The present invention relates to printing apparatuses.
There are known inkjet printing apparatuses in which ink circulates between the tank and the print head. In the case where the temperature of circulating ink increases, water contained in the ink evaporates, leading to increase in the viscosity of the ink, or air inside the ink grows up to be bubbles, preventing proper ink ejection. Japanese Patent Laid-Open No. 2009-196208 (hereinafter referred to as patent document 1) discloses a technique for cooling part of circulating ink with a cooling fan disposed at a point on the circulation path.
The technique in patent document 1 is only for cooling part of circulating ink locally, and thus, is incapable of cooling the entire circulating ink efficiently.
A printing apparatus according to an aspect of the present invention includes: a tank configured to contain ink; a print head configured to eject ink supplied from the tank; a supply flow path through which liquid is supplied from the tank to the print head; a collection flow path through which liquid is collected from the print head to the tank; a circulation unit configured to circulate ink inside a circulation flow path including the tank, the supply flow path, the print head, and the collection flow path; and a cooling unit configured to cool the tank by blowing.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the following embodiments do not limit the present invention and that not all of the combinations of the characteristics described in the present embodiments are essential for solving the problem to be solved by the present invention. Incidentally, the same reference numeral refers to the same component in the following descriptions. Furthermore, relative positions, shapes, and the like of the constituent elements described in the embodiments are exemplary only and are not intended to limit the scope of the invention.
The printing apparatus 1 is a multifunction printer comprising a print unit 2 and a scanner unit 3. The printing apparatus 1 can use the print unit 2 and the scanner unit 3 separately or in synchronization to perform various processes related to print operation and scan operation. The scanner unit 3 comprises an automatic document feeder (ADF) and a flatbed scanner (FBS) and is capable of scanning a document automatically fed by the ADF as well as scanning a document placed by a user on a document plate of the FBS. The scanner unit 3 is configured such that it alone can be removed from the main body of the printing apparatus. Note that in this specification, a unit being configured such that it alone can be removed means that the unit can be removed without affecting other mechanisms (parts and units). Specifically, in a case where the user removes the scanner unit 3, the user can remove the scanner unit 3 without removing other mechanisms. The scanner unit 3 can be attached or removed by sliding the scanner unit 3 in the z-direction from the top face of the apparatus. The scanner unit 3 includes a CIS 31 (contact image sensor) that scans in the x-direction to read the original document. The CIS 31 is also configured to be removable from the top face of the apparatus. The present embodiment is directed to the multifunction printer comprising both the print unit 2 and the scanner unit 3, but the scanner unit 3 may be omitted.
In the print unit 2, a first cassette 5A and a second cassette 5B for housing a print medium (cut sheet) S are detachably provided at the bottom of a casing 4 in the vertical direction (gravitational direction). A relatively small print medium of up to A4 size is placed flat and housed in the first cassette 5A and a relatively large print medium of up to A3 size is placed flat and housed in the second cassette 5B. A first feeding unit 6A for sequentially feeding a housed print medium is provided near the first cassette 5A. Similarly, a second feeding unit 6B is provided near the second cassette 5B. In print operation, a print medium S is selectively fed from either one of the cassettes.
Conveying rollers 7, a discharging roller 12, pinch rollers 7a, spurs 7b, a guide 18, an inner guide 19, and a flapper 11 compose a conveying unit 20 for guiding a print medium S in a predetermined direction. The conveying unit 20 is configured such that it alone can be removed from the main body of the printing apparatus. The conveying rollers 7 are drive rollers located upstream and downstream of the print head 8 and driven by a conveying motor (not shown). The pinch rollers 7a are follower rollers that are turned while nipping a print medium S together with the conveying rollers 7. The discharging roller 12 is a drive roller located downstream of the conveying rollers 7 and driven by the conveying motor (not shown). The spurs 7b nip and convey a print medium S together with the conveying rollers 7 and discharging roller 12 located downstream of the print head 8.
