1. Technical Field
The present invention relates to a printing apparatus that carries out printing on a printing medium electrostatically adsorbed on a transport belt.
2. Related Art
JP-A-2004-149280 discloses an example of a printing apparatus provided with a transport belt and a print head that discharges a printing material such as ink toward a printing medium. In such a printing apparatus, when a transport belt is charged by a charging unit, the printing medium fed onto the transport belt is electrostatically adsorbed on the transport belt. When the printing medium is transported by the operation of the transport belt, printing material from the print head is attached to the printing surface that is the surface that does not come in contact with transport belt of both surfaces of the printing medium.
Incidentally, in order to increase the efficiency of the electrostatic adsorption of the printing medium by the transport belt, it is desirable to eliminate the electric charge from the printing surface of the printing medium. Here, a charge eliminating unit that eliminates the electric charge from the printing surface by coming in contact with the printing surface of the printing medium may be provided in such a printing apparatus.
However, in this case the charge eliminating unit gradually deteriorates because the charge eliminating unit is made to come in contact with the printing medium in order to eliminate the electric charge from the printing surface of the printing medium. When the deterioration of the charge eliminating unit proceeds in this way, the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit is lowered.
An advantage of some aspects of the invention is to provide a printing apparatus that is able to suppress lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit.
According to an aspect of the invention, there is provided a printing apparatus, including a transport belt that transports a printing medium; a charging unit that supplies an electric charge to the transport belt; a print head that causes a printing material to be attached to a printing surface of the printing medium that is electrostatically adsorbed on the transport belt, in a case where a surface that comes in contact with the transport belt of both surfaces of the printing medium is a contact surface and a surface on an opposite side to the contact surface is the printing surface; a charge eliminating unit that is displaceable between a charge elimination position able to come in contact with the printing medium transported by the transport belt and a retreated position unable to come in contact with the printing medium, and that removes the electric charge from the printing surface by coming in contact with the printing surface of the printing medium; and a charge elimination control device that controls the position of the charge eliminating unit, in which the charge elimination control device arranges the charge eliminating unit at the charge elimination position when the printing medium electrostatically adsorbed on and transported by the transport belt is at the position able to come in contact with the charge eliminating unit.
According to the configuration, making the charge eliminating unit come in contact with printing medium transported by the transport belt and not allowing the charge eliminating unit to come in contact with printing medium can be selected when printing on the printing medium. Therefore, compared to a case where the charge eliminating unit is constantly arranged at the charge elimination position, deterioration of the charge eliminating unit is delayed by the amount it is possible to reduce the chance of the charge eliminating unit coming in contact with the printing medium or transport belt. By the deterioration of the charge eliminating unit being delayed in this way, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be lowered.
In the printing apparatus, it is preferable that the charge elimination control device determines whether the charge eliminating unit is made to come in contact with the printing medium transported by the transport belt and controls the position of the charge eliminating unit based on the determination results according to the type of printing medium that is a printing target.
By specifying the type of printing medium, it can be determined whether the printing medium is one in which curling easily occurs due to attachment of the printing material or is one with a high resistance value. When the printing medium is one in which curling easily occurs or when the printing medium is one with a high resistance value, it is desirable that the electrostatic adsorption force of the printing medium be increased by the transport belt by eliminating the electric charge from the printing surface of the printing medium with the charge eliminating unit. On the other hand, the electrostatic adsorption force of the printing medium due to the transport belt may not be increased to this extent when curling does not easily occur in the printing medium or when the resistance value of the printing medium is low. Here, in the configuration, whether the charge eliminating unit is arranged at the charge elimination position or arranged at the retreated position is determined according to the type of printing medium that is the printing target, and the position of the charge eliminating unit is controlled based on the determination results. In so doing, contact between the printing medium and the charge eliminating unit can be avoided when it is possible to determine that the electrostatic adsorption force of the printing medium may not increase due to the transport belt. Therefore, because it is possible for the charge eliminating unit to be arranged at the retreated position during printing according to the type of printing medium that is the printing target, the charge eliminating unit does not easily deteriorate compared to a case where the charge eliminating unit is constantly arranged at the charge elimination position. As a result, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed.
