In this case, the adhering position of the liquid on the surface of the transfer drum is not shifted due to a gravitational force acting on the liquid discharged from the discharging section.
In the printing apparatus of the present invention, the liquid transporting section may include a plurality of individual liquid transporting sections arranged in a circumferential direction (arranged along a circumference) of the transfer drum. In this case, various types of liquids can be discharged from the liquid transporting section, and made to be adhered to the transfer drum.
The printing apparatus of the present invention, may further include a foreign-matter removing mechanism (an impurity removing mechanism) which removes foreign matters (impurities) adhered to the surface of the transfer drum. In this case, it is possible to remove assuredly foreign matters such as paper dust adhered to the transfer drum.
In the printing apparatus of the present invention, the transferring mechanism may be a transfer belt, and a hole into which the liquid discharged from the liquid discharging section is filled may be formed in the transfer belt. In this case, it is possible to arrange the transfer belt in any shape. Moreover, when the hole is formed in the transfer belt, with the liquid discharged from the discharged section filled in this hole, the ink can be carried up to a point of transferring to the recording medium. Therefore, the position of the liquid on the surface of the transfer belt is not shifted.
The printing of the present invention may further include a foreign-matter removing mechanism which removes foreign matters adhered to a surface of the transfer belt. In this case, it is possible to remove assuredly impurities such as paper dust adhered to the transfer belt.
Next, an embodiment of the present invention will be described below. This embodiment is an example in which the present invention is applied to a printing apparatus which performs printing by transporting an ink to a recording paper.
Firstly, a schematic structure of a printer 100 of this embodiment will be described below. As shown in
The ink transporting head 1 is connected to an ink tank 5 via a tube 6. Moreover, ink supplied from the ink tank 5 to the ink transporting head 1 upon passing through the individual ink channels 12 in the ink transporting head 1 is discharged from the discharge ports 13 opening on a lower side, and is adhered to the surface of the transfer drum 2 rotating in a fixed direction (clockwise direction in
Next, the ink transporting head 1 will be described in detail. As shown in
The manifold 11 is connected to the ink tank 5 (refer to
On one surface of an inner surface (channel forming surface) of the head main body 10, which forms a lower end portion having a tapered shape of each individual ink channel 12, an individual electrode 15 (a first electrode) having a trapezoidal shape substantially covering this surface is formed. As shown in
On one of surfaces (right side surface in
Next, an ink transporting action of the ink transporting head 1 will be described by referring to
In the state in which the drive voltage is not applied to the individual electrode 15 from the driver IC 17, the liquid repellent property of the surface of the insulating layer 16 becomes higher than a liquid repellent property of the inner surfaces of the individual ink channels 12. Therefore, as shown in
Since the ink in the manifold 11 is in contact with the common electrode 18 kept at the ground electric potential all the time, the electric potential of the ink in the individual ink channels 12 is not fluctuated. Consequently, when the drive voltage is applied to a certain individual electrode 15, a predetermined electric potential difference is generated assuredly between that individual electrode 15 and the ink. Therefore, in the individual ink channels 12, the ink can move smoothly to the discharge ports 13.
Moreover, as shown in
Next, the transfer drum 2 will be described below. As shown in
The surface of the transfer drum 2 is close to the discharge ports 13 of the ink transporting head 1. Here, as shown in
Moreover, as shown in
Furthermore, the liquid repellent film 20 is formed on the surface of the transfer drum 2, in an area surrounding the ink adhering areas 2a, and forms a highly liquid repellent area 2b having the liquid repellent property higher than the liquid repellent property of the ink adhering areas 2a. Consequently, for example, when an ink droplet Id discharged from each of the discharge ports 13 is adhered to the transfer drum 2, in an unstable state, as shown in
Such shift in the adhering position of the liquid droplet occurs due to various factors such as an external force acting on the liquid droplet like the gravitational force and wind. However, in the printer 10 of this embodiment, as shown in
As shown in
According to the printer 100 mentioned above the following effects are achieved. The ink transporting head 1 transports the ink up to the discharge ports 13 by using a phenomenon of decline in the liquid repellent property of the surface of the insulating layer 16 which covers the individual electrodes 15, when the electric potential difference is generated between the individual electrodes 15 and the ink (electrowetting phenomenon). Therefore, as compared to a conventional ink-jet head having a complicated formation, a structure of the ink channels and a formation of the actuator which transports the ink are simplified, and it is possible to arrange the individual ink channels 12 and the discharge ports 13 highly densely. Therefore, a reduction in a size of the ink transporting head 1 is facilitated. Furthermore, it is possible to transport the ink at a comparatively low drive voltage.