The guide 18 is provided in a conveying path of a print medium S to guide the print medium S in a predetermined direction. The inner guide 19 is a member extending in the y-direction. The inner guide 19 has a curved side surface and guides a print medium S along the side surface. The flapper 11 is a member for changing a direction in which a print medium S is conveyed in duplex print operation. A discharging tray 13 is a tray for placing and housing a print medium S that was subjected to print operation and discharged by the discharging roller 12.
The print head 8 of the present embodiment is a full line type color inkjet print head. In the print head 8, a plurality of ejection openings configured to eject ink based on print data are arrayed in the y-direction in
An ink tank unit 14 separately stores ink of four colors to be supplied to the print head 8. An ink supply unit 15 is provided in the midstream of a flow path connecting the ink tank unit 14 to the print head 8 to adjust the pressure and flow rate of ink in the print head 8 within a suitable range. The present embodiment adopts a circulation type ink supply system, where the ink supply unit 15 adjusts the pressure of ink supplied to the print head 8 and the flow rate of ink collected from the print head 8 within a suitable range. Each of the ink tank unit 14 and the ink supply unit 15 is configured such that it alone can be removed from the main body of the printing apparatus.
A maintenance unit 16 comprises the cap unit 10 and a wiping unit 17 and activates them at predetermined timings to perform maintenance operation for the print head 8. The maintenance unit 16 is configured such that it alone can be removed from the main body of the printing apparatus.
In the controller unit 100, the main controller 101 including a CPU controls the entire printing apparatus 1 using a RAM 106 as a work area in accordance with various parameters and programs stored in a ROM 107. For example, in a case where a print job is input from a host apparatus 400 via a host I/F 102 or a wireless I/F 103, an image processing unit 108 executes predetermined image processing for received image data under instructions from the main controller 101. The main controller 101 transmits the image data subjected to the image processing to the print engine unit 200 via a print engine I/F 105.
The printing apparatus 1 may acquire image data from the host apparatus 400 via a wireless or wired communication or acquire image data from an external storage unit (such as a USB memory) connected to the printing apparatus 1. A communication system used for the wireless or wired communication is not limited. For example, as a communication system for the wireless communication, Wi-Fi (Wireless Fidelity; registered trademark) and Bluetooth (registered trademark) can be used. As a communication system for the wired communication, a USB (Universal Serial Bus) and the like can be used. For example, if a scan command is input from the host apparatus 400, the main controller 101 transmits the command to the scanner unit 3 via a scanner engine I/F 109.
An operating panel 104 is a mechanism to allow a user to do input and output for the printing apparatus 1. A user can give an instruction to perform operation such as copying and scanning, set a print mode, and recognize information about the printing apparatus 1 via the operating panel 104.
In the print engine unit 200, the print controller 202 including a CPU controls various mechanisms of the print unit 2 using a RAM 204 as a work area in accordance with various parameters and programs stored in a ROM 203. Once various commands and image data are received via a controller I/F 201, the print controller 202 temporarily stores them in the RAM 204. The print controller 202 allows an image processing controller 205 to convert the stored image data into print data such that the print head 8 can use it for print operation. After the generation of the print data, the print controller 202 allows the print head 8 to perform print operation based on the print data via a head I/F 206. At this time, the print controller 202 conveys a print medium S by driving the feeding units 6A and 6B, conveying rollers 7, discharging roller 12, and flapper 11 shown in
A head carriage control unit 208 changes the orientation and position of the print head 8 in accordance with an operating state of the printing apparatus 1 such as a maintenance state or a printing state. An ink supply control unit 209 controls the ink supply unit 15 such that the pressure of ink supplied to the print head 8 is within a suitable range. A maintenance control unit 210 controls the operation of the cap unit 10 and wiping unit 17 in the maintenance unit 16 at the time of performing maintenance operation for the print head 8.