In the printing apparatus, it is preferable that the charge elimination control device determines whether the charge eliminating unit is made to come in contact with the printing medium transported by the transport belt and controls the position of the charge eliminating unit based on the determination results based on a humidity of an installation environment of the printing apparatus.
The higher the humidity of the installation environment of the printing apparatus becomes, the more easily the resistance value of the printing medium is reduced. Even if the electric charge is not eliminated from the printing surface of the printing medium by the charge eliminating unit when the resistance value of the printing medium is low, the electric charge of the printing surface naturally becomes easily neutralized. That is, even if the electric charge is not eliminated from the printing surface of the printing medium by the charge eliminating unit, the electrostatic adsorption force of the printing medium due to the transport belt increases. Here, in this configuration, the position of the charge eliminating unit is controlled in consideration of the humidity of the installation environment of the printing apparatus. Therefore, the charge eliminating unit can be arranged at the retreated position during printing according to the humidity of the installation environment of the printing apparatus. As a result, the charge eliminating unit does not easily deteriorate compared to a case where the charge eliminating unit is constantly arranged at the charge elimination position, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed.
It is preferable that the printing apparatus of the aspect further includes a determination device that determines whether a resistance value of the printing medium that is the printing target increases based on a temperature and the humidity of the installation environment of the printing apparatus, in which the charge elimination control device arranges the charge eliminating unit at the charge elimination position when it is determined that the resistance value of the printing medium increases by the determination device or arranges the charge eliminating unit at the retreated position when it is determined that the resistance value of the printing medium decreases by the determination device.
The resistance value of the printing medium changes according to the temperature and humidity of the installation environment of the printing apparatus. The relationship between the temperature and humidity of the installation environment and the resistance value of the printing medium can be ascertained to a given extent by practical testing, simulation, or the like. That is, the resistance value of the printing medium can be estimated based on the temperature and humidity of the installation environment. Here, in the configuration, it is determined whether the resistance value of the printing medium is increased based on the temperature and humidity of the installation environment of the printing apparatus, and the charge eliminating unit is caused to come in contact with printing medium transported by the transport belt when it is possible to determine that the resistance value is increased. Conversely, the charge eliminating unit is not brought into contact with printing medium transported by the transport belt when it is possible to determine that the resistance value of the printing medium is decreased. That is, because the electrostatic adsorption force of the printing medium due to the transport belt is comparatively large when it is possible to predict that the electric charge of the printing surface is easily naturally neutralized even if the electric charge is not eliminated from the printing surface of the printing medium by the charge eliminating unit, the charge eliminating unit is not brought into contact with printing medium. Therefore, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that the charge eliminating unit becomes less prone to deterioration compared to a case where the charge eliminating unit is constantly arranged at the charge elimination position regardless of the temperature and humidity of the installation environment of the printing apparatus.
It is preferable that the printing apparatus of the aspect further includes a reversal mechanism that reverses a front and back of the printing medium and guides the printing medium on the transport belt so that a first surface becomes the contact surface and a second surface that is a surface on an opposite side of the first surface becomes the printing surface after printing on the first surface of both surfaces of the printing medium is finished, in which the print head is arranged further downstream in the transport direction than the charge elimination position, and the charge elimination control device arranges the charge eliminating unit at the charge elimination position when carrying out printing on the second surface of the printing medium guided on the transport belt from the reversal mechanism.
When performing duplex printing on the printing medium, curling easily occurs in the printing medium on the transport belt when performing printing on the second side in a situation with the printing material attached by printing on the first side. Here, in the configuration, the charge eliminating unit is arranged at the charge elimination position when performing printing on the second surface of the printing medium guided from the reversal mechanism on the transport belt, and the electric charge is eliminated from the second surface of the printing medium by the charge eliminating unit. By eliminating the electric charge from the second surface in this way, the electrostatic adsorption force of the printing medium due to the transport belt can be increased, and it becomes difficult for the medium to curl on the transport belt. As a result, the occurrence of printing defects can be suppressed by the amount that it becomes difficult for a phenomenon in which the printing medium comes in contact with the print head or the like to occur.
