The present application claims priority from Japanese Patent Applications Nos. JP 2010-084500, JP 2010-084501 and JP 2010-084502 all of which were filed on Mar. 31, 2010, the disclosure of which is incorporated herein by reference in its entirety.
The disclosure relates to a printing apparatus that employs a thermal head.
Temperature control with respect to heater elements constituting a thermal head includes control of a heating time and non-heating time within an application period wherein one printed dot is formed on a printing medium. The heating time refers to a period of time when a main pulse is applied to heat the heater elements to carry out printing, while the non-heating time refers to a period of time when the heated heater elements are cooled.
When the heater elements are heated by application of a main pulse, a portion of the heat is lost at the periphery of the heater elements at the time the printing process starts and at the time isolated printed dots are formed on the printing material during the printing process. This means that the heat generation may become insufficient.
Even if the heater elements are heated by application of a main pulse, if the heater elements adjacent the heated heater elements do not carry out printing, the heat of the heater elements which are heated by the heater elements that do not carry out printing is lost, which means that heat generation may become insufficient.
Also, even if the heater elements are heated by application of a main pulse, if the heater elements have not been heated in the next preceding application period, the temperature of the heater elements at the moment application of the main pulse starts is lower than in the case the heater elements have undergone heating in the next preceding application period. As a result, a rise in the temperature of these heater elements is delayed, which means that heating may become insufficient.
To solve this problem, a sub pulse is applied to compensate for the above-described shortage of heat generation in an application period corresponding to the cases described above. This sub pulse carries out auxiliary heating of the heater elements. The auxiliary heating time obtained by application of a sub pulse follows immediately after the heating time obtained by application of a main pulse.
Furthermore, a sub pulse is applied to compensate for the above-described shortage of heat generation in an application period corresponding to the cases described above. This sub pulse carries out auxiliary heating of the heater elements. The auxiliary heating time obtained by application of a sub pulse follows immediately after the heating time obtained by application of a main pulse.
Accordingly, heating time obtained by application of a main pulse, heating time obtained by application of a sub pulse and non-heating time may all be included in one application period.
Accordingly, in such cases, even if heater elements are heated by application of a main pulse, if the heater elements adjacent the heated heater elements do not carry out printing, a pulse may be applied to the heater elements that do not carry out printing to supply an amount of heat that fails to trigger printing, helping to compensate for the shortage of applied energy.
Furthermore, in some cases, even if heater elements are heated by application of a main pulse, if the heater elements adjacent the heated heater elements do not carry out printing, a pulse may be applied to the heater elements that do not carry out printing to supply an amount of heat that fails to trigger printing, helping to compensate for the shortage of applied energy.
However, as application periods become shorter with higher-speed printing, shorter application periods make it increasingly difficult to adjust the heating times obtained by application of the main pulse and sub pulse as applied in shorter application periods.
As a standard solution, the respective application times for the main pulse and sub pulse can be made shorter correspondingly with shorter application periods. As a result, this offers a solution from the point of view of time. However, in order to heat the heater elements to a point where a shortage of generated heat amount no longer occurs in a shorter heating time, it becomes necessary to increase the applied voltage or otherwise lower the resistance value of the heater elements in the thermal head and increase the current which flows to the heater elements of the thermal head. This requires an improvement in the voltage withstanding property and current capacity with respect to the IC constituting the driving circuit of the thermal head.
Also, another solution that was given includes improving efficiency in transferring heat generated at the heater elements of the thermal head to the printing medium. For this purpose, it is necessary to improve the heat-transfer performance of a thin-film portion in the thermal head comprising heater elements with respect to the printing medium.
However, the above-described solutions exceed the framework of any regular study, which inevitably leads to higher costs.
Accordingly, even in the case the above-described solutions cannot be applied, the application period needs to be shortened in order to increase printing speed, and the ratio of the respective types of heating times using the main pulse or otherwise the sub pulse needs to be increased to secure the necessary heat generation amount required for printing in a shorter application period. As a result, the ratio of the non-heating time will inevitably become shorter. Thus, as the time required for cooling the heater elements which constitute the thermal head and are subject to a temperature increase becomes shorter, successive printing leads to heat accumulation which in turn leads to an uncontrollable rise in the temperature of the heater elements constituting the thermal head. This causes problems from the point of view of printing quality, such as the so-called [print blurring]/[printing tailing].
The disclosure has been made in view of the above-described problems and its object is to provide a printing apparatus capable of high-speed printing obtained by heat history control of a thermal head which has undergone new energization correction.
To achieve the purpose of the disclosure, according to a first aspect thereof, there is provided a printing apparatus comprising: a thermal head provided with a line head including a plurality of heater elements arranged in a linear fashion; conveying units that convey a printing medium in a sub-scanning direction which is in an orthogonal relation with the line head of the thermal head; and a control unit that controls the conveying units and the thermal head; said control unit carrying out an application process for causing the respective heater elements constituting the line head of the thermal head to selectively generate heat in each one of application periods which are repeated successively, to form printed dots on the printing medium which is conveyed by the conveying unit in the sub-scanning direction of the thermal head and as a result carry out printing, wherein each application period is set as a fixed period of time ranging from a main heating start point which shows when application of a main pulse for main heating which causes the printing medium to develop color starts at the line head of the thermal head to a next main heating start point, to cause successive printed dots to be formed on the printing medium in the sub-scanning direction of the thermal head; and the control unit carries out application of a sub pulse for auxiliary heating which, when applied independently, cannot cause the printing medium to develop color, but, when applied so as to compensate main heating by the main pulse as applied in a next application period can cause the printing medium to develop color, with respect to each of the heater elements constituting the line head of the thermal head in accordance with a following constraint (A): (A) the sub pulse is applied in a current application period wherein the printing medium is not caused to develop color, irrespective of whether the next application period wherein the main pulse for main heating is applied to cause the printing medium to develop color starts immediately after the current application period wherein the printing medium is not caused to develop color.
Next, a schematic configuration of the tape printing apparatus 1 directed to a first embodiment will be described by referring to the drawings. As shown in
In the first embodiment, once the thermal head 41 is driven and the line head 41B executes a printing process for each one line, the plurality of heater elements 41A constituting the line head 41B enter one of the following drive states (1) through (3), as shown in
(1) a first heater element 41C which has undergone main heating;
(2) a second heater element 41D which has undergone auxiliary heating;
(3) a third heater element 41E which is not driven (has not undergone main heating or auxiliary heating).
Main heating refers to supplying energy which enables the printing medium to develop color. As will be described later, the tape printing apparatus according to the first embodiment uses an ink ribbon, and energy is supplied to the heater elements 41A which are subject to main heating and enter the drive state of the first heater element 41C to allow the ink on the ink ribbon to melt or sublimate.
Auxiliary heating refers to supplying energy which independently cannot cause the printing medium to develop color, but which, together with main heating, can cause the printing medium to develop color. As will be described later, the tape printing apparatus according to the first embodiment uses an ink ribbon, and enough energy is not supplied to the heater elements 41A which undergo auxiliary heating and enter the drive state of the second heater element 41D to allow the ink on the ink ribbon to melt or sublimate.
Here, auxiliary heating is limited to satisfying the conditions as shown in
More specifically, the heater elements 41A constituting the line head 41B of the thermal head 41 do not include elements which are subject both to main heating and auxiliary heating in the respective printing processes such as . . . Q(N), Q(N+1), . . . of the respective one line.
Next, heat history control for main heating and auxiliary heating (drive control of thermal head 41) will now be described from the point of view of controlling pulse application to each of the heater elements 41A constituting the line head 41B of the thermal head 41, using
As shown at the upper level in
Here, as shown at the upper level in
On the one hand, as shown at the lower level in
Here, with respect to the sub-pulse SP, the auxiliary heating end point which shows when application of the sub-pulse ends coincides with the end of the current application period F (specifically, the start point of the next application period F). In the example shown at the lower level in
Determination of drive control of the thermal head 41 which is carried out in the first embodiment as seen from the point of view of pulse application control is as shown in the following steps (A) through (G).
(A) The application period F represents a fixed period of time with respect to one heater element 41A and ranges from the main heating start point ms0 showing when application of the main pulse MP starts in the printing process Q(N) of the current one line up to the main heating start point ms1 showing when application of the main pulse MP starts in the printing process Q(N+1) of the next one line.
(B) The application period F is successively repeated during printing.
(C) The main heating start point showing when application of the main pulse MP starts always coincides with the start point of the application period F.
(D) The auxiliary heating end point showing when application of the sub-pulse SP ends coincides with the end point of the application period F.
(E) The sub-pulse SP which is applied in the current application period F and the main pulse MP which is applied in the next application period F are applied successively.
(F) The main pulse MP and the sub-pulse SP cannot be applied together with respect to one and the same heater element 41A within the same application period F.
