The present invention relates to a printing apparatus for performing printing on a medium.
A color printer, which is an example printing apparatus, including a transfer unit (printing unit) for transferring a toner image onto a sheet of paper, which is an example medium, is known (see, for example, JP-A-2014-38201). Such a color printer includes a registration roller pair (correction roller pair) that enables the leading edge of a sheet of paper to strike the registration roller pair to correct skewing of the sheet and transports the sheet toward the transfer unit.
If the pressing force of the registration roller pair is too weak (the pinching load is small, i.e., the nip load applied to the registration roller pair is small), the sheet can pass through the registration roller pair and the skewing is not corrected. On the other hand, if the pressing force of the registration roller pair is too strong, when the trailing edge of the sheet passes through the registration roller pair, the sheet transport speed changes undesirably. To address the problem, in the color printer, the pressing force of the registration roller pair is reduced after skewing of the sheet has been corrected.
In such a color printer (laser printer), the pressing force of the registration roller pair is reduced after the leading edge of the sheet has passed through the registration roller pair and before the trailing edge of the sheet passes through the registration roller pair.
Compared with the laser printer, an ink jet printer needs be more carefully designed to prevent transfer of ink onto a transport path, especially, transfer of ink onto a registration roller pair. Accordingly, it is preferable that the pressing force of the registration roller pair be changed at an appropriate time in consideration of skew correction and transfer prevention.
An advantage of some aspect of the invention is that there is provided a printing apparatus capable of adjusting contact between a registration roller pair and paper and thereby reducing print quality degradation.
A printing apparatus according to one embodiment includes a print section, a supply path, a correction roller pair, an adjusting mechanism and a controller. The print section is configured to perform printing on a medium. The supply path is configured to supply the medium to the print section. The correction roller pair is configured to enable the medium transported on the supply path to strike the correction roller pair to correct skewing of the medium. The adjusting mechanism adjusts a nip load applied to the correction roller pair. The controller is configured to control the adjusting mechanism based on print job information. The correction roller pair includes a driving roller that has a plurality of convex portions disposed on a peripheral surface along a circumferential direction of the driving roller and a driven roller that is disposed to face the driving roller to be driven by the driving roller.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, an embodiment of a printing apparatus will be described with reference to the attached drawings. The printing apparatus according to the embodiment is a printer that performs printing (recording) by discharging an ink, which is an example liquid, onto a medium such as paper to print (record) characters, images, and the like.
As illustrated in
The transport belt 16 is an endless belt and is looped around a drive pulley 18, which is driven by a drive source to rotate, and a driven pulley 19, which is freely rotatable around a shaft that is parallel to a shaft of the drive pulley 18. The transport belt 16 travels around the pulleys and transports the medium 14, which is supported by electrostatic adsorption on the outer peripheral surface of the transport belt 16. In other words, the outer peripheral surface of the transport belt 16 is a part of the transport path 13.
The printing unit 17 is a line head that can simultaneously discharge a liquid such as an ink in the width direction X of the medium 14. The width direction X intersects (for example, is orthogonal to) a transport direction Y in which the medium 14 is transported. The printing unit 17 performs printing onto the medium 14 by discharging a liquid onto the medium 14 that is transported by the transport belt 16.
The transport path 13 includes a first supply path 21, a second supply path 22, and a third supply path 23, which are on the upstream side of the transport belt 16 in the transport direction Y, and a branch path 24 and a discharge path 25, which are on the downstream side of the transport belt 16 in the transport direction Y. The first supply path 21, the second supply path 22, and the third supply path 23 serve as a supply path 26 along which the medium 14 is supplied toward the printing unit 17.
The first supply path 21 connects a medium cassette 28, which is detachably attached to a bottom section on the lower side in the direction of gravity, and the transport belt 16. In the first supply path 21, a pickup roller 29 for feeding the top medium 14 of the media 14 stacked in the medium cassette 28 and separation rollers 30 for separating the media 14 fed by the pickup roller 29 one by one, are provided. The first supply path 21 further includes a first supply roller pair 31 disposed on the downstream side of the separation rollers 30 in the transport direction Y.