In the scanner engine unit 300, the main controller 101 controls hardware resources of the scanner controller 302 using the RAM 106 as a work area in accordance with various parameters and programs stored in the ROM 107, thereby controlling various mechanisms of the scanner unit 3. For example, the main controller 101 controls hardware resources in the scanner controller 302 via a controller I/F 301 to cause a conveyance control unit 304 to convey a document placed by a user on the ADF and cause a sensor 305 to scan the document. The scanner controller 302 stores scanned image data in a RAM 303. The print controller 202 can convert the image data acquired as described above into print data to enable the print head 8 to perform print operation based on the image data scanned by the scanner controller 302.
In the case of moving the print head 8 from the standby position shown in
On the other hand, in the case of moving the print head 8 from the printing position shown in
(Maintenance Unit)
On the other hand, in the maintenance position shown in
In the blade wiper unit 171, blade wipers 171a for wiping the ejection opening surface 8a in the x-direction are provided in the y-direction by the length of an area where the ejection openings are arrayed. In the case of performing wiping operation by the use of the blade wiper unit 171, the wiping unit 17 moves the blade wiper unit 171 in the x-direction while the print head 8 is positioned at a height at which the print head 8 can be in contact with the blade wipers 171a. This movement enables the blade wipers 171a to wipe ink and the like adhering to the ejection opening surface 8a.
The entrance of the maintenance unit 16 through which the blade wipers 171a are housed is equipped with a wet wiper cleaner 16a for removing ink or the like adhering to the blade wipers 171a and applying a wetting liquid to the blade wipers 171a. The wet wiper cleaner 16a removes substances adhering to the blade wipers 171a and applies the wetting liquid to the blade wipers 171a each time the blade wipers 171a are inserted into the maintenance unit 16. The wetting liquid is transferred to the ejection opening surface 8a in the next wiping operation for the ejection opening surface 8a, thereby facilitating sliding between the ejection opening surface 8a and the blade wipers 171a.
The vacuum wiper unit 172 comprises a flat plate 172a having an opening extending in the y-direction, a carriage 172b movable in the y-direction within the opening, and a vacuum wiper 172c mounted on the carriage 172b. The vacuum wiper 172c is provided to wipe the ejection opening surface 8a in the y-direction along with the movement of the carriage 172b. The tip of the vacuum wiper 172c has a suction opening connected to the suction pump (not shown). Accordingly, if the carriage 172b is moved in the y-direction while operating the suction pump, ink and the like adhering to the ejection opening surface 8a of the print head 8 are wiped and gathered by the vacuum wiper 172c and sucked into the suction opening. At this time, the flat plate 172a and a dowel pin 172d provided at both ends of the opening are used to align the ejection opening surface 8a with the vacuum wiper 172c.
(Ink Supply Unit (Ink Circulation System))
Ink is circulated mainly between a sub-tank 151 and the print head 8. In the print head 8, ink ejection operation is performed based on image data and ink that has not been ejected is collected back into the sub-tank 151.
The sub-tank 151 in which a certain amount of ink is contained is connected to a supply flow path C2 for supplying ink to the print head 8 and to a collection flow path C4 for collecting ink from the print head 8. In other words, a circulation flow path (circulation path) for circulating ink is provided by the sub-tank 151, the supply flow path C2, the print head 8, and the collection flow path C4. The sub-tank 151 is also connected to an air flow path C0 where air flows. The air flow path C0 is an atmosphere communication flow path where an atmosphere release valve V0 communicate.
A liquid level detection unit 151a including a plurality of electrode pins is provided in the sub-tank 151. The ink supply control unit 209 detects the presence/absence of a conducting current between those pins so as to grasp a height of an ink liquid level, that is, an amount of remaining ink inside the sub-tank 151. A vacuum pump P0 (an intratank vacuum pump) is a negative pressure generating source for reducing pressure inside the sub-tank 151. The atmosphere release valve V0 is a valve for switching between whether or not to make the inside of the sub-tank 151 communicate with atmosphere.
A main tank 141 is a tank that contains ink which is to be supplied to the sub-tank 151. The main tank 141 is configured to be detachable from the printing apparatus body. A tank supply valve V1 for switching connection between the sub-tank 151 and the main tank 141 is provided in the midstream of a tank connection flow path C1 connecting the sub-tank 151 and the main tank 141.