(G) When the main pulse MP is applied to certain heater elements 41A and the sub-pulse SP is applied to other heater elements 41A, these pulses may exist together in one application period F.
Further, with respect to drive control of the thermal head 41 as carried out in the first embodiment, an applied pulse width WM of the main pulse MP and an applied pulse width WS of the sub-pulse SP can be changed for each heater element 41A constituting the line head 41B of the thermal head 41. The pulse width may be changed based on the total number n of heater elements 41A to which the main pulse MP is to be applied (more specifically, first heater element 41C) within the application period F wherein the change takes place, and environmental data with respect to the temperature and voltage of the thermal head 41 within the application period F wherein the change takes place. Alternatively, the process of changing the pulse width does not necessarily have to be based on the above parameters.
The time frame in each application period F when the main pulse MP with the applied pulse width WM and the sub-pulse SP with the applied pulse width WS do not exist is employed as the non-heated time G for cooling the heater elements 41A.
In
Accordingly, as shown in
In case such an overlap time zone MS wherein the applied pulse width WM of the main pulse MP and the applied pulse width WS of the sub-pulse SP overlap exists, the following actions can be performed on condition that the overlap time zone MS is shorter than the time required for pattern application data transfers to the thermal head 41. More specifically, these actions include: adjusting the auxiliary heating start point ss0 showing when application of the sub-pulse SP is started as shown at a lower level in
Conversely, as shown in
In case such a separation time zone SM wherein the applied pulse width WM of the main pulse MP and the applied pulse width WS of the sub-pulse SP are separated exists, the following actions can be performed on condition that the separation time zone SM is shorter than the time required for pattern application data transfers to the thermal head 41. More specifically, these actions include: adjusting the auxiliary heating start point ss0 showing when application of the sub-pulse SP starts as shown at a lower level in
Furthermore, in the drive control of the thermal head 41 as carried out in the first embodiment, the applied pulse width WS of the sub-pulse SP can be changed for each of the heater elements 41A which constitute the line head 41B of the thermal head 41 based on the environmental data such as temperature and voltage and the like of the thermal head 41 within the application period F wherein the change occurs, as described above. In this case, the main pulse MP which is applied to the same heater element 41A in the next application period F following the sub-pulse SP whose applied pulse width WS has been changed as shown in
Next, schematic configuration of the tape printing apparatus 1 directed to the first embodiment will be described by referring to
As shown in
The keyboard 3 includes plural operation keys such as letter input keys 3A, a print key 3B, cursor keys 3C, a power key 3D, a setting key 3E, a return key 3R, etc. The letter input keys 3A are operated for inputting letters that create texts consisting of document data. The print key 3B is operated for commanding to print out printing data consisting of created texts, etc. The cursor keys 3C are operated for moving a cursor being indicated in the liquid crystal display 4 up, down, left or right. The power key 3D is operated for turning on or off the power of the main body of the tape printing apparatus 1. The setting key 3E is operated for setting various conditions (setting of printing density and the like). The return key 3R is operated for executing a line feeding instruction or various processing and for determining a choice from candidates.
The liquid crystal display 4 is a display device for indicating characters such as letters, etc. in plural lines, i.e., displaying printing data created by the keyboard 3.
As shown in
Inside the tape printing apparatus 1, a cassette holding frame 18 is arranged. As shown in
The tape cassette 5 includes a tape spool 32, a ribbon feeding spool 34, a used-ribbon-take-up spool 35, a base-material-sheet feeding spool 37 and a bonding roller 39 in a rotatably-supported manner, inside thereof. A surface tape 31 is wound around the tape spool 32. The surface tape 31 is made of a transparent tape such as PET (polyethylene terephthalate) film or the like. An ink ribbon 33 is wound around the ribbon seeding spool 34. On the ink ribbon 33, there is applied ink that melts or sublimes when heated so as to form an ink layer. A part of the ink ribbon 33 that has been used for printing is taken up in the used-ribbon-take-up spool 35. A double tape 36 is wound around the base-material-sheet feeding spool 37. The double tape 36 is configured so as to bond the surface tape 31 and a release tape to one side and the other side of a double-sided adhesive tape wherein the double-sided adhesive tape includes adhesive agent layers at both sides thereof with width the same as width of the surface tape 31. The double tape 36 is wound around the base-material-sheet feeding spool 37 so that the release tape is located outside. The bonding roller 39 is used for bonding the double tape 36 and the surface tape 31 together.
As shown in
When the arm 20 fully swings clockwise, the platen roller 21 presses the surface tape 31 and the ink ribbon 33 against a thermal head 41 to be described later. At the same time, the conveying roller 22 presses the surface tape 31 and the double tape 36 against the bonding roller 39.
A plate 42 is arranged upright inside the cassette holding frame 18. The plate 42 includes a thermal head 41 at its side surface facing the platen roller 21. The thermal head 41 consists of a line head 41B or the like made up of a plurality (e.g. 1024 or 2048) of heater elements 41a aligned in the width direction of the surface tape 31 and the double tape 36.
In this connection, a direction that the heater elements 41a are aligned is defined as “main scanning direction D1 for the thermal head 41”. Further, a direction that the surface tape 31 and the ink ribbon 33 moves passing the thermal head 41 is defined as “sub scanning direction for the thermal head 41”.
Reverting to
Further, as shown in
In the cassette holding frame 18, there is arranged a tape conveying motor 2 (refer to
Accordingly, when rotation of an output shaft of the tape conveying motor 2 is started with supply of power to the tape conveying motor 2, rotation of the used-ribbon-take-up spool 35, the bonding roller 39, the platen roller 21 and the conveying roller 22 is started in conjunction with the operation of the tape conveying motor 2. Thereby, the surface tape 31, the ink ribbon 33 and the double tape 36 in the tape cassette 5 are loosed out from the tape spool 32, the ribbon feeding spool 34 and the base-material-sheet feeding spool 37, respectively, and are conveyed in a downstream direction (toward the tape ejecting portion 10 and the used-ribbon-take-up spool 35).
Thereafter, the surface tape 31 and the ink ribbon 33 are bonded together and go through a path between the platen roller 21 and the thermal head 41 in a superimposed state. Accordingly, in the tape printing apparatus 1 of the first embodiment, the surface tape 31 and the ink ribbon 33 are conveyed with being pressed by the platen roller 21 and the thermal head 41. The significant number of the heater elements 41a aligned on the thermal head 41 are selectively and intermittently energized (in a manner of pulse application) by a control unit 60 (refer to
Each heater element 41a gets heated by power supply and melts or sublimes ink applied on the ink ribbon 33. Therefore, ink in the ink layer on the ink ribbon 33 is transferred onto the surface tape 31 in a certain unit of dots. Consequently, a printing-data-based dot image desired by a user is formed on the surface tape 31 as mirror image.
After passing through the thermal head 41, the ink ribbon 33 is taken up by the ribbon-take-up roller 46. On the other hand, the surface tape 31 is superimposed onto the double tape 36 and goes through a path between the conveying roller 22 and the bonding roller 39 in a superimposed state. At the same time, the surface tape 31 and the double tape 36 are pressed against each other by the conveying roller 22 and the boding roller 39 so as to form a laminated tape 38. Of the laminated tape 38, a printed-side surface of the surface tape 31 furnished with dot printing and the double tape 36 are firmly superimposed together. Accordingly, a user can see a normal image of the printed image from the reversed side for the printed-side surface of the surface tape 31 (i.e., the top side of the laminated tape 38).
Thereafter, the laminated tape 38 is conveyed further downstream with respect to the conveying roller 22 to reach the tape cutting mechanism including the cutter 17. The tape cutting mechanism consists of the cutter 17 and the tape cutting motor 72 (refer to
The laminated tape 38 thus cut off is ejected outside of the tape printing apparatus 1 via the tape ejecting portion 10. By peeling off the release paper from the double tape 36 and exposing the adhesive agent layer, the laminated tape 38 can be used as adhesive label that can be adhered to an arbitrary place. Incidentally, the mechanism of thermal transfer with the thermal head 41 will be described in detail later.
Next, the control configuration of the tape printing apparatus 1 will be described by referring to drawings.
As shown in
The control unit 60 consists of a CPU 61, a CG-ROM 62, an EEPROM 63, a ROM 64 and a RAM 66. Furthermore, the control unit 60 is connected to the timer 67, the head driving circuit 68, the tape-cutting-motor driving circuit 69 and the tape-conveying-motor driving circuit 70. The control unit 60 is also connected to a liquid crystal display 4, a cassette sensor 7, a thermistor 73, a keyboard 3 and a connection interface 71.
The CPU 61 is a central processing unit that plays a primary role for various system control of the tape printing apparatus 1. Accordingly, the CPU 61 controls various peripheral devices such as the liquid crystal display 4 etc. in accordance with input signals from the keyboard 3 as well as various control programs to be described later.