It is preferable that the printing apparatus further includes a reversal mechanism that reverses a front and back of the printing medium and guides the printing medium on the transport belt so that a first surface becomes the contact surface and a second surface that is a surface on an opposite side to the first surface becomes the printing surface after printing on the first surface of both surfaces of the printing medium is finished, in which the charge elimination control device determines whether the printing medium is curled due to printing on the first surface of the printing medium, and arranges the charge eliminating unit at the charge elimination position when printing on the second surface of the printing medium when it is determined that the printing medium is curled due to printing on the first surface of the printing medium, and arranges the charge eliminating unit at the retreated position when printing on the second surface of the printing medium when it is determined that the printing medium is not curled due to printing on the first surface of the printing medium.
According to the configuration, the charge eliminating unit is not brought into contact with printing medium when printing on the second surface in a case where it is determined that the printing medium does not curl even if printing is performed on the first surface. Therefore, regardless of form of printing on the first surface, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that the charge eliminating unit becomes less prone to deterioration compared to a case where the charge eliminating unit is constantly arranged at the charge elimination position during printing on the second surface.
It is preferable that the printing apparatus further includes a reversal mechanism that reverses a front and back of the printing medium and guides the printing medium on the transport belt so that a first surface becomes the contact surface and a second surface that is a surface on an opposite side to the first surface becomes the printing surface after printing on the first surface of both surfaces of the printing medium is finished, in which the printing medium includes four lateral edges and includes corners that are connection parts for two of the lateral edges, and in a case where the first surface of the printing medium is divided into a plurality of regions, and a region that includes a corner of the printing medium of each region is the determination region, the charge elimination control device calculates the maximum discharge amount that is the maximum amount of the printing material that is able to be attached to the determination region through discharge of the printing material from the print head to the determination region, calculates the discharge amount that is the amount of printing material discharged from the print head to the determination region based on printing data employed in printing on the first surface of the printing medium, calculates the discharge ratio that is the ratio of the discharge amount to the maximum discharge amount, arranges the charge eliminating unit at the retreated position when printing on the second surface of the printing medium when the discharge ratio in the determination region is less than the determination ratio, and arranges the charge eliminating unit at the charge elimination position when printing on the second surface of the printing medium when the discharge ratio in the determination region is the determination ratio or higher.
As the amount of the printing material attached to the region including the corner of the printing medium by the printing on the first surface increases, the printing medium more easily curls. Here, in the configuration, because it can be determined that there is potential for the printing medium to curl due to printing on the first surface when the region including the corner of the printing medium from the plurality of regions into which the first surface is divided is the determination region and the discharge ratio of the determination region is the determination ratio or higher, printing on the second surface is performed with the charge eliminating unit caused to come in contact with printing medium thereby increasing the electrostatic adsorption force of the printing medium due to the transport belt. Therefore, the occurrence of printing defects can be suppressed by the amount that it becomes difficult for a phenomenon in which the printing medium comes in contact with the print head or the like to occur when printing on the second surface. Meanwhile, because it is can be determined that the printing medium does not curl due to printing on the first surface when the discharge ratio on the determination region is less than the determination ratio, the charge eliminating unit is not brought into contact with printing medium, and printing is performed on the second surface. In this way, deterioration of the charge eliminating unit can be suppressed and lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that is possible to reduce the chance of the charge eliminating unit coming in contact with the printing medium.