In a case where the liquid level detection unit 151a detects that the amount of ink inside the sub-tank 151 is less than a certain amount, the ink supply control unit 209 closes the atmosphere release valve V0, a supply valve V2, a collection valve V4, and a head replacement valve V5. Further, the ink supply control unit 209 opens the tank supply valve V1. In this state, the ink supply control unit 209 causes the vacuum pump P0 to operate. This sets the pressure inside the sub-tank 151 to negative so that ink is supplied from the main tank 141 to the sub-tank 151. In a case where the liquid level detection unit 151a detects that the amount of ink inside the sub-tank 151 exceeds the certain amount, the ink supply control unit 209 closes the tank supply valve V1, and stops the vacuum pump P0.
The supply flow path C2 is a flow path for supplying ink from the sub-tank 151 to the print head 8, and a supply pump P1 and the supply valve V2 are disposed in the midstream of the supply flow path C2. During print operation, driving the supply pump P1 in the state of the supply valve V2 being open allows ink circulation in the circulation path while supplying ink to the print head 8. The amount of ink to be ejected per unit time by the print head 8 varies according to image data. A flow rate of the supply pump P1 is determined so as to be adaptable even in a case where the print head 8 performs ejection operation in which ink consumption amount per unit time becomes maximum.
A relief flow path C3 is a flow path which is located in the upstream of the supply valve V2 and which connects between the upstream and downstream of the supply pump P1. A relief valve V3 which is a differential pressure valve is provided in the midstream of the relief flow path C3. The relief valve V3 is not opened or closed by a drive mechanism, but is urged by a spring. The relief valve V3 is configured to be opened in a case where the differential pressure reaches predetermined pressure. For example, in a case where the amount of ink supply from the supply pump P1 per unit time is larger than the total value of an ejection amount of the print head 8 per unit time and a flow rate (ink pulling-out amount) in a collection pump P2 per unit time, the relief valve V3 is released according to a pressure applied thereto. As a result, a cyclic flow path provided by a portion of the supply flow path C2 and the relief flow path C3 is formed. Providing the relief flow path C3 allows the amount of ink supply to the print head 8 to be adjusted according to the amount of ink consumed by the print head 8, thereby stabilizing the pressure inside the circulation path irrespective of image data.
The collection flow path C4 is a flow path for collecting ink from the print head 8 back to the sub-tank 151. The collection pump P2 and the collection valve V4, are disposed in the midstream of the collection flow path C4. The collection pump P2 serves as a negative pressure generating source to suck ink from the print head 8 at the time of circulating ink within the circulation path. Driving the collection pump P2 generates an appropriate differential pressure between an IN flow path 80b and an OUT flow path 80c inside the print head 8, so that ink can be circulated between the IN flow path 80b and the OUT flow path 80c.
The collection valve V4 is a valve for preventing backflow at the time of not performing print operation, that is, at the time of not circulating ink within the circulation path. In the circulation path of the present embodiment, the sub-tank 151 is disposed higher than the print head 8 in a vertical direction (see
The supply valve V2 also serves as a valve for preventing ink supply from the sub-tank 151 to the print head 8 at the time of not performing print operation, that is, at the time of not circulating ink within the circulation path.
A head replacement flow path C5 is a flow path connecting the supply flow path C2 and an air chamber (space in which ink is not contained) of the sub-tank 151, with the head replacement valve V5 being disposed in the midstream of the head replacement flow path C5. One end of the head replacement flow path C5 is connected to the upstream of the print head 8 in the supply flow path C2 and to the downstream of the supply valve V2. The other end of the head replacement flow path C5 is connected to the upper part of the sub-tank 151 to communicate with the air chamber inside the sub-tank 151. The head replacement flow path C5 is used in the case of pulling out ink from the print head 8 in use such as at the time of replacement of the print head 8 or at the time of transportation of the printing apparatus 1. The head replacement valve V5 is controlled by the ink supply control unit 209 so as to be closed except for a case of filling ink in the print head 8 and a case of pulling out ink from the print head 8.