The CG-ROM 62 is a character generator memory wherein image data of to-be-printed letters and signs are associated with code data and stored in dot patterns. The EEPROM 63 is a non-volatile memory that allows data write for storing therein and deletion of stored data therefrom. The EEPROM 34 stores data that indicates user setting etc. of the tape printing apparatus 1.
The ROM 64 stores various control programs and various data for the tape printing apparatus 1. Accordingly, control programs to be described later are stored in the ROM 64.
The RAM 66 is a storing device for temporarily storing a processing result of the CPU 61 etc. The RAM 66 also stores printing data created with inputs by means of the keyboard 3, printing data taken therein from external apparatuses 78 via the connection interface 71.
The timer 67 is a time-measuring device that measures passage of predetermined length of time for executing control of the tape printing apparatus 1. More specifically, the timer 67 is referred for detecting start and termination of an energization (pulse application) period for a heater element 41A of the thermal head 41 in the control programs to be described later. Further, the thermistor 73 is a sensor that detects temperature of the thermal head 41 and attached on the thermal head 41.
The head driving circuit 68 is a circuit that serves to supply a driving signal to the thermal head 41 for controlling drive state of the thermal head 41 in response to a control signal from the CPU 61, along control programs to be described later. In this connection, the head driving circuit 68 controls to energize and de-energize each of the heater elements 41a based on a signal (strobe (STB) signal) associated with a strobe number assigned to each heater element 41A for comprehensively controlling heating manner of the thermal head 41. The tape-cutting-motor driving circuit 69 is a circuit that serves to supply a driving signal to the tape cutting motor 72 in response to a control signal from the CPU for controlling operation of the tape cutting motor 72. Further, the tape-conveying motor driving circuit 70 is a control circuit that serves to supply a driving signal to a tape conveying motor 2 based on the control signal from the CPU 61 for controlling operation of the tape conveying motor 2.
Next, first drive control of the thermal head 41 in the tape printing apparatus 1 will be described. The control program shown in the flow chart of
As shown in
With respect to the [thermal head printing line data] for one line in the initial application period F, [temperature information] which was determined based on detection temperature Z of the thermal head 41 as detected by the thermistor 73 is reflected in the determination of the applied pulse width WS of the sub-pulse SP. The CPU 61 transfers the sub-pulse data which takes into consideration the above temperature information to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S12.
At S12, the CPU 61 judges whether the sub-pulse SP application start timing has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating start point ss] showing when application of the sub-pulse SP starts has been reached. Here, in the event the sub-pulse SP application start timing has not been reached (S12: NO), the CPU 61 returns to S12 and enters stand-by until the sub-pulse SP application start timing is reached. Alternatively, in the event the sub-pulse SP application start timing has been reached (S12: YES), the CPU 61 proceeds to S13.
At S13, the CPU 61 starts application of the sub-pulse SP. Specifically, the CPU 61 latches sub-pulse data to be transferred to the head driving circuit 68 at this time, and applies the sub-pulse SP to the heater elements 41A which are the target of auxiliary heating, placing these heater elements 41A in the drive state of the second heater element 41D. Thereafter, the CPU 61 proceeds to S14.
At S14, the CPU 61 judges whether the start point or otherwise end point of the application period F has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating end point se] showing when application of the sub-pulse SP ends or alternatively, the [main heating start point ms] showing when application of the main pulse MP starts has been reached. Here, in the event the start point and the end point of the application period F have not been reached (S14: NO), the CPU 61 proceeds to S15
At S15, the CPU 61 transfers main pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S14. Alternatively, in the event the start point or alternatively the end point of the print period F has been reached at S14 (S14: YES), the CPU 61 proceeds to S16.
At S16, the CPU 61 detects the temperature of the thermal head 41 using the thermistor 73 and determines the [temperature information] based on the detected temperature Z. Thereafter, the CPU 61 proceeds to S17.
At S17, the CPU 61 counts the number of to-be-heated-dots in one line to determine the [vertical dot rank]. The number of to-be-heated-dots refers to the total number n of heater elements 41A which are the target of main heating in the line head 41B of the thermal head 41 in this application period F. Thereafter, the CPU 61 proceeds to S18.
At S18, the CPU 61 starts applying the main pulse MP. Specifically, the CPU 61 latches the main pulse data which was transferred to the head driving circuit 68 at S15, and applies the main pulse MP to the heater elements 41A which are the target of main heating, placing these heater elements 41A in the drive state of the first heater element 41C. With respect to the drive state at this time, the CPU 61 reflects the applied pulse width WM of the main pulse MP as determined from the [temperature information] detected at S16 and the [vertical dot rank] at the above-described S17 towards the head driving circuit 68. Thereafter, the CPU 61 proceeds to S19.
At S19, the CPU 61 judges whether the main pulse MP and the sub pulse SP overlap. This judging process is carried out by comparing the [main heating end point me] showing when application of the main pulse MP ends with the [auxiliary heating start point ss] showing when application of the sub pulse SP starts. Here, in the event the main pulse MP and the sub pulse SP do not overlap (S19: NO), the flow proceeds to S23 to be described later. Alternatively, in case the main pulse MP and the sub pulse SP overlap (S19: YES), the CPU 61 proceeds to S20.
At S20, the CPU 61 judges whether the sub pulse SP application start timing has been reached. This judging process is carried out using timer 67 or the like. Specifically, the CPU 61 determines whether the [auxiliary application start point ss] showing when application of the sub pulse SP starts has been reached. Here, in the event the sub pulse SP application start timing has not been reached (S20: NO), the CPU 61 proceeds to S21.
At S21, the CPU 61 transfers the [OR data] (which is the target of transfer at this point) of the main pulse MP and the sub pulse SP to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S20. On the one hand, in the event the sub pulse SP application start timing has been reached at S20 (S20: YES), the CPU 61 proceeds to S22.
At S22, the CPU 61 latches the [OR data] of the main pulse MP and the sub pulse SP with respect to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S23.
At S23, the CPU 61 judges whether the main pulse MP application end timing has been reached. This process is carried out using timer 67 or the like. Specifically, it is judged whether the [main heating end point me] showing when application of the main pulse MP ends has been reached. Here, in the event the main pulse MP application end timing has not been reached (S23: NO), the CPU 61 proceeds to S24.
At S24, the CPU 61 transfers sub pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S23. On the other hand, in the event the main pulse MP application end timing has been reached at S23 (S23: YES), the CPU 61 proceeds to S25.
At S25, the CPU 61 ends application of the main pulse MP. Specifically, the CPU 61 causes the head driving circuit 68 to end application of the main pulse MP with respect to the heater element 41A which is the target of main heating. Thereafter, the CPU 61 proceeds to S26.
At S26, the CPU 61 judges whether printing has finished. Here, in the event printing has not finished (S26: NO), the CPU 61 returns to S12 and repeats the processes subsequent to S12. On the other hand, in the event printing has finished (S26: YES), the CPU 61 ends this program.
Next, second drive control of the thermal head 41 in the tape printing apparatus 1 will be described. The control program shown in the flow chart of
As shown in
With respect to the [thermal head printing line data] for one line in the initial application period F, [temperature information] which was determined based on detection temperature Z of the thermal head 41 as detected by the thermistor 73 is reflected in the determination of the applied pulse width WS of the sub-pulse SP. The CPU 61 transfers the sub-pulse data which takes into consideration the above temperature information to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S42.
At S42, the CPU 61 judges whether the sub-pulse SP application start timing has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating start point ss] showing when application of the sub-pulse SP starts has been reached. Here, in the event the sub-pulse SP application start timing has not been reached (S42: NO), the CPU 61 returns to S12 and enters stand-by until the sub-pulse SP application start timing is reached. Alternatively, in the event the sub-pulse SP application start timing has been reached (S42: YES), the CPU 61 proceeds to S13.
At S43, the CPU 61 starts application of the sub-pulse SP. Specifically, the CPU 61 latches sub-pulse data to be transferred to the head driving circuit 68 at this time, and applies the sub-pulse SP to the heater elements 41A which are the target of auxiliary heating, placing these heater elements 41A in the drive state of the second heater element 41D. Thereafter, the CPU 61 proceeds to S44.
At S44, the CPU 61 judges whether the start point or otherwise end point of the application period F has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating end point se] showing when application of the sub-pulse SP ends or alternatively, the [main heating start point ms] showing when application of the main pulse MP starts has been reached. Here, in the event the start point and the end point of the application period F have not been reached (S44: NO), the CPU 61 proceeds to S45.
At S45, the CPU 61 transfers main pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S44. Alternatively, in the event the start point or alternatively the end point of the print period F has been reached at S44 (S44: YES), the CPU 61 proceeds to S46.
At S46, the CPU 61 detects the temperature of the thermal head 41 using the thermistor 73 and determines the [temperature information] based on the detected temperature Z. Thereafter, the CPU 61 proceeds to S47.
