The present invention relates to a printing apparatus.
Conventionally, there are known printing apparatuses, each of which includes a print head mounted on a movable carriage, and an ink tank arranged independently of the carriage and connected to the carriage by a tube, and employs a configuration in which a user can inject ink to the ink tank. Among such printing apparatuses, there is known an apparatus in which an air introducing path is arranged at a position lower than a nozzle of the print head so that the ink tank can be stored such that the ink liquid level in the ink tank becomes higher than the nozzle of the print head, thereby implementing stable supply of ink and the high degree of freedom in arrangement of the ink tank.
In the printing apparatus disclosed in International Publication No. 2014/112344, by covering an ink injection port by a part of a lid, it is prevented that a cap of the injection port of an ink tank comes off and the stable supply of ink to the print head is impaired.
According to one embodiment of the present invention, there is provided a printing apparatus comprising: a print head including a nozzle array comprising a plurality of nozzles for discharging a liquid, and a negative pressure generating portion configured to apply a negative pressure to the nozzle array; a tank including a storage portion configured to store the liquid, and an air communication port configured to allow the storage portion to communicate with air; and a tube configured to connect the print head and the tank and supply the liquid from the tank to the print head, wherein a highest position of a liquid level in the tank in the vertical direction is higher than a position of the nozzle array, and an absolute value of a water head difference caused by a difference between the highest position of the liquid level in the tank and the position of the nozzle array is not larger than an absolute value of a negative pressure generated by the negative pressure generating portion.
According to another embodiment of the present invention, there is provided a printing apparatus comprising: a print head including a nozzle array comprising a plurality of nozzles for discharging a liquid, and a negative pressure generating portion configured to apply a negative pressure to the nozzle array; a tank including a storage portion configured to store the liquid, an air communication port configured to allow the storage portion to communicate with air, and a buffer chamber provided above the storage portion in a vertical direction and configured to be capable of storing the liquid flowing out from the storage portion; and a tube configured to connect the print head and the tank and supply the liquid from the tank to the print head, wherein a highest position of a liquid level in the buffer chamber in a vertical direction is higher than a position of the nozzle array, and an absolute value of a water head difference caused by a difference between the highest position of the liquid level in the buffer chamber and the position of the nozzle array is not larger than an absolute value of a negative pressure generated by the negative pressure generating portion.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
However, in the configuration of the above-described conventional technique, even when the ink injection port is covered by the lid, if sealing is incomplete because a tank cap is not attached due to an operation error by a user or the like, a problem as described below may occur. That is, if the ink liquid level in the ink tank is higher than that in the nozzle of the print head, a pressure is applied to the nozzle of the print head, and this impairs the stable supply of ink.
Conventionally, there is also known a printing apparatus including an ink tank arranged such that the ink liquid level in the ink tank becomes lower than that in the nozzle of the print head. However, this decreases the degree of freedom in arrangement of the ink tank, resulting in a problem that the apparatus height increases and the apparatus size increases.
This embodiment provides a small-scale printing apparatus that stably supplies ink to a print head and has a high degree of freedom in arrangement of an ink tank.
Hereinafter, embodiments will be described in detail with reference to the attached drawings. Note, the following embodiments are not intended to limit the scope of the claimed invention. Multiple features are described in the embodiments, but limitation is not made to an invention that requires all such features, and multiple such features may be combined as appropriate. Furthermore, in the attached drawings, the same reference numerals are given to the same or similar configurations, and redundant description thereof is omitted.
Note that in this specification, the term “printing” (to be also referred to as “print” hereinafter) not only includes the formation of significant information such as characters and graphics, but also broadly includes the formation of images, figures, patterns, and the like on a print medium, or the processing of the medium, regardless of whether they are significant or insignificant and whether they are so visualized as to be visually perceivable by humans.
In addition, the term “print medium” not only includes a paper sheet used in common printing apparatuses, but also broadly includes materials, such as cloth, a plastic film, a metal plate, glass, ceramics, wood, and leather, capable of accepting ink.
Furthermore, the term “ink” (to also be referred to as a “liquid” hereinafter) should be extensively interpreted in a manner similar to the definition of “printing (print)” described above. That is, “ink” includes a liquid which, when applied onto a print medium, can form images, figures, patterns, and the like, can process the print medium, or can process ink (for example, solidify or insolubilize a coloring material contained in ink applied to the print medium).