The second supply path 22 connects an insertion slot 12b, which is exposed when a cover 12a provided on one side surface of the housing 12 is opened, and the transport belt 16. In the second supply path 22, a second supply roller pair 32 that pinches and transports the medium 14 that has been inserted from the insertion slot 12b is provided. At a position where the first supply path 21, the second supply path 22, and the third supply path 23 merge, a correction roller pair 33 is provided. The medium 14 transported on the supply path 26 strikes the correction roller pair 33, and thereby skewing of the medium 14 is corrected.
The correction roller pair 33 includes a driving roller 34 that is provided on the transport belt 16 side opposite the printing unit 17 with respect to the supply path 26 and a driven roller 35 that is provided on the printing unit 17 side with respect to the supply path 26. The driving roller 34 is rotated by a drive source such as a motor (not illustrated) in a counterclockwise direction. The correction roller pair 33 pinches the medium 14 by using the driving roller 34 and the driven roller 35, which is driven by the driving roller 34, and correction roller pair 33 rotates to transport the medium 14 toward the printing unit 17.
The third supply path 23 is disposed above the printing unit 17 to partially encompass the printing unit 17. The third supply path 23 returns again the medium 14 that has passed through the transport belt 16 and the printing unit 17 to the upstream side of the transport belt 16. On the downstream side of the transport belt 16, a branching mechanism 36 that is capable of guiding the medium 14 to the branch path 24 is provided. The branching mechanism 36 includes, for example, a flap. The branching mechanism 36 guides the medium 14, which has been guided toward the branch path 24, to the third supply path 23. In the branch path 24, a branch roller pair 37 that is rotatable in both forward and reverse directions is provided. In this embodiment, the branch path 24, the branching mechanism 36, and the branch roller pair 37 serve as a switchback mechanism 38. That is, the switchback mechanism 38 switches back the medium 14, which has a front side 14a that is an example first side and a back side 14b that is an example second side of the medium 14, on which printing has been performed on the front side 14a, to transport the medium 14 to the third supply path 23 (see
The discharge path 25 connects a discharge port 39, from which the printed medium 14 is discharged, and the transport belt 16. The medium 14 discharged from the discharge port 39 is placed onto a mounting table 40. In the discharge path 25, at least one transport roller pair is provided. In this embodiment, five transport roller pairs, that is, a first transport roller pair 41 to a fifth transport roller pair 45, are provided. In the third supply path 23, at least one transport roller pair is provided. In this embodiment, three transport roller pairs, that is, a sixth transport roller pair 46 to an eighth transport roller pair 48, are provided.
The transport section 15 according to the embodiment includes the transport belt 16, the drive pulley 18, the driven pulley 19, the pickup roller 29, the first supply roller pair 31, the second supply roller pair 32, the correction roller pair 33, and the first transport roller pair 41 to the eighth transport roller pair 48.
As illustrated in
The driven roller 35 includes a driven shaft 53 that extends in the width direction X and at least one (the number of the cylindrical rollers 54 is the same as the number of the toothed rollers 52) cylindrical roller 54 that has no projections and depressions on its peripheral surface. The driven shaft 53 is movable in a direction (for example, the vertical direction) which intersects the width direction X and the transport direction Y. The cylindrical roller 54 is rotatably supported by the driven shaft 53 and disposed to face the toothed roller 52 in the width direction X.
The printing apparatus 11 includes a switching mechanism 56 that switches pinching loads applied to the correction roller pair 33 to pinch the medium 14. The switching mechanism 56 includes a round-bar shaped driver section 58 that is rotated by the driving force of a switching motor 57 (see
The cam section 59 has a substantially disc shape and is an eccentric cam into which the driver section 58 is inserted at a position different from the center. The driven section 60 extends in the width direction X and is movable in a direction (for example, the vertical direction) that intersects the width direction X and the transport direction Y similarly to the driven shaft 53.