At S47, the CPU 61 counts the number of to-be-heated-dots in one line to determine the [vertical dot rank]. The number of to-be-heated-dots refers to the total number n of heater elements 41A which are the target of main heating in the line head 41B of the thermal head 41 in this application period F. Thereafter, the CPU 61 proceeds to S48.
At S48, the CPU 61 starts applying the main pulse MP. Specifically, the CPU 61 latches the main pulse data which was transferred to the head driving circuit 68 at S45, and applies the main pulse MP to the heater elements 41A which are the target of main heating, placing these heater elements 41A in the drive state of the first heater element 41C. With respect to the drive state at this time, the CPU 61 reflects the applied pulse width WM of the main pulse MP as determined from the [temperature information] detected at S46 and the [vertical dot rank] at the above-described S47 towards the head driving circuit 68. Thereafter, the CPU 61 proceeds to S49.
At S49, the CPU 61 first calculates a variable Tx by subtracting the total value of the applied pulse width WM of the main pulse MP and the applied pulse width SM of the sub pulse SP from the application period F. Further, the CPU 61 judges whether the variable Tx has a minus (−) sign before it and the absolute value of the variable Tx is larger than the data transfer time L. Here, the data transfer time L represents the data transfer time at S45 as described above and S51 and S54 as will be described later.
Here, in the event the sign before the variable Tx is not minus (−) or otherwise, the absolute value of the variable Tx is not larger than the data transfer time L (S49: NO), the CPU 61 proceeds to S53 to be described later. Alternatively, in the event the sign before the variable Tx is minus (−) and the absolute value of the variable Tx is larger than the data transfer time L (S49: YES), the CPU 61 proceeds to S50.
At S50, the CPU 61 judges whether the sub pulse SP application start timing has been reached. This judging process is carried out using timer 67 or the like. Specifically, the CPU 61 determines whether the [auxiliary application start point ss] showing when application of the sub pulse SP starts has been reached. Here, in the event the sub pulse SP application start timing has not been reached (S50: NO), the CPU 61 proceeds to S51
At S51, the CPU 61 transfers the [OR data] (which is the target of transfer at this point) of the main pulse MP and the sub pulse SP to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S50. On the one hand, in the event the sub pulse SP application start timing has been reached at S20 (S50: YES), the CPU 61 proceeds to S52.
At S52, the CPU 61 latches the [OR data] of the main pulse MP and the sub pulse SP with respect to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S53.
At S53, the CPU 61 judges whether the main pulse MP application end timing has been reached. This process is carried out using timer 67 or the like. Specifically, it is judged whether the [main heating end point me] showing when application of the main pulse MP ends has been reached. Here, in the event the main pulse MP application end timing has not been reached (S53: NO), the CPU 61 proceeds to S54.
At S54, the CPU 61 transfers sub pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S53. On the other hand, in the event the main pulse MP application end timing has been reached at S53 (S53: YES), the CPU 61 proceeds to S55.
At S55, the CPU 61 ends application of the main pulse MP. Specifically, the CPU 61 causes the head driving circuit 68 to end application of the main pulse MP with respect to the heater element 41A which is the target of main heating. Thereafter, the CPU 61 proceeds to S56.
At S56, the CPU 61 judges whether printing has finished. Here, in the event printing has finished (S56: YES), the CPU 61 ends this program. On the other hand, in the event printing has not finished (S56: NO), the CPU 61 proceeds to S57.
At S57, the CPU 61 judges whether the variable Tx is larger than [0] and the absolute value of the variable Tx is smaller than the data transfer time L. Here, in the event the variable Tx is not larger than [0] or otherwise the absolute value of the variable Tx is not smaller than the data transfer time L (S57: NO), the CPU 61 returns to S42 and repeats the processes subsequent to S42. Alternatively, in the event the variable Tx is larger than [0] and the absolute value of the variable Tx is smaller than the data transfer time L (S57: YES), the CPU 61 returns to S43 and repeats the processes subsequent to S43.
Accordingly, if the time difference between the [main heating end point me] showing when application of the main pulse ends and the [auxiliary heating start point ss] showing when application of the sub pulse SP starts is smaller than the data transfer time L at the above-described S45, S51 and S54, the [auxiliary heating start time ss] showing when application of the sub pulse SP starts is made to coincide with the [main heating end point me] showing when application of the main pulse MP ends.
Next, third drive control of the thermal head 41 in the tape printing apparatus 1 will be described. The control program shown in the flow chart of
As shown in
With respect to the [thermal head printing line data] for one line in the initial application period F, [temperature information] which was determined based on detection temperature Z of the thermal head 41 as detected by the thermistor 73 is reflected in the determination of the applied pulse width WS of the sub-pulse SP. The CPU 61 transfers the sub-pulse data which takes into consideration the above temperature information to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S82.
At S82, the CPU 61 judges whether the sub-pulse SP application start timing has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating start point ss] showing when application of the sub-pulse SP starts has been reached. Here, in the event the sub-pulse SP application start timing has not been reached (S82: NO), the CPU 61 returns to S82 and enters stand-by until the sub-pulse SP application start timing is reached. Alternatively, in the event the sub-pulse SP application start timing has been reached (S82: YES), the CPU 61 proceeds to S83.
At S83, the CPU 61 starts application of the sub-pulse SP. Specifically, the CPU 61 latches sub-pulse data to be transferred to the head driving circuit 68 at this time, and applies the sub-pulse SP to the heater elements 41A which are the target of auxiliary heating, placing these heater elements 41A in the drive state of the second heater element 41D. Thereafter, the CPU 61 proceeds to S84.
At S84, the CPU 61 judges whether the start point or otherwise end point of the application period F has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating end point se] showing when application of the sub-pulse SP ends or alternatively, the [main heating start point ms] showing when application of the main pulse MP starts has been reached. Here, in the event the start point and the end point of the application period F have not been reached (S18: NO), the CPU 61 proceeds to S85.
At S85, the CPU 61 transfers main pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S84. Alternatively, in the event the start point or alternatively the end point of the print period F has been reached at S84 (S84: YES), the CPU 61 proceeds to S16.
At S86, the CPU 61 detects the temperature of the thermal head 41 using the thermistor 73 and determines the [temperature information] based on the detected temperature Z. Thereafter, the CPU 61 proceeds to S87.
At S87, the CPU 61 counts the number of to-be-heated-dots in one line to determine the [vertical dot rank]. The number of to-be-heated-dots refers to the total number n of heater elements 41A which are the target of main heating in the line head 41B of the thermal head 41 in this application period F. Thereafter, the CPU 61 proceeds to S88.
At S88, the CPU 61 starts applying the main pulse MP. Specifically, the CPU 61 latches the main pulse data which was transferred to the head driving circuit 68 at S15, and applies the main pulse MP to the heater elements 41A which are the target of main heating, placing these heater elements 41A in the drive state of the first heater element 41C. With respect to the drive state at this time, the CPU 61 reflects the applied pulse width WM of the main pulse MP as determined from the [temperature information] detected at S86 and the [vertical dot rank] at the above-described S87 towards the head driving circuit 68. Thereafter, the CPU 61 proceeds to S89.
At S89, the CPU 61 first calculates a variable Tx by subtracting the total value of the applied pulse width WM of the main pulse MP and the applied pulse width SM of the sub pulse SP from the application period F. Further, the CPU 61 judges whether the variable Tx is larger than [0] and the absolute value of the variable Tx is smaller than the data transfer time L. Here, the data transfer time L represents the data transfer time at S85 as described above and S92 and S95 as will be described later. In the event the variable Tx is larger than [0] and the absolute value of the variable Tx is smaller than the data transfer time L (S80: YES), the CPU 61 proceeds to S97 to be described later.
On the other hand, in the event the variable Tx is not larger than [0] or otherwise the absolute value of the variable Tx is not smaller than the data transfer time L (S98: NO), the CPU 61 proceeds to S90.
At S90, the CPU 61 judges whether the variable Tx has a minus (−) sign before it and the absolute value of the variable Tx is larger than the data transfer time L. Here, in the event the sign before the variable Tx is not minus (−) or otherwise, the absolute value of the variable Tx is not larger than the data transfer time L (S90: NO), the CPU 61 proceeds to S94 to be described later. Alternatively, in the event the sign before the variable Tx is minus (−) and the absolute value of the variable Tx is larger than the data transfer time L (S90: YES), the CPU 61 proceeds to S91.
At S91, the CPU 61 judges whether the sub pulse SP application start timing has been reached. This judging process is carried out using timer 67 or the like. Specifically, the CPU 61 determines whether the [auxiliary application start point ss] showing when application of the sub pulse SP starts has been reached. Here, in the event the sub pulse SP application start timing has not been reached (S91: NO), the CPU 61 proceeds to S92.