Next, a flow path configuration inside the print head 8 will be described. Ink supplied through the supply flow path C2 to the print head 8 passes through a filter 83 and is then supplied to a first negative pressure control unit 81 and a second negative pressure control unit 82. The first negative pressure control unit 81 has a control pressure set to a low negative pressure (negative pressure having a small pressure difference from atmospheric pressure). The second negative pressure control unit 82 has a control pressure set to a high negative pressure (negative pressure having a large pressure difference from atmospheric pressure). Pressures in those first negative pressure control unit 81 and second negative pressure control unit 82 are generated within an adequate range by the driving of the collection pump P2.
In an ink ejection unit 80, a plurality of printing element substrates 80a in each of which a plurality of ejection openings are arrayed are arranged to form an elongate ejection opening array. A common supply flow path 80b (IN flow path) for guiding ink supplied from the first negative pressure control unit 81 and a common collection flow path 80c (OUT flow path) for guiding ink supplied from the second negative pressure control unit 82 also extend in the direction of the array of the printing element substrates 80a. Furthermore, individual supply flow paths connected to the common supply flow path 80b and individual collection flow paths connected to the common collection flow path 80c are formed in each of the printing element substrates 80a. Accordingly, an ink flow is generated in each of the printing element substrates 80a such that ink flows in from the common supply flow path 80b which has relatively lower negative pressure and flows out to the common collection flow path 80c which has relatively higher negative pressure. A pressure chamber which communicates with each ejection opening and which is filled with ink is provided in the midstream of a path between the individual supply flow path and the individual collection flow path, so that an ink flow is generated even in the ejection opening and the pressure chamber where printing is not performed. Once the ejection operation is performed in the printing element substrate 80a, a part of ink moving from the common supply flow path 80b to the common collection flow path 80c is ejected from the ejection opening to be consumed; meanwhile, ink that has not been ejected moves toward the collection flow path C4 through the common collection flow path 80c.
The foregoing configuration generates, in the printing element substrate 80a, an ink flow such that ink flows in from the common supply flow path 80b which has relatively low negative pressure (whose absolute value is high) and flows out to the common collection flow path 80c which has relatively high negative pressure (whose absolute value is low). To be more specific, ink flows in the order of the common supply flow path 80b, the individual supply flow path 1008, the pressure chamber 1005, the individual collection flow path 1009, and the common collection flow path 80c. Once ink is ejected by the printing element 1004, part of ink moving from the common supply flow path 80b to the common collection flow path 80c is ejected from the ejection opening 1006 to be discharged outside the print head 8. Meanwhile, ink which has not been ejected from the ejection opening 1006 is collected into the collection flow path C4 through the common collection flow path 80c.
At a time of performing print operation, the ink supply control unit 209 closes the tank supply valve V1, the head replacement valve V5 and the sub-tank decompression valve V6, opens the atmosphere release valve V0, the supply valve V2, the collection valve V4, and the suction valve V8, and drives the supply pump P1 and the collection pump P2. As a result, a circulation path of the sub-tank 151, the supply flow path C2, the print head 8, the collection flow path C4, and the sub-tank 151 is established. In a case where the amount of ink supply per unit time from the supply pump P1 is larger than the total value of the ejection amount per unit time of the print head 8 and the flow rate per unit time in the collection pump P2, ink flows into the relief flow path C3 from the supply flow path C2. Accordingly, the flow rate of the ink flowing into the print head 8 from the supply flow path C2 is adjusted.
In a case where print operation is not performed, the ink supply control unit 209 stops the supply pump P1 and the collection pump P2 and closes the atmosphere release valve V0, the supply valve V2, and the collection valve V4. As a result, the flow of ink in the print head 8 is stopped, and the backflow due to the water head difference between the sub-tank 151 and the print head 8 is also suppressed. In addition, closing the atmosphere release valve V0 suppresses ink leakage and evaporation of ink from the sub-tank 151.