It is preferable that the printing apparatus further includes a reversal mechanism that reverses a front and back of the printing medium and guides the printing medium on the transport belt so that a first surface becomes the contact surface and a second surface that is a surface on an opposite side to the first surface becomes the printing surface after printing on the first surface of both surfaces of the printing medium is finished, in which the printing medium includes four lateral edges and includes corners that are connection parts for two of the lateral edges, and in a case where the first surface of the printing medium is divided into a plurality of regions, and a region that is configured by an end region that is a region including a corner of the printing medium and a region that neighbors the end region of each of the regions is the determination region, the charge elimination control device calculates the maximum discharge amount that is the maximum amount of the printing material that is able to be attached to the determination region through discharge of the printing material from the print head to the determination region, calculates the discharge amount that is the amount of printing material discharged from the print head to the determination region based on printing data employed in printing on the first surface of the printing medium, calculates the discharge ratio that is the ratio of the discharge amount to the maximum discharge amount, arranges the charge eliminating unit at the retreated position when printing on the second surface of the printing medium when the discharge ratio in the determination region is less than the determination ratio, and arranges the charge eliminating unit at the charge elimination position when printing on the second surface of the printing medium when the discharge ratio in the determination region is the determination ratio or higher.
As the amount of the printing material attached to the region including the corner of the printing medium by the printing on the first surface increases, the printing medium more easily curls. Here, in the configuration, the region configured by the end region that includes the corner of the printing medium and the region that neighbors the end region from the plurality of regions into which the first surface is divided is made the determination region. Because it is possible to determine that there is potential for the printing medium to curl due to printing on the first surface when the discharge ratio of the determination region is the determination ratio or higher, printing on the second surface is performed with the charge eliminating unit caused to come in contact with printing medium thereby increasing the electrostatic adsorption force of the printing medium due to the transport belt. Therefore, the occurrence of printing defects can be suppressed by the amount that it becomes difficult for a phenomenon in which the printing medium comes in contact with the print head or the like to occur when printing on the second surface. Meanwhile, because it is can be determined that the printing medium does not curl due to printing on the first surface when the discharge ratio on the determination region is less than the determination ratio, the charge eliminating unit is not brought into contact with printing medium, and printing is performed on the second surface. In this way, deterioration of the charge eliminating unit can be suppressed and lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that is possible to reduce the chance of the charge eliminating unit coming in contact with the printing medium.
In the printing apparatus, it is preferable that a plurality of determination regions including one of the corners is set on the first surface of the printing medium, and the charge elimination control device arranges the charge eliminating unit at the retreated position when printing to the second surface of the printing medium when the discharge ratio in all of the determination regions is less than the determination ratio, and arranges the charge eliminating unit at the charge elimination position when printing on the second surface of the printing medium when the discharge ratio in at least one of the determination regions of each of the determination regions is the determination ratio or higher.
According to the configuration, it is determined whether the discharge ratio is the determination ratio or higher for each determination region, and it can be determined if there is potential for the printing medium to curl due to the printing on the first surface even when there is one determination region for which the discharge ratio is the determination ratio or higher. Therefore, upon causing the charge eliminating unit to come in contact with printing medium to increase the electrostatic adsorption force of the printing medium due to the transport belt, printing is performed on the second surface. Meanwhile, because it is possible to determine that the printing medium does not curl due to printing on the first surface when there is no determination region for which the discharge ratio is the determination ratio or higher, the charge eliminating unit is not brought into contact with printing medium, and printing is performed on the second surface. In this way, deterioration of the charge eliminating unit can be suppressed and lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that is possible to reduce the chance of the charge eliminating unit coming in contact with the printing medium.
In the printing apparatus, it is preferable that a variable pressing force mechanism unit that is able to change the pressing force of the charge eliminating unit on the printing medium electrostatically adsorbed on the transport belt with the charge eliminating unit at the charge elimination position is included, in which the charge elimination control device causes the pressing force of the charge eliminating unit to change according to the discharge ratio using the variable pressing force mechanism unit.
The potential for the degree of the curling of the printing medium, that is, the curvature to which the printing medium is curved, is high when the discharge ratio is high. Here, according to the configuration, since the pressing force of the charge eliminating unit can be increased when the discharge ratio is high, the resistance force when the charge eliminating unit comes in contact with the printing medium can be suppressed, a printing medium with a curled shape can be stretched, and the contact area with the transport belt on the printing medium can be increased.
In the printing apparatus, it is preferable that the charge elimination control device arranges the charge eliminating unit at the retreated position when carrying out printing on the first surface of the printing medium.