Moreover, after the ink is made to be adhered to the surface of the transfer drum 2 from the ink transporting head 1, the ink on the surface of the transfer drum 2 is transferred to the recording paper P by rotating the transfer drum 2. Therefore, it is possible to make a predetermined amount of ink to be adhered stably to the recording paper P having a rough surface. Since the distance between the discharge port 13 of the ink transporting head 1 and the transfer drum 2 is less than the diameter of the liquid droplet equivalent to the amount of ink discharged at a time from the discharge port 13, the ink discharged from the discharge port 13 is adhered assuredly to the transfer drum 2.
Modified embodiments in which various modifications are made in the embodiment will be described below. However, same reference numerals are assigned to components having a similar structure as the structure of the components in the embodiment, and the description of such components is omitted.
As shown in
Sometimes, foreign matters (impurities) such as paper dust are adhered to a surface of the transfer drum 2 while transferring to a recording paper, and when it is left in a state in which the impurities are adhered, there is a possibility that the ink discharged from a discharge port 13 of an ink transporting head 1 may not be adhered to a predetermined ink adhering area of the surface of the transfer drum. Therefore, a foreign-matter removing mechanism which removes such foreign matters may be provided to the printer. For example, as shown in
A structure supporting the recording paper P from the lower side such that the recording paper P which is carried is in contact with the transfer drum 2 all the time, is not restricted to the roller 7 of the embodiment (refer to
When the shift in the adhering position of the ink on the surface of the transfer drum 2 is small, the liquid repellent film 20 which is formed around the ink adhering areas 2a (refer to
An ink transporting head which transports the ink to the transfer drum by using the electrowetting phenomenon is not restricted to the ink transporting head 1 in the first embodiment, and ink transporting heads having various structures can be used. For example, an ink transporting head 41 shown in
Leading electrodes 46 are provided on the upper surface (channel forming surface) of the substrate 42 which forms each individual ink channel 44, adjacent to the leading ports 43a of the ink storage section 43. Furthermore, five transporting electrodes 47 are provided such that the five transporting electrodes 47 are arranged along a direction extending from a position adjacent to the leading electrodes 46 to the individual ink channels 44 respectively. The leading electrodes 46 and the transporting electrodes 47 are connected to a driver IC which is not shown in the diagram, and the driver IC can apply a drive voltage independently to each of the leading electrodes 46 and each of the transporting electrodes 47. The substrate 42 is formed of an insulating material, and the leading electrodes 46 and the transporting electrodes 47 are mutually insulated by the substrate 42. Moreover, an insulating layer 48 is formed continuously on the upper surface of the substrate 42 to cover the entire leading electrodes 46 and the transporting electrodes 47. Furthermore, a common electrode 49 which is extended in a direction in which the individual ink channels 44 are extended on both side of the individual ink channels 44 are formed on an upper surface of the insulating layer 48. The common electrode 49 is also connected to the driver IC, and is kept at the ground electric potential all the time via the driver IC.