At the time of pulling out ink from the print head 8, the ink supply control unit 209 closes the atmosphere release valve V0, the tank supply valve V1, the supply valve V2, and the collection valve V4, opens the head replacement valve V5, and drives the vacuum pump P0. As a result, the interior of the sub-tank 151 goes into a negative pressure state, and the ink in the print head 8 is collected back to the sub-tank 151 through the head replacement flow path C5. As apparent from the above, the head replacement valve V5 is a valve which is closed during the normal print operation and in the standby state, and is opened at the time of pulling out ink from the print head 8. The head replacement valve V5 is also opened at the time of filling ink in the head replacement flow path C5 in filling ink in the print head 8.
(Arrangement Relation of Ink Supply Unit)
The sub-tank 151 is disposed above substantially one end portion of the ink flow path plate 152. That is, a connecting portion between the sub-tank 151 and the ink flow path plate 152 (hereinafter referred to as first connecting portion) is provided on the bottom surface of the sub-tank 151. Flow paths (supply flow path C2 and collection flow path C4) are formed in the ink flow path plate 152 so as to extend in the horizontal direction (x-direction) from the first connection portion (immediately below the sub-tank) connected to the sub-tank 151. It is to be noted that the flow paths as a whole extend in the x-direction and may be guided in another direction halfway. As shown in
The flow path aggregation plate 156 is disposed above the ink flow path plate 152 of each subunit 150 so as to traverse the second connecting portions 1561. A flow path for guiding the ink fed to each second connecting portion 1561 or the ink delivered from each second connecting portion 1561 in a substantially horizontal direction (y-direction) is formed in the flow path aggregation plate 156. As shown in
In this manner, the supply flow path C2 and the collection flow path C4 are formed in the ink flow path plate 152, the flow path aggregation plate 156, and the linkage tube 159.
(Positional Configuration of Each Unit)
Each of these units and the like can be attached or removed separately from other units and the like. For example, in a case where a failure or the like occurs and a part in the conveying unit 20 needs to be replaced, the user can remove only the conveying unit 20 without removing other units (for example, the ink supply unit 15). The same is true of the other units and the like. The configuration in which each unit or the like can be attached and detached separately from other units and the like as described above improves serviceability for the case of replacing parts. In other words, since a unit of interest alone can be removed, only the unit in need can be quickly removed.
(Configuration for Air-cooling Ink)
A first housing cover 71 on the left side-face side of the printing apparatus 1 has first openings (herein after referred to as air supply openings 43). The first housing cover 71 is a housing portion for the ink supply unit 15. As illustrated in
A second housing cover 72 on the left side-face side of the printing apparatus 1 has a second opening (hereinafter referred to as an air discharge opening 44). The second housing cover 72 is a housing portion of the maintenance unit 16. As illustrated in
Next, the arrangement inside the main body of the printing apparatus will be described with reference to
The print head 8 is a full-line print head, which extends from the front side to the rear side. There is space on the maintenance unit 16 side (the ink supply unit 15 side) of the print head 8 both in the standby state illustrated in
On the upper face of the ink supply unit 15 are located the ink tank unit 14 and the power supply unit 61. Above the ink tank unit 14 and the power supply unit 61 is located the discharging tray 13. On the front side and the rear side of the ink supply unit 15 are located the side faces of the casing 4. Adjoining to the left side-face side of the ink supply unit 15 are the air supply openings 43 of the first housing cover. As illustrated in
With this arrangement, driving of the air discharge fan 163 causes an air flow in which air (outside air) flows through the air supply openings 43 into the ink supply unit 15 and air inside the printing apparatus (inside air) is discharged through the air discharge opening 44 of the maintenance unit 16. The heat exchange between circulating ink and air dissipates heat from the ink, thus the ink is air-cooled.
The main controller 101 performs control to drive the air discharge fan 163. Note that a not-illustrated fan control unit may perform control to drive the air discharge fan 163. The printing apparatus 1 has a not-illustrated temperature sensor inside the main body, and in a case where the temperature inside the main body reaches a specified temperature, the air discharge fan 163 is driven. Alternatively, a temperature sensor may be disposed at a certain position in the circulation path, and the air discharge fan 163 may be driven in a case where the temperature of ink reaches a specified temperature. Further, the air discharge fan 163 may be driven based on the outputs of both temperature sensors.