At S92, the CPU 61 transfers the [OR data] (which is the target of transfer at this point) of the main pulse MP and the sub pulse SP to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S91. On the one hand, in the event the sub pulse SP application start timing has been reached at S91 (S91: YES), the CPU 61 proceeds to S93.
At S93, the CPU 61 latches the [OR data] of the main pulse MP and the sub pulse SP with respect to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S94.
At S94, the CPU 61 judges whether the main pulse MP application end timing has been reached. This process is carried out using timer 67 or the like. Specifically, it is judged whether the [main heating end point me] showing when application of the main pulse MP ends has been reached. Here, in the event the main pulse MP application end timing has not been reached (S94: NO), the CPU 61 proceeds to S95.
At S95, the CPU 61 transfers sub pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S94. On the other hand, in the event the main pulse MP application end timing has been reached at S94 (S94: YES), the CPU 61 proceeds to S96.
At S96, the CPU 61 ends application of the main pulse MP. Specifically, the CPU 61 causes the head driving circuit 68 to end application of the main pulse MP with respect to the heater element 41A which is the target of main heating. Thereafter, the CPU 61 proceeds to S97.
At S97, the CPU 61 judges whether printing has finished. Here, in the event printing has not finished (S97: NO), the CPU 61 returns to S82 and repeats the processes subsequent to S82. On the other hand, in the event printing has finished (S97: YES), the CPU 61 ends this program.
Accordingly, if the time difference between the [main heating end point me] showing when application of the main pulse ends and the [auxiliary heating start point ss] showing when application of the sub pulse SP starts is smaller than the data transfer time L at the above-described S85, S92 and S95, the [auxiliary heating start time ss] showing when application of the sub pulse SP starts is made to coincide with the [main heating end point me] showing when application of the main pulse MP ends.
Next, fourth drive control of the thermal head 41 in the tape printing apparatus 1 will be described. The control program shown in the flow chart of
As shown in
With respect to the [thermal head printing line data] for one line in the initial application period F, [temperature information] which was determined based on detection temperature Z of the thermal head 41 as detected by the thermistor 73 is reflected in the determination of the applied pulse width WS of the sub-pulse SP. The CPU 61 transfers the sub-pulse data which takes into consideration the above temperature information to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S112.
At S112, the CPU 61 judges whether the sub-pulse SP application start timing has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating start point ss] showing when application of the sub-pulse SP starts has been reached. Here, in the event the sub-pulse SP application start timing has not been reached (S112: NO), the CPU 61 returns to S112 and enters stand-by until the sub-pulse SP application start timing is reached. Alternatively, in the event the sub-pulse SP application start timing has been reached (S112: YES), the CPU 61 proceeds to S113.
At S113, the CPU 61 starts application of the sub-pulse SP. Specifically, the CPU 61 latches sub-pulse data to be transferred to the head driving circuit 68 at this time, and applies the sub-pulse SP to the heater elements 41A which are the target of auxiliary heating, placing these heater elements 41A in the drive state of the second heater element 41D. Thereafter, the CPU 61 proceeds to S114.
At S114, the CPU 61 judges whether the start point or otherwise end point of the application period F has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating end point se] showing when application of the sub-pulse SP ends or alternatively, the [main heating start point ms] showing when application of the main pulse MP starts has been reached. Here, in the event the start point and the end point of the application period F have not been reached (S114: NO), the CPU 61 proceeds to S115.
At S15, the CPU 61 transfers main pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S14. Alternatively, in the event the start point or alternatively the end point of the print period F has been reached at S114 (S114: YES), the CPU 61 proceeds to S116.
At S116, the CPU 61 detects the temperature of the thermal head 41 using the thermistor 73. The CPU 61 counts the number of to-be-heated-dots in one line. The number of to-be-heated-dots refers to the total number n of heater elements 41A which are the target of main heating in the line head 41B of the thermal head 41 in this application period F. Further, the CPU 61 determines the sub pulse time (applied pulse width WS for the sub pulse SP), rectangular pulse time (applied pulse width WR for the rectangular pulse RP), chopping time (applied pulse width WC of the chopping pulse CP) and chopping duty ratio and the like based on the detection temperature Z of the thermal head 41 as described above and the number n of to-be-heated-dots in one line as described above.
The table data 201 as shown in
The temperature range column 211 shows the temperature range of the thermal head 41 in units of degrees Celsius (° C.). The number of heated dots column 212 shows the amount of heated dots in one line in units of numbers. The sub pulse column 213 shows the applied pulse width WS of the sub pulse SP in units of [μsec] (refer to
The judgment made at S116 is carried out using the procedure as described hereinafter from (1) through (5).
(1) Determine the applied pulse width WS of the sub pulse SP from the temperature of the thermal head 41 as described above and the number of heated dots in one line as described above.
(2) Determine the applied pulse width WR of the rectangular pulse RP constituting the main pulse MP by multiplying the applied pulse width WS of the sub pulse SP with a fixed coefficient.
(3) Determine a value calculated by subtracting a total value including the applied pulse width WS of the sub pulse SP and the applied pulse width WR of the rectangular pulse RP from the application period F and set is as the applied pulse width WC of the chopping pulse CP.
(4) Determine the number of chopping pulses CP by dividing the applied pulse width WC of the chopping pulse CP by the fixed chopping period time.
(5) Determine the duty ratio of the chopping pulse CP by multiplying the total value of the applied pulse width WS of the sub pulse SP and the applied pulse width WC of the chopping pulse CP by the coefficient of an experimental value.
In case the application period F is 875 μsec, the CPU 61 reads out the numerical value determined using the above described flow (1) through (5) from the table data 201 shown in
At S117, the CPU 61 starts applying the main pulse MP. Specifically, the CPU 61 latches the main pulse data which was transferred to the head driving circuit 68 at S115, and applies the main pulse MP to the heater elements 41A which are the target of main heating, placing these heater elements 41A in the drive state of the first heater element 41C. Thereafter, the CPU 61 proceeds to S118.
At S118, the CPU 61 applies the main pulse MP based on what was decided at S116. Specifically, the rectangular pulse RP and the chopping pulse CP constituting the main pulse MP are controlled as described at S116. Thereafter, the CPU 61 proceeds to S119.
At S119, the CPU 61 judges whether the main pulse MP application end timing has been reached. This process is carried out using timer 67 or the like. Specifically, it is judged whether the [main heating end point me] showing when application of the main pulse MP ends has been reached. Here, in the event the main pulse MP application end timing has not been reached (S119: NO), the CPU 61 proceeds to S120.
At S120, the CPU 61 transfers the sub pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. At this time, the CPU 61 adjusts the applied pulse width WS of the sub pulse SP based on what was decided at S116 as described above. Thereafter, the CPU 61 returns to S119. Alternatively, in the event the main pulse MP application end timing has been reached (S119: YES), the CPU 61 proceeds to S121.
At S121, the CPU 61 ends application of the main pulse MP. Specifically, the CPU 61 causes the head driving circuit 68 to end application of the main pulse MP with respect to the heater element 41A which is the target of main heating. Thereafter, the CPU 61 proceeds to S122.
At S122, the CPU 61 judges whether printing has finished. Here, in the event printing has not finished (S122: NO), the CPU 61 returns to S112 and repeats the processes subsequent to S112. On the other hand, in the event printing has finished (S122: YES), the CPU 61 ends this program.
Specifically, in the tape printing apparatus 1 directed to the first embodiment, the sub pulse SP which supplements the main pulse MP to be applied in the next application period F is applied in the current application period F only in the event the next application period F, wherein the main pulse MP, which carries out main heating for melting or subliming the ink on the ink ribbon 33 is applied, starts immediately after the current application period F wherein the ink is not melted or sublimed on the ink ribbon 33, for each of the heater elements 41A constituting the line head 41B of the thermal head 41, based on the flow (A) through (G) as described above (auxiliary heating conditions) (refer to the lower level in
Further, a non-heating time G which shows a period of time when the main pulse MP and the sub pulse SP are not applied can be reliably secured even in the case the application period F which is a fixed period is shortened and the main pulse MP or the sub pulse SP is applied (refer to
Also, in the tape printing apparatus 1 according to the first embodiment, the sub pulse SP is applied in the current application period F, and immediately after that, the main pulse MP corresponding to this sub pulse SP is applied in the next application period F based on the actions (A) through (G) as described above (auxiliary heating conditions) (refer to the lower level in
In the tape printing apparatus 1 according to the first embodiment, when [thermal head printing line data] is created by the CPU 61 (S11, S41, S81, S111), the sub pulse SP application start point (ss) can be set independently from the main pulse MP application start point (ms). As a result, this decreases the number of constraints with respect to new energization correction relative to heat history control in the thermal head 41A and increases the degree of freedom in applying the disclosure.