When the drive voltage is not applied to the leading electrodes 46, a liquid repellent property of the insulating layer 48 covering the surface is higher than a liquid repellent property of an inner surface of the ink storage section 43 on which the insulating layer 48 is not formed, and the ink is not lead from the leading ports 43a. On the other hand, when the drive voltage is applied to the leading electrodes 46, since the liquid repellent property of the insulating layer 48 on the surface of the leading electrodes 46 becomes lower than the liquid repellent property of the inner surface of the ink storage section 43, the ink is lead from the leading ports 43a of the ink storage section 43. Furthermore, as the drive voltage applied to the leading electrodes 46 is released and the leading electrodes 46 come to the ground electric potential, when the drive voltage is applied to the transporting electrodes 47 adjacent to the leading electrodes 46 at the same time, the liquid repellent property of the insulating layer 48 on the surface of the leading electrodes 46 is improved (becomes superior) and the liquid repellent property of the insulating layer 48 on the surface of the transporting electrodes 47 is declined. Therefore, the ink on the leading electrodes 46 is moved to the transporting electrodes 47. Thus, by switching the leading electrodes 46 and the transporting electrodes 47 to which the drive voltage is applied, it is possible to transport the liquid droplet Id of ink lead from the leading ports 43a up to the discharging sections 45 along the individual ink channels 44, and to adhere it from the discharging sections 45 to the transfer drum 2. The ink storage section 43 and the individual ink channels 44 correspond to the liquid channel of the (patent) application for the present invention. Moreover, the leading electrodes 46 and the transporting electrodes 47 correspond to the first electrode of the application for the present invention, and the common electrode 49 corresponds to the second electrode of the application for the present invention.
Moreover, even in the ink transporting head 41 of the fifth modified embodiment, similarly as in the embodiment, the distance L between the discharging section of the ink transporting head 41 and the transfer drum 2 is less than the diameter of the (liquid) droplet Id of the ink having the volume same as the volume of the ink discharged at a time from one of the discharging sections 45. Furthermore, a liquid repellent film 50 is provided around the discharging sections 45, and the liquid repellent property around the discharging sections 45 is higher than the liquid repellent property of the surface of the transfer drum 2 and the upper surface of the substrate 42 (insulating layer 48) forming the individual ink channels 44. Therefore, the liquid discharged from the discharging section 45 is transported assuredly to the surface of the transfer drum 2 without adhering around the discharging sections 45.
As shown in
A printer 200 in a seventh modified embodiment has a structure similar to the structure of the printer 100 of the embodiment except for points that a transfer belt 202, spindle rollers 203a to 203d, and a belt rotating roller 204 are provided instead of the transfer drum 2 of the embodiment, and has an impurity removing mechanism 231 similar to the second embodiment. As shown in
In the seventh modified embodiment, a shape, a material, the number and/or an arrangement of the spindle rollers, and the belt rotating roller may be voluntary. Moreover, also a shape, a material and/or a thickness of the transfer belt may be voluntary. Moreover, the modifications made in the other modified embodiments mentioned above can be applied also in the seventh modified embodiment. For example, an ink adhering area and a highly liquid repellent area as formed on the surface of the transfer drum in the embodiment may be formed on the surface of the transfer belt. Furthermore, as a transfer belt 212 shown in
In the embodiment and the modified embodiments, a pattern of the ink adhering area and the highly liquid repellent area of the surface of the transfer belt and the transfer drum may be formed voluntarily. For example, the ink adhering area may be formed in the form of a line along the circumferential direction of the transfer drum and the transfer belt, or may be formed in the form of a line along a direction orthogonal to the circumferential direction. Or, the ink adhering area may be formed in the form of a lattice in both the circumferential direction and the direction orthogonal to the circumferential direction. Moreover, a transfer member (transfer mechanism) for transferring the ink discharged from the ink transporting head to a recording medium such as a recording paper, is not restricted to the transfer drum or the transfer belt, and any transfer member may be used.
The embodiment mentioned above is an example in which the present invention is applied to a printer which records an image by transferring the ink to the recording paper. However, the present invention is also applicable to other printing apparatuses which transfer a liquid other than the ink to a printing medium. For example, the present invention is also applicable to a printing apparatus which forms a wiring pattern by transferring an electroconductive liquid in which metallic nano particles are dispersed, to a substrate, a printing apparatus which manufactures DNA chips by using a solution in which a DNA is dispersed, a printing apparatus which manufactures a display panel by using a solution in which an EL light emitting material (luminescent material) such as an organic compound is dispersed, and a printing apparatus which manufactures a color filter for a liquid crystal display by using a liquid in which pigments for the color filter are dispersed. Moreover, a liquid used in these printing apparatuses is not restricted to an electroconductive liquid, and may be a liquid which has the electroconductive property similarly as the electroconductive liquid, by dispersing an electroconductive additive (addition agent) in a nonconductive liquid.
Number | Date | Country | Kind |
---|---|---|---|
2005-216922 | Jul 2005 | JP | national |