Now, an electrical configuration of the printing apparatus 11 will be described. As illustrated in
Hereinafter, a load switching process routine to be performed by the controller 63 will be described with reference to the flowchart in
As illustrated in
In step S103, the controller 63 performs skew correction for correcting skewing of the medium 14 by enabling the medium 14 to strike the stationary driving roller 34 at a leading edge of the medium 14. In step S104, the controller 63 causes the driving roller 34 to rotate.
In step S105, the controller 63 determines whether the trailing edge of the medium 14 has passed through the correction roller pair 33. If the trailing edge of the medium 14 has not passed through the correction roller pair 33 (NO in step S105), the controller 63 enables the driving roller 34 to keep rotating and stand by until the medium 14 passes through the correction roller pair 33. If the trailing edge of the medium 14 has passed through the correction roller pair 33 (YES in step S105), in step S106, the controller 63 causes the driving roller 34 to stop.
In step S107, the controller 63 determines based on the print job information whether a subsequent medium 14 to pass through the correction roller pair 33 exists. If no subsequent medium 14 exists (NO in step S107), the controller 63 ends the process. If a subsequent medium 14 exists (YES in step S107), the process goes to step S101.
In step S101, if two-sided printing is to be performed (NO in step S101), in step S108, the controller 63 determines whether printing is to be performed on the front side 14a or the back side 14b. In this embodiment, a side to be printed first is defined as the front side 14a and a side to be printed after the printing of the front side 14a has been performed is defined as the back side 14b. If the front side printing is to be performed (YES in step S108), the controller 63 moves the process to step S102. If the back side printing is to be performed (NO in step S108), in step S109, the controller 63 determines based on the print job information whether the grammage of the medium 14 is greater than or equal to a threshold value (for example, 90 g/m2).
If the grammage of the medium 14 is greater than or equal to the threshold value (YES in step S109), in step S110, the controller 63 sets the pinching load to the large load. If the grammage of the medium 14 is smaller than the threshold value (NO in step S109), in step S111, the controller 63 sets the pinching load to a medium load. The medium load is smaller than the large load.
In step S112, the controller 63 performs skew correction to the medium 14 similarly to step S103. In step S113, the controller 63 causes the driving roller 34 to rotate, and in step S114, the controller 63 causes the driving roller 34 to stop while the correction roller pair 33 is pinching a margin area B (see
Now, operations of the printing apparatus 11 for performing printing onto the medium 14 will be described. First, an operation to be performed when print job information for performing one-sided printing on two (two sheets of) media 14 supplied from the medium cassette 28 is described.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Next, an operation to be performed in response to an input of print job information for two-sided printing on two (two sheets of) media 14 supplied from the medium cassette 28 is described. The first medium 14A, which is the first sheet, is thick paper having a grammage of a threshold value or greater, and the second medium 14B, which is the second sheet, is thin paper having a grammage smaller than the threshold value. The operation for performing printing onto the front side 14a of the first medium 14A, which is the first sheet, is similar to that in the one-sided printing, and its description is omitted.
As illustrated in
The next medium 14 that passes through the correction roller pair 33 is the second medium 14B whose front side 14a is located on the printing unit 17 side. Consequently, after the trailing edge of the first medium 14A has passed through the correction roller pair 33, the pinching load applied to the correction roller pair 33 is maintained at the large load suitable for the first transport operation of the second medium 14B.
As illustrated in
In other words, during the first transport operation with the front side 14a being located on the printing unit 17 side, the printing apparatus 11 performs skew correction by using the correction roller pair 33 under the large load regardless of the grammage of the medium 14. Then, the controller 63 causes the driving roller 34 to rotate after skew correction to transport the second medium 14B toward the printing unit 17 while maintaining the large load (see
As illustrated in
In other words, during the second transport in which the first medium 14A is switched back by the switchback mechanism 38 and the back side 14b is located on the printing unit 17 side, the leading edge strikes the stationary correction roller pair 33 that is maintaining the large load, and skew correction is performed accordingly. After the skew correction has been performed, the controller 63 causes the driving roller 34 to rotate to transport the first medium 14A toward the printing unit 17.