In the tape printing apparatus 1 according to the first embodiment, of the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the first heater elements C to which the main pulse MP is applied and the second heater elements 41D to which the sub pulse SP is applied appear in a single application period F (refer to
In the tape printing apparatus 1 according to the first embodiment, of the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the first heater elements 41C to which the main pulse MP is applied and the second heater elements 41D to which the sub pulse SP is applied appear in a single application period F (refer to
In the tape printing apparatus 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the applied pulse width WM of the main pulse MP which is applied to the first heater element 41C or the applied pulse width WS of the sub pulse SP which is applied to the second heater elements 41D is changed based on the [temperature information] determined based on the detection temperature Z of the thermal head 41 detected by the thermistor 73 (S16, S18, S46, S48, S86, S88, S116 and S117). This makes it possible to adjust feedback control based on the detection temperature with respect to the new energization correction performed in heat history control of the thermal head 41, which leads to an improvement in printing quality.
In the tape printing device 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the applied pulse width WM of the main pulse MP which is applied to the first heater elements 41C or the applied pulse width WS of the sub pulse SP which is applied to the second heater elements 41D is changed in accordance with the total number n of first heater elements 41C to which the main pulse MP is applied (S17, S18, S47, S48, S87, S88, S116 and S117). However, as the total number n of first heater elements 41C to which the main pulse MP is applied becomes the source for the temperature information, it becomes possible to adjust feed back control based on the temperature information source with respect to the new energization correction performed in the heat history control of the thermal head 41, which leads to an improvement in printing quality.
In the tape printing apparatus 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the first heater elements 41C to which the main pulse MP is applied and the second heater elements 41D to which the sub pulse SP is applied appear in a single application period F (refer to
In the tape printing apparatus 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the first heater elements 41C to which the main pulse MP is applied and the second heater elements 41D to which the sub pulse SP is applied appear in a single application period F (refer to
In the tape printing apparatus 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the applied pulse width WS of the sub pulse SP which is applied to the second heater elements 41D is changed in accordance with the fourth drive control of the thermal head 41 as shown in
Environmental data may include applied voltage with respect to the thermal head 41.
Further, in the tape printing apparatus 1 according to the first embodiment, the applied pulse width WS of the sub pulse SP which is applied to the second heater elements 41D is changed in accordance with the fourth drive control of the thermal head 41 as shown in
The disclosure is not limited to the above-described first embodiment, and various modifications can be made thereto without departing from the scope of the present disclosure.
For instance, in the tape printing apparatus 1 according to the first embodiment, with respect to the plurality of heater elements 41A constituting the line head 41B of the thermal head 41, the first heater elements 41C to which the main pulse MP is applied and the second heater elements 41D to which the sub pulse SP is applied appear in a single application period F (refer to
In the tape printing apparatus 1 according to the first embodiment, the application period F which is a fixed period can be further shortened even if, unlike the lower level in
In the first embodiment, the tape printing apparatus 1 was described as a [printing apparatus], however, the disclosure can also be applied to various types of thermal printers that are provided with a thermal head 41. In case of a thermal printer using thermal paper as a printing medium, main heating refers to supplying energy capable of causing the thermal paper which is used as printing medium to develop color, whereas auxiliary heating refers to supplying energy which independently, cannot cause the thermal paper used as printing medium to develop color, but, together with main heating, can cause the thermal paper which is used as printing medium to develop color.
Hereinafter, a second embodiment of the present disclosure will be described while referring to the drawings. This is exactly the same as the tape printing apparatus 1. The respective heater elements 41A as shown in
As shown in
In the second embodiment, once the thermal head 41 is driven and the line head 41B executes a printing process for each one line, the plurality of heater elements 41A constituting the line head 41B enter one of the following drive states (1) through (3), as shown in
(1) a first heater element 41C which has undergone main heating;
(2) a second heater element 41D which has undergone auxiliary heating;
(3) a third heater element 41E which is not driven (has not undergone main heating or auxiliary heating).
In
Main heating refers to supplying energy which enables the printing medium to develop color. As will be described later, the tape printing apparatus according to the second embodiment uses an ink ribbon, and energy is supplied to the heater elements 41A which are subject to main heating and enter the drive state of the first heater element 41C to allow the ink on the ink ribbon to melt or sublimate.
Auxiliary heating refers to supplying energy which independently cannot cause the printing medium to develop color, but which, together with main heating, can cause the printing medium to develop color. As will be described later, the tape printing apparatus according to the second embodiment uses an ink ribbon, and enough energy is not supplied to the heater elements 41A which undergo auxiliary heating and enter the drive state of the second heater element 41D to allow the ink on the ink ribbon to melt or sublimate.
Here, auxiliary heating is limited to satisfying conditions (α)+(β) as shown in
(α) heater elements which are adjacent to elements which are subject to main heating in the printing process Q(N) of the next one line and enter the drive state of the first heater element 41C and are not subject to main heating in the printing process Q(N+1) of the next one line or in the printing process Q(N) of the current one line.
(β) elements which are subject to main heating in the printing process Q(N+1) of the next one line and enter the drive state of the first heater element 41C, but are not subject to main heating in the printing process Q(N) of the current one line.
The left side in
Auxiliary heating is subject to condition (γ) as shown in
(γ) Heater elements which are adjacent, on both sides, to heater elements that are subject to main heating in the printing process Q(N+1) of the next one line and enter the drive state of the first heater elements 41C are not subject to auxiliary heating unless they are subject to main heating in the printing process Q(N+1) of the next one line and in the printing process (Q)N of the current one line alike.
The left side in
In the case shown in
In the case shown in
In the case shown in
In the case shown in
Next, heat history control for main heating and auxiliary heating (drive control of thermal head 41) will now be described from the point of view of controlling pulse application to each of the heater elements 41A constituting the line head 41B of the thermal head 41, using
As shown at the upper levels in
Here, as shown at the upper levels in
On the one hand, as shown at the lower level in
Here, with respect to the sub-pulse SP, the auxiliary heating end point which shows when application of the sub-pulse ends coincides with the end of the current application period F (specifically, the start point of the next application period F). In the example shown at the lower level in
For convenience of description, in the example shown at the lower level in
As shown at the lower level in
Determination of drive control of the thermal head 41 which is carried out in the first embodiment as seen from the point of view of pulse application control is as shown in the following steps (A) through (H).
(A) The application period F represents a fixed period of time with respect to one heater element 41A and ranges from the main heating start point ms0 showing when application of the main pulse MP starts in the printing process Q(N) of the current one line up to the main heating start point ms1 showing when application of the main pulse MP starts in the printing process Q(N+1) of the next one line.
(B) The application period F is successively repeated during printing.
(C) The main heating start point showing when application of the main pulse MP starts always coincides with the start point of the application period F.
(D) The auxiliary heating end point showing when application of the sub-pulse SP ends coincides with the end point of the application period F.
(E) The sub-pulse SP which is applied in the current application period F and the main pulse MP which is applied in the next application period F are applied successively.
(F) The main pulse MP and the sub-pulse SP cannot be applied together with respect to one and the same heater element 41A within the same application period F.
(G) When the main pulse MP is applied to certain heater elements 41A and the sub-pulse SP is applied to other heater elements 41A, these pulses may exist together in one application period F.
(H) Even if the main pulse MP is not applied to certain heater elements 41A, the sub-pulse SP may be applied in the current application period F with respect to one and the same heater element 41A.
Further, with respect to drive control of the thermal head 41 as carried out in the second embodiment, an applied pulse width WM of the main pulse MP and an applied pulse width WS of the sub-pulse SP can be changed for each heater element 41A constituting the line head 41B of the thermal head 41. The pulse width may be changed based on the total number n of heater elements 41A to which the main pulse MP is to be applied (more specifically, first heater element 41C) within the application period F wherein the change takes place, and environmental data with respect to the temperature and voltage of the thermal head 41 within the application period F wherein the change takes place. Alternatively, the process of changing the pulse width does not necessarily have to be based on the above parameters.
The time frame in each application period F when the main pulse MP with the applied pulse width WM and the sub-pulse SP with the applied pulse width WS do not exist is employed as the non-heated time G for cooling the heater elements 41A.
In
Accordingly, as shown in
Conversely, as shown in
A schematic configuration of the tape printing apparatus 1 directed to the second embodiment is similar to that of the tape printing apparatus 1 directed to the first embodiment.
Control configuration of the tape printing apparatus 1 directed to the second embodiment is similar to that of the tape printing apparatus 1 directed to the first embodiment.
Next, first drive control of the thermal head 41 in the tape printing apparatus 1 will be described. The control program shown in the flow chart of
As shown in
At S202, the CPU 61 carries out first sub pulse generation condition control. In this process, the CPU 61 generates 2-dimensional print data for specifying whether the sub pulse SP is to be applied in accordance with the above-described condition (β). The first sub pulse generation condition control will be described in detail later. Thereafter, the CPU 61 proceeds to S203.