Because the printing material is not yet attached on the printing medium during printing on the first surface, different to when printing on the second surface, the potential for the printing medium to curl is low. Here, in the configuration, the charge eliminating unit is arranged at the retreated position and the charge eliminating unit is not brought into contact with printing medium even during printing on the first surface. In so doing, lowering of the elimination efficiency of the electric charge from the printing medium by the charge eliminating unit can be suppressed by the amount that the charge eliminating unit becomes less prone to deterioration compared to a case where the charge eliminating unit is arranged at the charge elimination position even during printing on the first surface.
It is preferable that the printing apparatus further includes a support roller which is arranged further upstream in the transport direction than the charge elimination position and that presses the printing medium to the transport belt, in which the support roller is driven to rotate by an operation of the transport belt.
According to the configuration, because the printing medium is pressed to the transport belt by the support rollers, the printing medium can be suitably polarized by the amount that is it possible for the degree of adhesion between the printing medium and the transport belt to be increased. As a result, the printing medium can be more easily electrostatically adsorbed on the transport belt.
In the printing apparatus, it is preferable that the support roller is grounded.
According to the configuration, because the support roller is grounded, the electric charge can be eliminated to a given extent from the printing surface by the support roller coming in contact with printing surface of the printing medium.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Below, a first embodiment in which the printing apparatus is embodied as an ink jet printer will be described according to
As shown in
The printing unit 14 includes a line head-type print head 141 that is able to discharge ink that is an example of the printing material over substantially all regions in the width direction of the sheet at the same time. An image is formed on the sheet P by attaching the ink discharged from the print head 141 to the sheet P.
The transport device 29 includes a discharge mechanism unit 25 that discharges the sheet P on which printing is completed outside the housing 12, and a feeding mechanism unit 30 that feeds the sheet P before printing along the medium transport path 20.
The discharge mechanism unit 25 includes a plurality of discharge roller pairs 19 arranged along the medium transport path 20. The sheet P transported by the discharge mechanism unit 25 is discharged to the outside of the housing 12 from the medium discharge port 26 formed in the housing 12. That is, the medium discharge port 26 becomes the downstream end of the medium transport path 20, that is, the furthest downstream of the transport path of the medium. The sheet P discharged from the medium discharge port 26 is mounted on a mounting stand 60 in a layered state as shown by the double dotted and dashed line in
The feeding mechanism unit 30 includes a first medium supply unit 21, a second medium supply unit 22, a third medium supply unit 23, and an electrostatic transport unit 50. The electrostatic transport unit 50 is arranged directly below the printing unit 14 in the drawing. That is, ink is discharged from the print head 141 to the sheet P transported by the electrostatic transport unit 50.
An openable/closeable cover 12F is provided on one side surface (right side surface in
A medium cassette 12c in which the sheets P prior to printing are set in a stacked state is provided on the lower portion in
The third medium supply unit 23 is a supply unit for guiding again the sheet P with printing on the sheet surface of one side (first surface) is completed to the electrostatic transport unit 50 when performing duplex printing in which printing is performed with respect to the sheet P on the sheet surface of both sides. That is, a branch transport path 24 that branches from the medium transport path 20 is formed further downstream in the transport direction of the sheet than the electrostatic transport unit 50. A branching mechanism 27 that is arranged further to the downstream in the transport direction of the sheet than the electrostatic transport unit 50 and that switches the transport path of the sheet P to the medium transport path 20 or the branch transport path 24 and a branch transport path roller pair 44 that is arranged on the branch transport path 24, and that is capable of rotation in the forward and reverse directions are provided in the third medium supply unit 23.