As illustrated in
In other words, in the first transport operation and the second transport operation, the pinching load in the second transport operation is reduced compared with the pinching load in the first transport. During the second transport, the controller 63 reduces the pinching load before the correction roller pair 33 pinches the print area A on the front side 14a. Then, the controller 63 causes the driving roller 34, which is maintaining the small load, to rotate to transport the first medium 14A toward the printing unit 17. Then, the printing unit 17 performs printing on the back side 14b of the first medium 14A.
As illustrated in
Specifically, as illustrated in
After the skew correction, the controller 63 causes the driving roller 34 to rotate to transport the second medium 14B toward the printing unit 17, and reduces the pinching load in the margin area B of the second medium 14B similarly to the second transport operation of the first medium 14A.
That is, as illustrated in
According to the above-described embodiment, the following advantages can be achieved.
(1) The controller 63 controls the switching mechanism 56 based on print job information such that the pinching load applied to the correction roller pair 33 to pinch the medium 14 can be switched. That is, for example, the pinching load can be switched based on the type of the medium 14, the size of the margin, or the like included in the print job information, and print quality degradation can be reduced accordingly.
(2) After printing has been performed on the front side 14a in the first transport, the medium 14 is switched back by the switchback mechanism 38 and printing is performed on the back side 14b in the second transport. As a result, when the second transport operation is performed, printing has already been performed on the front side 14a. Consequently, the controller 63 reduces the pinching load in the second transport operation compared with the pinching load in the first transport operation, and this small pinching load can prevent print quality degradation on the previously printed front side 14a.
(3) The controller 63 reduces the pinching load before the correction roller pair 33 pinches the print area A on the front side 14a, and accordingly, the print area A on the front side 14a is pinched under the small pinching load. Consequently, when printing is performed on the front side 14a and the back side 14b, this small pinching load can reduce print quality degradation on the previously printed front side 14a.
(4) For example, reducing the pinching load when the leading edge of the medium 14 is striking the correction roller pair 33 may enable the medium 14 to pass through the correction roller pair 33 and this may cause skewing. To address the problem, in this structure, the controller 63 reduces the pinching load while the correction roller pair 33 is pinching the medium 14, and this small pinching load can reduce the occurrence of the skewing of the medium 14.
(5) The smaller the grammage is, the lower the firmness of the medium 14 is. Accordingly, when the medium 14 having a small grammage strikes the correction roller pair 33 to which the reduced pinching load has been applied, the medium 14 cannot easily pass through the correction roller pair 33. Consequently, when the grammage of the medium 14 is smaller than the threshold value, the pinching load can be reduced before the correction roller pair 33 pinches the medium 14. By this operation, the time necessary to switch the pinching loads can be reduced.
(6) After the trailing edge of the medium 14 has passed through the correction roller pair 33, the pinching load is changed in accordance with the type of the medium 14 to next be printed. This change can prevent the medium 14 to next be printed from passing through the correction roller pair 33 when the medium 14 strikes the correction roller pair 33.
The above-described embodiment may be modified as described below.
In the above-described embodiment, the controller 63 may change the pinching load while the driving roller 34 is being driven.
As explained above, a printing apparatus related to one embodiment includes a print section configured to perform printing on a medium, a supply path configured to supply the medium to the print section, a correction roller pair configured to enable the medium transported on the supply path to strike the correction roller pair to correct skewing of the medium, an adjusting mechanism for adjusting a nip load applied to the correction roller pair, and a controller configured to control the adjusting mechanism based on print job information.
With this structure, the controller controls the adjusting mechanism based on print job information to adjust the nip load applied to the correction roller pair. That is, for example, the nip load can be adjusted based on the type of medium, the size of a margin of the medium, or the like included in the print job information, and print quality degradation can be reduced accordingly.
The printing apparatus may further include a switchback mechanism for switching back the medium having a first side and a second side on which printing has been performed on the first side and for transporting the medium to the supply path. In the printing apparatus, between a first transport operation in which the first side is on the print section side and a second transport operation in which the medium is switched back by the switchback mechanism and the second side is on the print section side, the controller reduces the nip load in the second transport operation compared to the nip load in the first transport.