Furthermore, a “nozzle” generically means an orifice or a liquid channel communicating with it, and an element for generating energy used to discharge ink, unless otherwise specified.
A substrate for a print head (head substrate) used below means not merely a base made of a silicon semiconductor, but a configuration in which elements, wirings, and the like are arranged.
Further, “on the substrate” means not merely “on an element substrate”, but even “the surface of the element substrate” and “inside the element substrate near the surface”. In the present invention, “built-in” means not merely arranging respective elements as separate members on the base surface, but integrally forming and manufacturing respective elements on an element substrate by a semiconductor circuit manufacturing process or the like.
When printing is performed by a printing apparatus 50 shown in
The print medium conveyed onto the platen 3 is then nipped between a discharge roller (not shown) and a spur, which is a rotating body driven by the discharge roller, and conveyed. The discharge roller is a rubber roller having a high friction coefficient. The spur is elastically biased against the discharge roller by a spring (not shown) or the like. After image printing, the print medium is discharged from the platen 3 to the outside of the apparatus by rotation of the discharge roller.
The print head 4 is detachably mounted, in a posture of discharging ink toward the print medium, on a carriage 7, which is reciprocated by a carriage motor or the like along vertically-arranged guide rails 5 and 6. The moving direction of the carriage 7 is a direction crossing the conveyance direction (arrow A1 direction) of the print medium, which is also referred to as a main scanning direction. On the other hand, the conveyance direction of the print medium is referred to as a subscanning direction.
Among inkjet printing methods, the print head 4 uses a method in which, by including an electrothermal transducer (heater) that generates thermal energy as energy used for ink discharge, a state change (film boiling) of ink is generated by the thermal energy. With this method, the high density and high resolution of printing are achieved. Note that the present invention is not limited to the method using the thermal energy as described above, but a method may be used in which, by including a piezoelectric element, vibration energy generated by the piezoelectric element is used.
A plurality of nozzle arrays for discharging inks of different colors are provided in the ink discharge surface of the print head 4. A plurality of independent ink tanks 8 are attached and fixed to the apparatus main body so as to correspond to the color of ink discharged from the print head 4. The ink tanks 8 and the print head 4 are connected by joints (not shown) by a plurality of supply tubes 10 each corresponding to each color of ink, so that the ink of color stored in each ink tank 8 can be independently supplied to each nozzle array of the print head 4 corresponding to the ink color.
Further, in a non-printing region which is within the reciprocation range of the print head 4 but outside the passage range of a print medium P being conveyed, a recovery unit 11 is arranged facing the ink discharge surface of the print head 4. The recovery unit 11 includes a cap used for capping of the ink discharge surface of the print head 4, a suction mechanism for forcibly sucking the ink from the print head 4 while the ink discharge surface is capped, and a cleaning blade or the like for wiping off dirt on the ink discharge surface.
As shown in
The printing apparatus 50 includes a CPU 300 that controls the overall apparatus, a ROM 330 storing control software, a RAM 320 that is temporarily used when the printing apparatus 50 operates the control software, and an NVRAM 340 that holds information without power supply. Under the control of the CPU 300, the print data or the like held in the reception butter 310 is transferred to the RAM 320 and temporary stored there. The CPU 300 executes various kinds of operations such as calculation, control, determination, and setting while accessing the RAM 320, the ROM 330, the NVRAM 340, or the like.
Further, the CPU 300 drives the print head 4 via a head driver 350, controls an operation panel 54 via an operation panel controller 380, and drives various kinds of motors 365 via a motor driver 360. The various kinds of motors 360 include the carriage motor, a conveyance motor, a motor for vertically moving the cap, and the like. Furthermore, the CPU 300 controls various kinds of sensors 375 via a sensor controller 370.
Next, some examples of the ink supply configuration from the ink tank to the print head in the printing apparatus having the configuration as described above will be described in detail with reference to the drawings.