In the case where the air discharge fan 163 is driven, negative pressure is generated inside the main body of the printing apparatus 1, causing air to flow through the air supply openings 43 into the main body. Inflowing air passes inside the ink supply unit 15. To be more specific, the air flowing in through the air supply opening 43 first hits the sub-tank 151. Then, inflowing air moves inside the ink supply unit 15 toward the print head 8. After the inflowing air hits the print head 8, it follows the air flow caused by the air discharge fan 163 and moves downward along the print head 8 using it as a wall. Then, the air that has moved downward moves inside the maintenance unit 16 toward the air discharge fan 163, following the air flow caused by the air discharge fan 163 and is discharged through the air discharge opening 44. In summary, as illustrated in
The present embodiment includes four air supply openings 43 as illustrated in
As described with reference to
Note that although the air flow has been described with reference to
As has been described above, the present embodiment is capable of air-cooling the entire circulating ink. Specifically, cooling the sub-tanks 151 where ink having heat is collected cools circulating ink efficiently, and the recirculation of the cooled ink cools the circulating ink in whole. In addition, the air flowing along the flow path in which ink circulates cools also the ink circulating in the supply flow path C2 and the collection flow path C4. In other words, the air flow air-cools the entire circulating ink.
The present embodiment has been described based on an example of a configuration including the blower (the air discharge fan 163) for discharging air and openings for supplying air. Use of an air discharge fan as a blower is preferable because a path for discharging air can be clearly defined. However, the present invention is not limited to this example. For example, a blower for supplying air may be used instead of the air supply openings 43. Also in this case, the entire circulating ink can be air-cooled.
Further, as another embodiment, an air discharge fan may be disposed between the air supply openings 43 and the sub-tanks 151 instead of the air discharge fan 163 included in the maintenance unit 16. Further, alternatively, a blower for supplying air may be used instead of the air discharge fan 163. Specifically, the air flow may be formed such that air first flows into the maintenance unit 16, then moves upward at the print head 8, passes through the ink supply unit 15, and is discharged. In this case, since air used to dissipate heat inside the main body and thus hotter than outside air hits the sub-tanks 151, the heat dissipation effect for the sub-tanks 151 is smaller than in the example described with reference to
In addition, although in the example of the present embodiment described, members on the ink supply unit 15 are arranged such that the sub-tanks 151 are located at positions adjoining to the air supply openings 43 in the state in which the ink supply unit 15 is attached to the printing apparatus 1, the present invention is not limited to this arrangement. The sub-tanks 151 may be arranged to be closer to the print head 8, in other words, closer to the flow path aggregation plate 156 (see
(Housing Cover)
The housing cover serves as a function that improves the design of the outer appearance and keeps the inside of the main body of the printing apparatus 1 as a closed space. Here, keeping the inside of the main body as a closed space means hiding the inside of the main body including the casing 4 from the outside. To keep the inside of the main body of the printing apparatus 1 as a closed space, the connecting portions of the covers for the front side, the rear side, the right side-face side, and the left side-face side should preferably be overlapped with one another. Here, in a case where overlapped areas are large, in the event of attaching the housing covers to the main body of the apparatus, screws are fastened such that the screws pass through two adjoining housing covers. In this case, in a case where, for example, the first housing cover needs to be removed, the second housing cover also needs to be removed, which is extra work.
The housing covers in the present embodiment each have areas that overlap with adjoining housing covers and are configured such that a housing cover to be removed can be removed alone from the casing 4 of the printing apparatus 1. In other words, a housing cover can be removed separately without removing an adjoining housing cover from the casing 4.