With this structure, after printing has been performed on the first side in the first transport, the medium is switched back by the switchback mechanism and printing is performed on the second side in the second transport. As a result, when the second transport operation is performed, printing has already been performed on the first side. The controller reduces the nip load in the second transport operation compared with the nip load in the first transport, and this small nip load enables a reduction in print quality degradation on the previously printed first side.
In this printing apparatus, the controller may reduce the nip load in the second transport operation before the correction roller pair pinches the print area on the first side. With this structure, the controller reduces the nip load before the correction roller pair pinches the print area on the first side, and accordingly, the print area on the first side is pinched under the small nip load. Consequently, when printing is performed on both the first side and the second side, this small nip load enables a reduction in print quality degradation on the previously printed first side.
In this printing apparatus, when the grammage of the medium is smaller than a threshold value, before the correction roller pair pinches the medium in the second transport, the controller may switch the nip load to a second nip load that is smaller than the nip load in the first transport.
The smaller the grammage of the medium, the lower the firmness of the medium. Accordingly, when a medium having a small grammage strikes the correction roller pair to which the small nip load has been applied, the medium cannot easily pass through the correction roller pair. Consequently, when the grammage of the medium is smaller than the threshold value, the nip load can be reduced in advance before the correction roller pair pinches the medium. By this operation, the time necessary to adjust the nip loads can be reduced.
In the printing apparatus, the controller may switch the nip load to a third nip load, which is smaller than the second nip load, in the second transport operation while the correction roller pair is pinching a margin area, which extends from a leading edge of the medium to a print area on the first side.
For example, reducing the nip load when the leading edge of the medium is striking the correction roller pair may enable the medium to pass through the correction roller pair and this may cause skewing. To address this problem, in this structure, the controller reduces the nip load while the correction roller pair is pinching the medium, and this small nip load can reduce the occurrence of the medium skewing.
In the printing apparatus, the controller may adjust the nip load in accordance with the type of medium to next be printed after a trailing edge of the medium has passed through the correction roller pair in the second transport.
With this structure, after the trailing edge of the medium has passed through the correction roller pair, the nip load is changed in accordance with the type of medium to next be printed. This change can prevent the medium to next be printed from passing through the correction roller pair when the medium strikes the correction roller pair.
In this printing apparatus, the correction roller pair may include a driving roller that includes at least one toothed roller and a driven roller that is driven by the driving roller, and that when the print section performs printing onto the one side of the medium, the driven roller come into contact with one side of the medium and the driving roller come into contact with the other side of the medium to pinch and transport the medium.
With this structure, after printing has been performed on the first side of the medium and printing is to next be performed on the second side of the medium, the printed first side of the medium comes into contact with the toothed roller and the medium is transported when printing is performed on the second side of the medium. Consequently, this structure can reduce transfer of an image (for example, ink) printed on the first side of the medium onto the driving roller because the contact area of the driving roller with the first side of the medium is small when the toothed roller comes into contact with the first side of the medium compared with the case where the flat surface comes into contact with the first side of the medium. Furthermore, the nip load applied to the correction roller pair is reduced in advance before the correction roller pair nips the print area on the first side of the medium. This small nip load further reduces transfer of the image printed on the first side of the medium onto the driving roller.
Number | Date | Country | Kind |
---|---|---|---|
2016-045578 | Mar 2016 | JP | national |
This application is a continuation application of U.S. patent application Ser. No. 15/446,111 filed on Mar. 1, 2017. This application claims priority to Japanese Patent Application No. 2016-045578 filed on Mar. 9, 2016. The entire disclosures of U.S. patent application Ser. No. 15/446,111 and Japanese Patent Application No. 2016-045578 are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20100276863 | Yano | Nov 2010 | A1 |
20120069111 | Kaneko | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2014-038201 | Feb 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20180272764 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15446111 | Mar 2017 | US |
Child | 15994189 | US |