In a case of performing duplex printing, the sheet P with printing completed on a sheet surface on one side is guided from the electrostatic transport unit 50 to the branch transport path 24 by the branching mechanism 27. At this time, the sheet P is transported to the downstream in the transport direction by the rotation in the forward direction of each roller that configures the branch transport path roller pair 44. When the tail end of the sheet P is guided to the branch transport path 24, each roller that configures the branch transport path roller pair 44 rotates in the reverse direction and the sheet P is transported in the reverse direction. Thus, the sheet P is guided to the reverse supply path 31 that is positioned further upwards than the printing unit 14 in
When the sheet P is guided again to the electrostatic transport unit 50 in this way, the sheet surface (first surface) on which printing is completed comes in contact with the electrostatic transport unit 50, and the sheet surface (second surface) that is not printed faces the print head 141. The sheet surface from both surfaces of the sheet P that comes in contact with the electrostatic transport unit 50 is referred to as the “contact surface” and the surface on the opposite side to the contact surface is referred to as the “printing surface”. That is, in the printing apparatus 11 of the embodiment, after printing on the first surface from both surfaces of the sheet P by the third medium supply unit 23 is finished, an example of the “reversal mechanism” that reverses the front and back of the sheet P and guides the sheet P to the electrostatic transport unit 50 is configured so that the first surface becomes the contact surface and the second surface becomes the printing surface.
Next, the configuration of the electrostatic transport unit 50 and peripheral members thereof will be described with reference to
A backup plate 55 made from metal that passes through the transport belt 53 to support the sheet P is provided directly below the print head 141. The backup plate 55 is grounded. The backup plate 55 is comes in contact with the inner surface of the transport belt 53 that is the surface on the opposite side to the support surface of the transport belt 53, and biases the transport belt 53 to the print head 141 side.
A charging roller 56 that is an example of a charging unit is provided further to the upstream in the transport direction (right side in the drawing) than the transport driving roller 51. The charging roller 56 comes in contact with to the outer surface of the transport belt 53. The charging roller 56 is driven to rotate with respect to the transport driving roller 51 by the rotation of the transport driving roller 51 being transmitted to the charging roller 56 through the transport belt 53. At this time, the contact location on the transport belt 53 is charged by the charging roller 56 applying a voltage to the contact location on the outer surface of the transport belt 53. That is, the transport belt 53 is charged by contact with the charging roller 56. In the printing apparatus 11 of the embodiment, the charging roller 56 alternately supplies a positive charge or a negative charge with respect to the transport belt 53 that is in contact with the charging roller 56.
A support roller 57 that pushes the sheet P fed by the electrostatic transport unit 50 to the transport belt 53 is provided further to the upstream in the transport direction of the sheet (right side in the drawing) than the print head 141. The support roller 57 is configured from a conductive material, such as a metal, and is grounded. The support roller 57 is driven to rotate with respect to the transport driving roller 51 by the rotation of the transport driving roller 51 being transmitted to the support roller 57 through the transport belt 53.
A charge eliminating device 58 is further provided between the support roller 57 and the print head 141 in the transport direction of the sheet. The charge eliminating device 58 includes a charge eliminating unit 581 configured by a brush 583 or the like and an actuator 582 that causes the charge eliminating unit 581 to be displaced. The charge eliminating unit 581 extends in an extension direction for which the width direction of the sheet is the main component and is able to contact all regions in the width direction of the sheet. When the charge eliminating unit 581 comes in contact with the printing surface of the sheet P transported by the transport belt 53, the charge eliminating unit 581 eliminates the charge from the printing surface.
The charge eliminating unit 581 is displaceable between a charge elimination position that is a position able to come in contact with the sheet P and a retreated position that is a position unable to come in contact with the sheet P by the driving of the actuator 582. That is, as indicated by the arrow, the charge eliminating unit 581 is displaceable in a direction orthogonal to the printing surface of the sheet P, and the position of the charge eliminating unit 581 shown in
In the embodiment, the distance L1 between the print head 141 and the transport belt 53 in the direction (direction orthogonal to the printing surface of the sheet P) in which ink is discharged from the print head 141 is 0.9 mm.