The printing apparatus 1 of the present embodiment is configured such that each unit alone can be removed, as described with reference to
As illustrated in
The fourth housing cover 74 has screw holes 742 and hook holes 741 (openings) at its one end that adjoins another housing cover (on the third housing cover 73 side). In the situation in which the fourth housing cover 74 and the third housing cover 73 are attached to the casing 4, the curved portion 733 of the third housing cover 73 is not overlapped with the fourth housing cover 74 in the x-direction. In that situation, the hooks 731 protruding from the curved portion 733 in the x-direction are fitted into the hook holes 741 of the fourth housing cover 74. In other words, only the hooks 731 of the third housing cover 73 are overlapped with the fourth housing cover 74 in the x-direction.
The fitting of the hooks 731 into the hook holes 741 as described above couples the third housing cover 73 and the fourth housing cover 74 to each other. The fitting of the hooks 731 into the hook holes 741 prevents the housing cover from lifting up, thus keeping the closed space. The overlapped portions between the two housing covers are only the hooks 731. Thus, in the situation in which screws are fastened through the screw holes 732 and 742, the screws do not need to pass through multiple housing covers. For this reason, in the case where a certain housing cover (for example, the third housing cover 73) needs to be removed, the certain housing cover can be released from the coupling state with another housing cover (the fourth housing cover 74) by disengaging the hooks 731 from the hook holes 741, without removing the other housing cover from the casing 4. Since the hooks 731 are fitted into the hook holes 741, the hook holes 741 are covered with the hooks 731, keeping the inside of the main body as a closed space.
Although
Note that although in the present embodiment, a configuration including the ink supply unit 15, sub-tanks 151, supply flow path C2, collection flow path C4, supply pump P1, and collection pump P2, as described with reference to
<<Modification>>
Described in the embodiment described above are the following modifications.
(Modification 1)
A printing apparatus including:
a print head configured to eject ink;
an ink supply unit including
a conveying unit configured to convey a print medium on which the print head performs printing, in which
the ink supply unit is removable from a first side, and
the conveying unit is removable from a second side, which is different from the first side.
(Modification 2)
The printing apparatus according to modification 1, further including
a first cover that covers the ink supply unit or the conveying unit; and
a second cover, in which
the first cover has a curved portion at one end of the first cover in a horizontal direction, the curved portion having a protrusion at an extremity of the curved portion, and
the second cover adjoins the first cover on the curved portion side, and the second cover has an opening into which the protrusion fits.
(Modification 3)
The printing apparatus according to modification 2, in which
in a state where the first cover and the second cover are attached to a casing of the printing apparatus, the curved portion and the second cover are not overlapped with each other on the casing, but the protrusion and the second cover are overlapped with each other on the casing.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2018-151457, filed Aug. 10, 2018, which is hereby incorporated by reference wherein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-151457 | Aug 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5619237 | Inoue et al. | Apr 1997 | A |
5621450 | Kawai et al. | Apr 1997 | A |
5717445 | Kida et al. | Feb 1998 | A |
5751301 | Saikawa et al. | May 1998 | A |
5933174 | Kawazoe et al. | Aug 1999 | A |
6062683 | Kawakami et al. | May 2000 | A |
6095635 | Kinoshita et al. | Aug 2000 | A |
6113215 | Yanagi et al. | Sep 2000 | A |
6120128 | Kawakami et al. | Sep 2000 | A |
6336709 | Inoue et al. | Jan 2002 | B1 |
6361158 | Inoue et al. | Mar 2002 | B1 |
6536885 | Kuribayashi et al. | Mar 2003 | B2 |
7401909 | Inoue et al. | Jul 2008 | B2 |
7407274 | Inoue et al. | Aug 2008 | B2 |
7407275 | Inoue et al. | Aug 2008 | B2 |
7914137 | Inoue et al. | Mar 2011 | B2 |
8425022 | Inoue et al. | Apr 2013 | B2 |
20090213163 | Bansyo | Aug 2009 | A1 |
20190047306 | Sasaki | Feb 2019 | A1 |
20190143686 | Hirata | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2007-296640 | Nov 2007 | JP |
2009-196208 | Sep 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20200047512 A1 | Feb 2020 | US |