According to
At least a part of a side surface of the ink tank 8 serves as a visual recognition surface 25 formed by a member made of a transparent material. The user can visually recognize the ink liquid level in the ink tank 8 through the visual recognition surface 25. Protruding portions 26 and 27 are provided on the visual recognition surface 25, and they respectively indicate the highest position and lowest position of the ink liquid level for a normal printing operation. During a printing operation, ink corresponding to the amount of ink discharged from the print head 4 is continuously supplied through the supply tube 10 from an ink supply portion 23 provided in the bottom surface portion of the ink storage portion 33. In a state in which ink is consumed by the printing operation and the ink liquid level is lowered to the position of the protruding portion 27, it is required to inject ink from the ink injection port 21. By injecting ink so as to be located within a range from the protruding portion 27 to the protruding portion 26, the user can perform the printing operation without running out of ink. Note that the defining portions that respectively define the highest position and lowest position of the ink liquid level are not limited to the protruding portions 26 and 27, and lines or the like provided on the visual recognition surface 25 can be alternatively used.
If the apparatus main body is turned upside down during transportation of the main body or the like, each of the buffer chambers (second spaces) 29 and 30 can store the ink flowing out due to the air expanded in the ink storage portion 33 because of a temperature change or the like. This can prevent the ink from leaking out of the ink tank through the air communication port 28. After the transportation, when the main body is returned to the normal posture, the ink having flown into the buffer chambers 29 and 30 returns to the ink storage portion 33, and a normal printing operation can be performed.
Note than in the example of the ink tank 8 shown in
As shown in
Hereinafter, in order to facilitate the association with the water head difference, the pressure unit for the description uses mmAq (millimeter water column), and the specific gravity of the ink is set to 1.
The porous body 32 is stored with the compression rate and ink filling amount that generate a negative pressure of −50 to −80 mmAq. The protruding portion 26, which indicates the highest position of the ink liquid level in the ink tank 8, is arranged at a position higher than the nozzle array 31 by a height H in the vertical direction, so that the positive water head difference corresponding to the height H is applied to the nozzle array 31. In this example, H is set to 20 mm. Here, when the negative pressure applied by the porous body 32 and the positive water head difference corresponding to the height H from the ink liquid level in the ink tank 8 are added up, the pressure at the portion of the nozzle array 31 becomes −30 to −60 mmAq. This is a pressure equal to or lower than 0 (that is, a negative pressure). That is, the absolute value of the water head difference caused by the height H is set to be equal to or smaller than the absolute value of the negative pressure generated by the porous body 32. Therefore, it is suppressed that the pressure applied to the nozzle array 31 causes ink leakage from the nozzle array 31.
As shown in
Thus, according to Example 1 described above, the position of the nozzle array of the print head can be arranged within the fluctuation range of the ink liquid level in the ink tank. Hence, the height of the printing apparatus itself can be kept low. In addition, even when an operation error by the user such as forgetting closing the tank cap occurs or even when the printing apparatus is left for a long time, the pressure is not applied to the nozzle array, and ink can be supplied stably. Accordingly, downsizing of the printing apparatus is achieved, and the high reliability is maintained.
As shown in
Note that the ink injection auxiliary member 34 may be integrally formed with the ink tank 8. In this example, two inner flow passages are formed in the ink injection auxiliary member 34, but three or more inner flow passages may be formed. That is, it is only required that at least two flow passages are provided, which include a flow passage for ink flowing toward the ink tank 8 from an ink bottle 41 serving as an ink replenishment container, and a flow passage for air flowing from the ink tank 8 toward the ink bottle 41.
As shown in
In the configuration shown in
Thus, according to Example 2 described above, in addition to the effect described in Example, 1, upon replenishing ink from the ink bottle to the ink tank, ink injection automatically stops when the maximum amount of ink is replenished. This further facilitates an ink replenishment operation by the user.
On the other hand,
As can be seen from
As shown in
Further, as shown in
The maximum ink amount to be injected to the ink tank 8 is defined to match the position higher than the nozzle array 31 by the height H in the vertical direction. Accordingly, the positive water head difference corresponding to the height H is applied to the nozzle array 31. In this example, the height H is set to 20 mm. Here, when the negative pressure applied by the porous body 32 and the positive water head difference corresponding to the height H are added up, the pressure at the portion of the nozzle array 31 becomes −30 to −60 mmAq. This is a pressure (negative pressure) equal to or lower than 0. That is, the absolute value of the water head difference caused by the height H is set to be equal to or smaller than the absolute value of the negative pressure generated by the porous body 32. Therefore, the pressure is not applied to the nozzle array 31.