In a state in which the brush 583 presses the sheet P adsorbed on the transport belt 53 with the charge eliminating unit 581 in
In a state in which the brush 583 is separated from the transport belt 53 with the charge eliminating unit 581 in
Next, the action when the sheet P is electrostatically adsorbed on the transport belt 53 will be described with reference to
As shown in
Also in the printing surface Pb of the sheet P that is the opposite side of contact surface Pa, the negative part 75 charged with a negative charge and the positive part 76 charged with a positive charge are alternately formed. In a case where the resistance value of the sheet P is low, even if the charge eliminating unit 581 is not brought into contact with printing surface Pb, in the printing surface Pb, the charge is naturally easily neutralized by the positive part 76 and the negative part 75 being adjacent to one another. Therefore, as shown in
However, in a case where the resistance value of the sheet P is high, in the printing surface Pb, it is difficult for the charge to be neutralized naturally by the positive part 76 and the negative part 75 adjacent to one another. In this case, the charge on the printing surface Pb side and the charge on the contact surface Pa side become attracted to one another. The attractive force that is a force arising due to the attraction between the charge on the printing surface Pb side and the charge on the contact surface Pa side is a force that causes the contact surface Pa to be drawn to the printing surface Pb side. That is, the attractive force becomes a repulsive force with respect to the force that attracts the contact surface Pa of the sheet P to the transport belt 53. Therefore, the force that attracts the sheet P to the transport belt 53, that is, the electrostatic adsorption force does not easily increase. Accordingly, in a case where the resistance value of the sheet P is predicted to be large, it is possible for the electric charge to be substantially eliminated from the printing surface Pb by the charge eliminating unit 581 being made to come in contact with printing surface Pb. In so doing, the attractive force is reduced, and the electrostatic adsorption force of the sheet P due to the transport belt 53 increases.
Incidentally, in a case where the charge eliminating unit 581 is arranged at the charge elimination position, the support roller 57 and the charging roller 56 are different, and the charge eliminating unit 581 is not driven to rotate with respect to the operation of the transport belt 53. Therefore, deterioration of the charge eliminating unit 581 stemming from contact with the transport belt 53 and the sheet P proceeds more easily than the support roller 57 and the charging roller 56. The elimination efficiency of the electric charge from the sheet P by the charge eliminating unit 581 is lowered as the deterioration of the charge eliminating unit 581 progresses in this way.
Here, it is possible to determine whether the resistance value of the sheet P that is the printing target is high in light of the type of sheet P, that is, the constitution of the sheet, the weight of the sheet, the thickness of the sheet and the like. For example, it is possible for the type of sheet P that is the printing target to be selected with the user interface of the printing apparatus 11 or an external apparatus (personal computer or mobile terminal) that is able to communicate with the printing apparatus 11 and to determine whether the resistance value of the sheet P that is the printing target is high by analyzing the information according to the selection results thereof with a control device.
Here, in the printing apparatus 11 of the embodiment, while the charge eliminating unit 581 is arranged at the retreated position when printing on the sheet P when it is possible to determine that the resistance value of the printing target sheet P is low, the charge eliminating unit 581 is arranged at the charge elimination position when printing on the sheet P when it is possible to determine that the resistance value of the printing target sheet P is high.
Even with the same type of sheet P, the resistance value of the sheet P is able to change due to the installation environment and the like of the printing apparatus 11. That is, in a case where the temperature TMP of the installation environment of the printing apparatus 11 is constant, the resistance value of the sheet P decreases as the humidity HMD of the installation environment increases. In a case where the humidity HMD of the installation environment of the printing apparatus 11 is constant, the resistance value of the sheet P decreases as the temperature TMP of the installation environment increases.
Here, in the printing apparatus 11 of the embodiment, the charge eliminating unit 581 is arranged at the retreated position when printing on the sheet P when it is possible to determine that the resistance value of the printing target sheet P is low based on the temperature TMP and humidity HMD of the installation environment. Meanwhile, the charge eliminating unit 581 is arranged at the charge elimination position when printing on the sheet P when it is possible to determine that the resistance value of the printing target sheet P is high based on the temperature TMP and humidity HMD of the installation environment.