At S203, the CPU 61 carries out second sub pulse generation condition control. In this process, the CPU 61 generates the 2-dimensional printing data for specifying whether the sub pulse SP is to be applied in accordance with the above-described condition (γ). The second sub pulse generation condition control will be described in detail later. Thereafter, the CPU 61 proceeds to S204.
At S204, the CPU 61 judges whether the sub pulse SP application start timing has been reached or pulse application resting time is absent. This judgment is carried out using the timer 67 or the like. Specifically, it is determined whether the [auxiliary heating start point ss] showing when application of the sub pulse SP starts has been reached. Here, in the event the sub pulse SP start timing has not been reached, and a pulse resting time exists (S204: NO), the CPU 61 returns to S204 and is in stand-by until the sub pulse SP application start timing is reached, or until the pulse resting time ends. Alternatively, in the event the sub pulse SP application start timing is reached, or the pulse resting time is absent (S204: YES), the CPU 61 proceeds to S205.
At S205, the CPU 61 starts application of the sub-pulse SP. Specifically, the CPU 61 latches sub-pulse data to be transferred to the head driving circuit 68 at this time, and applies the sub-pulse SP to the heater elements 41A which are the target of auxiliary heating, placing these heater elements 41A in the drive state of the second heater element 41D. Thereafter, the CPU 61 proceeds to S206.
At S206, the CPU 61 judges whether the start point or otherwise end point of the application period F has been reached. The timing is judged employing a timer 67 or the like. Specifically, the CPU 61 judges whether the [auxiliary heating end point se] showing when application of the sub-pulse SP ends or alternatively, the [main heating start point ms] showing when application of the main pulse MP starts has been reached. Here, in the event the start point and the end point of the application period F have not been reached (S206: NO), the CPU 61 proceeds to S207.
At S207, the CPU 61 transfers main pulse data which is the target of transfer at this point to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S206. Alternatively, in the event the start point or alternatively the end point of the print period F has been reached at S206 (S206: YES), the CPU 61 proceeds to S208.
At S208, the CPU 61 detects the temperature of the thermal head 41 using the thermistor 73 and determines the [temperature information] based on the detected temperature Z. Thereafter, the CPU 61 proceeds to S209.
At S209, the CPU 61 counts the number of to-be-heated-dots in one line to determine the [vertical dot rank]. The number of to-be-heated-dots refers to the total number n of heater elements 41A which are the target of main heating in the line head 41B of the thermal head 41 in this application period F. Thereafter, the CPU 61 proceeds to S210.
At S210, the CPU 61 starts applying the main pulse MP. Specifically, the CPU 61 latches the main pulse data which was transferred to the head driving circuit 68 at S207, and applies the main pulse MP to the heater elements 41A which are the target of main heating, placing these heater elements 41A in the drive state of the first heater element 41C. With respect to the drive state at this time, the CPU 61 reflects the applied pulse width WM of the main pulse MP as determined from the [temperature information] detected at S16 and the [vertical dot rank] at the above-described S17 towards the head driving circuit 68. Thereafter, the CPU 61 proceeds to S211.
At S211, the CPU 61 judges whether the main pulse MP and the sub pulse SP overlap. This judging process is carried out by comparing the [main heating end point me] showing when application of the main pulse MP ends with the [auxiliary heating start point ss] showing when application of the sub pulse SP starts. Here, in the event the main pulse MP and the sub pulse SP do not overlap (S211: NO), the flow proceeds to S23 to be described later. Alternatively, in case the main pulse MP and the sub pulse SP overlap (S211: YES), the CPU 61 proceeds to S20.
At S212, the CPU 61 judges whether the sub pulse SP application start timing has been reached. This judging process is carried out using timer 67 or the like. Specifically, the CPU 61 determines whether the [auxiliary application start point ss] showing when application of the sub pulse SP starts has been reached. Here, in the event the sub pulse SP application start timing has not been reached (S212: NO), the CPU 61 proceeds to S213.
At S213, the CPU 61 transfers the [OR data] (which is the target of transfer at this point) of the main pulse MP and the sub pulse SP to the head driving circuit 68 in one transfer only. Thereafter, the CPU 61 returns to S212. On the one hand, in the event the sub pulse SP application start timing has been reached at S20 (S212: YES), the CPU 61 proceeds to S214.
At S214, the CPU 61 latches the [OR data] of the main pulse MP and the sub pulse SP with respect to the head driving circuit 68. Thereafter, the CPU 61 proceeds to S215.
At S215, the CPU 61 judges whether or not the main pulse MP application end time has been reached. This judgment is carried out using the timer 67 or the like. Specifically, it is determined whether the [main heating end point me] showing when application of the main pulse MP ends has been reached. Here, in the event the main pulse MP application end timing has not been reached (S215: NO), the CPU 61 carries out the following steps S216 through S218 only one time up until the main pulse MP application end timing is reached.
At S216, the CPU 61 pre-fetches printing data from the RAM 66 and checks the sub pulse data. Thereafter, the CPU 61 proceeds to S217.
At S217, the CPU 61 carries out first sub pulse generation condition control. In this process, the CPU 61 generates print data for specifying whether the sub pulse SP is to be applied in accordance with the above-described condition (β). The first sub pulse generation condition control will be described in detail later. Thereafter, the CPU 61 proceeds to S218.
At S218, the CPU 61 carries out second sub pulse generation condition control. In this process, the CPU 61 generates printing data for specifying whether the sub pulse SP is to be applied in accordance with the above-described condition (γ). The second sub pulse generation condition control will be described in detail later. Thereafter, the CPU 61 proceeds to S215.
In the event the main pulse MP application end timing has been reached at S215 (S215: YES), the CPU 61 proceeds to S219. At S219, the CPU 61 ends application of the main pulse MP. Specifically, the CPU 61 causes the head driving circuit 68 to end application of the main pulse MP with respect to the heater elements 41A which are the target of main heating. Thereafter, the CPU 61 proceeds to S220.
At S220, the CPU 61 judges whether printing has finished. Here, in the event printing has not finished (S220: NO), the CPU 61 proceeds to S221. At S211, the CPU 61 causes the head driving circuit 68 to latch the sub pulse data which was checked as described above at S216. Thereafter, the CPU 61 proceeds to S222. At S222, the CPU 61 prepares the main pulse data and sub pulse data. Then, the CPU 61 returns to S204, and repeats the processes subsequent to S204.
On the one hand, in the event printing has finished as described at S220 (S220: YES), the CPU 61 ends the program.
Next, first sub pulse generation condition control at the above-described S202 and S217 will be described. The control program shown in the flow chart at
Here, the CPU 61 generates 2-dimensional application data for specifying whether the heater elements 41A constituting the line head 41B of the thermal head 41 are subject to auxiliary heating, more specifically, whether the sub pulse SP is to be applied. The 2-dimensional application data is comprised of q (line)×p (number of units) arrays. Specifically, the two-dimensional application data includes q lines of sub pulse application processes per one line, in the line head 41 comprised of a number of p heater elements 41A. Also, q×p 2-dimensional printing data is used to generate 2-dimensional application data.
Here, the 2-dimensional application data is shown as sub_data (x, y), while the 2-dimensional printing data is shown as data (x, y).
With respect to the 2-dimensional application data sub_data (x, y), [0] shows that the sub pulse SP is not applied, while [1] shows that the sub pulse SP is applied.
With respect to the two-dimensional printing data data (x, y), [0] shows that printing is not carried out, while [1] shows that printing is carried out. [1] shows that printing is carried out, which means that [1] shows that the main pulse MP is applied. When [0] is used for all the data (0, 1) through (0, p) showing the blank data prior to printing, this means that printing is not carried out.
In the first sub pulse generation condition control, the CPU 61 first resets the two-dimensional application data sub_data (x, y) to [0] at S251. Thereafter, the CPU 61 proceeds to S252. At S252, the CPU 61 resets variable a to [1] and variable [b] to [1]. Thereafter, the CPU 61 proceeds to S253.
At S253, the CPU 61 judges whether the two-dimensional printing data data (a, b) is [1]. Here, if the two-dimensional printing data data (a, b) is not [1] (S253: NO), the CPU 61 proceeds to S256 to be described later. Alternatively, if the two-dimensional printing data data (a, b) is [1] (S253: YES), the CPU 61 proceeds to S254.
At S254, the CPU 61 judges whether the two-dimensional print data data (a−1, b) is [0]. Here, if the two-dimensional print data data (a−1, b) is not [0] (S254: NO), the CPU 61 proceeds to S256 to be described later. Alternatively, if the two-dimensional printing data data (a−1, b) is [0] (S254: YES), the CPU 61 proceeds to S255.
At S255, the CPU 61 resets the two-dimensional application data sub_data (a−1, b) to [1]. Thereafter, the CPU 61 proceeds to S256. At S256, the CPU 61 increments the variable b. Thereafter, the CPU 61 proceeds to S257.