As shown in
Thus, according to Example 3 described above, the position of the nozzle array of the print head can be arranged within the fluctuation range of the ink liquid level in the ink tank even in the configuration in which the ink tank and the print head (tube) can be attached/detached. Hence, the height of the printing apparatus itself can be kept low. In addition, even when the printing apparatus is left for a long time, the pressure is not applied to the nozzle array, and ink can be supplied stably. Accordingly, downsizing of the printing apparatus is achieved, and the high reliability is maintained.
As shown in
Note that here, the porous body 32 is stored with the compression rate and the ink filling amount that generate a negative pressure of −50 to −80 mmAq. Further, as shown in
Thus, according to Example 4 described above, even if, after the ink tank is filled with ink, the posture of the ink tank is changed upside down or the like so that the ink flows into the buffer chamber of the ink tank and the ink liquid level in the buffer chamber becomes higher than the nozzle array, the pressure is not applied to the nozzle array. Accordingly, ink can be supplied stably. Therefore, the high reliability is maintained. In addition, as can be seen from the configuration shown in
Note that in the examples described above, the porous body 32 is used as a negative pressure generating portion provided in the print head, but the present invention is not limited thereto.
Note that the opening/closing operation of the valve 56 interlocks with rotation of the lever 57. In the state in which the lever 57 abuts against the end portion 54a, the valve 56 is in a closed state, and in the state in which the lever 57 is released from the abutment state against the end portion 54a, the valve 56 is in an open state.
As shown in
On the other hand, when ink is discharged from the nozzle of the print head 4 and the ink inside the spring bag 54 is consumed, as shown in
When the spring bag 54 is filled with ink as described above, the state shown in
As shown in
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-117930, filed Jul. 8, 2020 which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-117930 | Jul 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5793395 | Tanaka et al. | Aug 1998 | A |
6082851 | Shihoh et al. | Jul 2000 | A |
6234615 | Tsukuda | May 2001 | B1 |
7152954 | Katayama | Dec 2006 | B2 |
7543923 | McNestry | Jun 2009 | B2 |
7543925 | Ishizawa | Jun 2009 | B2 |
9409407 | Kudo et al. | Aug 2016 | B2 |
9738081 | Kimura et al. | Aug 2017 | B2 |
9878551 | Shimizu | Jan 2018 | B2 |
10118396 | Kimura | Nov 2018 | B2 |
20040061748 | Kuwabara | Apr 2004 | A1 |
20070195144 | McNestry | Aug 2007 | A1 |
20110109706 | Murray | May 2011 | A1 |
20130100205 | Sunouchi et al. | Apr 2013 | A1 |
20170050443 | Agarwal | Feb 2017 | A1 |
20170120609 | Kimura | May 2017 | A1 |
20170305163 | Kimura et al. | Oct 2017 | A1 |
20190263135 | Abe et al. | Aug 2019 | A1 |
20200316973 | Toki et al. | Oct 2020 | A1 |
20210300052 | Takei et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
1496842 | May 2004 | CN |
102596576 | Jul 2012 | CN |
103057273 | Apr 2013 | CN |
106488846 | Mar 2017 | CN |
106626765 | May 2017 | CN |
109927414 | Jun 2019 | CN |
110181946 | Aug 2019 | CN |
2001-162831 | Jun 2001 | JP |
2014112344 | Jan 2017 | WO |
Entry |
---|
U.S. Appl. No. 17/375,541, filed Jul. 14, 2021. |
U.S. Appl. No. 17/370,948, filed Jul. 8, 2021. |
U.S. Appl. No. 17/370,955, filed Jul. 8, 2021. |
Office Action dated Dec. 28, 2022 in counterpart Chinese Application No. 202110771975.4, together with English translation thereof. |
Chinese Office Action dated May 19, 2023 in counterpart Chinese Patent Appln. No. 202110771975.4. |
Number | Date | Country | |
---|---|---|---|
20220009244 A1 | Jan 2022 | US |