At S257, the CPU 61 judges whether variable b is equal to or above [p]. Here, if variable b is not equal to or above [p] (S257: NO), the CPU 61 returns to S253 and repeats the processes subsequent to S253. Alternatively, if variable b is equal to or above [p] (S257: YES), the CPU 61 proceeds to S258.
At S258, the CPU 61 increments the variable a. Thereafter, the CPU 61 proceeds to S259. At S259, the CPU 61 judges whether variable a is equal to or above [q]. Here, if variable a is not equal to or above [q] (S259: NO), the CPU 61 returns to S253 and repeats the processes subsequent to S253. Alternatively, if variable a is equal to or above [q] (S259: YES), the CPU 61 returns to the control program shown in
Next, second sub pulse generation condition control as shown at S203 and S218 will be described. The control program shown in the flow chart of
In the second sub pulse generation condition control, the two-dimensional application data is used as sub_data (x, y), while the two-dimensional printing data is used as data (x, y). This is the same as the case of the first sub pulse generation condition control as described above, and therefore, further description thereof is hereby omitted.
In the second sub pulse generation condition control, the CPU 61 first resets variable a to [1] and variable [b] to [1] at S281. Thereafter, the CPU 61 proceeds to S282.
At S282, the CPU 61 judges whether the two-dimensional printing data data (a, b) is [1]. Here, if the two-dimensional printing data data (a, b) is not [1] (S282: NO), the CPU 61 proceeds to S293 to be described later. Alternatively, if the two-dimensional printing data data (a, b) is [1] (S282: YES), the CPU 61 proceeds to S283.
At S283, the CPU 61 judges whether the two-dimensional print data data (a−1, b−1) is [0]. Here, if the two-dimensional print data data (a−1, b−1) is not [0] (S283: NO), the CPU 61 proceeds to S288 to be described later. Alternatively, if the two-dimensional printing data data (a−1, b−1) is [0] (S283: YES), the CPU 61 proceeds to S284.
At S284, the CPU 61 judges whether the two-dimensional application data sub_data (a, b−1) is [1]. Here, if the two-dimensional application data sub_data (a, b−1) is [1] (S284: YES), the CPU 61 proceeds to S288 to be described later. Alternatively, if the two-dimensional application data sub_data (a, b−1) is not [1] (S284: NO), the CPU 61 proceeds to S285.
At S285, the CPU 61 judges whether the two-dimensional application data sub_data (a−1, b−1) is [1]. Here, if the two-dimensional application data sub_data (a−1, b−1) is [1] (S285: YES), the CPU 61 proceeds to S286. At S286, the CPU 61 resets the two-dimensional application data sub_data (a−1, b−1) [0]. Thereafter, the CPU 61 proceeds to S288.
Alternatively if the two-dimensional application data sub_data (a−1, b−1) is not [1] (S285: NO), the CPU 61 proceeds to S287. At S286, the CPU 61 resets the two-dimensional application data sub_data (a−1, b−1) to [1]. Thereafter, the CPU 61 proceeds to S288.
At S288, the CPU 61 judges whether the two-dimensional application data sub_data (a−1, b+1) is [0]. Here, if the two-dimensional application data sub_data (a−1, b+1) is not [0] (S288: NO), the CPU 61 proceeds to S293 to be described later. Alternatively, if the two-dimensional application data sub_data (a−1, b+1) is [0] (S288: YES), the CPU 61 proceeds to S289.
At S289, the CPU 61 judges whether the two-dimensional application data sub_data (a, b+1) is [1]. Here, if the two-dimensional application data sub_data (a, b+1) is [1] (S289: YES), the CPU 61 proceeds to S293 to be described later. Alternatively, if the two-dimensional application data sub_data (a, b+1) is not [1] (S289: NO), the CPU 61 proceeds to S290.
At S290, the CPU 61 judges whether the two-dimensional application data sub_data (a−1, b+1) is [1]. Here, if the two-dimensional application data sub_data (a−1, b+1) is [1] (S290: YES), the CPU 61 proceeds to S291. At S291, the CPU 61 resets the two-dimensional application data sub_data (a−1, b+1) to [0]. Thereafter, the CPU 61 proceeds to S293.
Alternatively if the two-dimensional application data sub_data (a−1, b+1) is not [1] (S290: NO), the CPU 61 proceeds to S292. At S292, the CPU 61 resets the two-dimensional application data sub_data (a−1, b+1) to [1]. Thereafter, the CPU 61 proceeds to S293. At S293, the CPU 61 increments the variable b. Thereafter, the CPU 61 proceeds to S294.
At S294, the CPU 61 judges whether variable b is equal to or above [p]. Here, if variable b is not equal to or above [p] (S294: NO), the CPU 61 returns to S282 and repeats the processes subsequent to S282. Alternatively, if variable b is equal to or above [p] (S294: YES), the CPU 61 proceeds to S295.
At S295, the CPU 61 increments the variable a. Thereafter, the CPU 61 proceeds to S296. At S296, the CPU 61 judges whether variable a is equal to or above [q]. Here, if variable a is not equal to or above [q] (S296: NO), the CPU 61 returns to S282 and repeats the processes subsequent to S282. Alternatively, if variable a is equal to or above [q] (S296: YES), the CPU 61 returns to the control program shown in
Specifically, in the tape printing apparatus 1 according to the second embodiment, with respect to the heater elements 41A constituting the line head 41B of the thermal head 41, the next application period F wherein ink is not melted or sublimed on the ink ribbon 33 starts immediately after the current application period F wherein ink is not melted or sublimed on the ink ribbon 33, according to condition (α), for each of the second heater elements 41D adjacent to the first heater elements 41C to which the main pulse MP is applied for main heating to melt or sublime the ink on the ink ribbon 33 in the next application period F. In this case, the sub pulse SP for compensating the main pulse MP to be applied in the next application period F is applied in the current application period F (left side in
Accordingly, auxiliary heating through the sub pulse SP as applied to the second heater elements 41D supplements main heating through the main pulse MP as applied to the first heater elements 41C adjacent to the second heater elements 41D in the next application period F. This prevents the occurrence of any defects in the printing quality, such as the so-called [fading effect] caused by an outflow of applied energy at the edge of the printed dots formed in an isolated fashion on the superficial tape 41 or at the edge of printed dots formed successively on the superficial tape 31 in the main scanning direction D1 of the thermal head 41 (refer to
As the main pulse MP and the sub pulse SP to be applied to one heater element 41A will never exist together within one and the same application period F (refer to the above-described step (D)), this helps shorten the application period F which is a fixed period.
Furthermore, the non-heating period G wherein neither the main pulse MP nor the sub pulse SP are applied can be reliably secured even in the event the application period F which is a fixed period is shortened and the main pulse MP and the sub pulse SP are applied (refer to
In the tape printing apparatus 1 according to the second embodiment, the next application period F wherein the main pulse MP for main heating is applied to melt or sublime the ink on the ink ribbon 33 starts immediately after the current application period F wherein ink is not melted or sublimed on the ink ribbon 33, for each of the heater elements 41A constituting the line head 41B of the thermal head 41, based on condition ( ) In this case, the sub pulse SP for compensating the main pulse MP to be applied in the next application period F is applied in the current application period F (right side in
In the tape printing apparatus 1 according to the second embodiment, one portion of the applied energy of the main pulse MP which flows from the two first heater elements 41C is respectively supplied with respect to the two first heater elements 41C and the adjacent second heater elements 41D to which the main pulse MP for main heating is applied so as to melt or sublime the ink on the ink ribbon 33 in the next application period F. As a result, it is possible to slow down the flow of applied energy of the main pulse MP which flows from the two first heater elements 41C.
Accordingly, it is possible to eliminate application of the sub pulse SP for auxiliary heating which, based on condition), cannot melt or sublime the ink on the ink ribbon 33 by itself, but, when applied to supplement main heating carried out by the main pulse MP which is applied in the next application period F, it causes the ink on the ink ribbon 33 to melt or sublime (right side in
The present disclosure is not limited to the above-described second embodiment, and therefore, modifications can be made thereto without departing from the spirit of the disclosure.
For instance, in the control program in
In the control program in
In the second embodiment, the tape printing apparatus 1 has been described as a [printing apparatus], however, the present disclosure can also be applied to various types of thermal printers which are provided with a thermal head 41. In the case the thermal printer uses thermal paper as a printing medium, main heating refers to supplying energy capable of causing the thermal paper which is used as printing medium to develop color, whereas auxiliary printing refers to supplying energy which independently, cannot cause the thermal paper used as printing medium to develop color, but, together with main heating, it can cause the thermal paper which is used as printing medium to develop color.
Number | Date | Country | Kind |
---|---|---|---|
2010-084500 | Mar 2010 | JP | national |
2010-084501 | Mar 2010 | JP | national |
2010-084502 | Mar 2010 | JP | national |