Incidentally, when curling occurs in the sheet P due to the attachment of the ink, there is concern of the sheet P contacting the print head 141 or the like, the sheet P being fouled, or the sheet P receiving damage, and, as a result, printing defects occurring. Therefore, from the viewpoint of suppressing printing defects during printing on a sheet P in which curling easily occurs, it is not desirable that the electrostatic adsorption force of the sheet P due to the transport belt 53 is low. On the other hand, even if the electrostatic adsorption force of the sheet P due to the transport belt 53 is low during printing on a sheet P in which curling does not easily occur, printing defects such as above do not easily occur.
The ease with which curling occurs due to the attachment of ink to the sheet P differs according to the type of sheet P that is the printing target. In other words, it is possible to predict the ease with which curling of the sheet P that is the printing target occurs by specifying the type of sheet P. Here, by the type of the sheet P that is the printing target as above being selected and analyzing the information according to the selection results thereof with a control device, it can be determined whether curling easily occurs in the sheet P that is the current printing target with the printing apparatus 11.
Here, in the printing apparatus 11 of the embodiment, when it is possible to determine that curling easily occurs due to the attachment of ink to the sheet P that is the printing target, the charge eliminating unit 581 is arranged at the charge elimination position when printing on the sheet P. Meanwhile, when it is possible to determine that curling does not easily occur due to the attachment of ink to the sheet P that is the printing target, the charge eliminating unit 581 is arranged at the retreated position when printing on the sheet P.
Next, the control device 80 of the printing apparatus 11 will be described with reference to
As shown in
The control device 80 includes a microcomputer configured by a CPU, a ROM, a RAM and the like, an application specific IC (ASIC), and various driver circuits. The control device 80 includes an input information processor 91, a temperature and humidity determination unit 92, a sheet determination unit 93, a charge elimination controller 94, a transport controller 95, and a print controller 96 as functional units configured by at least one of software and hardware.
The input information processor 91 analyzes information input from the user interface 81 and information received from the external apparatus 100, and outputs, as appropriate, the analysis results thereof to the sheet determination unit 93, the transport controller 95, and the print controller 96. For example, the input information processor 91 outputs information pertaining to the type of sheet P that is the printing target to the sheet determination unit 93 and outputs information pertaining to the transport state of the sheet P to the transport controller 95. The input information processor 91 outputs the information pertaining to the printing precision to the print controller 96.
Possible examples of the information pertaining to the transport state of the sheet P include information pertaining to the transport speed of the sheet P and information on which of single sided printing or duplex printing is selected. Possible examples of the information pertaining to the printing precision include printing data that is data pertaining to an image formed on the sheet P and information pertaining to the resolution of the image formed on the printing surface of the sheet P.
The temperature and humidity determination unit 92 determines whether the environment is one in which the resistance value of the sheet P easily increases based on the temperature TMP detected by the temperature sensor SE1 and the humidity HMD detected by the humidity sensor SE2. At this time, the temperature and humidity determination unit 92, with reference to the map shown in
The sheet determination unit 93 determines whether the sheet P that is the printing target is a sheet with a high resistance value or is a sheet in which curling easily occurs due to the attachment of ink based on the information input from the input information processor 91. The sheet determination unit 93 outputs information pertaining to the determination results to the charge elimination controller 94.
The charge elimination controller 94 determines if the charge eliminating unit 581 is arranged at the charge elimination position or is arranged at the retreated position based on the information input from the sheet determination unit 93 and the temperature and humidity determination unit 92. That is, the charge elimination controller 94 determines whether the charge eliminating unit 581 is made to come in contact with the sheet P transported by the transport belt 53 when printing on the sheet P.
For example, the charge elimination controller 94 determines that the charge eliminating unit 581 is arranged at the charge elimination position when at least one of the following three conditions is established. Meanwhile, the charge elimination controller 94 determines that the charge eliminating unit 581 is arranged at the retreated position when none of the following three conditions is established.
case where the resistance value of the sheet P that is the printing target is determined to be high based on the input information from the sheet determination unit 93.
case where the sheet P that is the printing target is determined to be a sheet that easily curls based on the input information from the sheet determination unit 93.
case where the installation environment of the printing apparatus 11 at the present point in time is included in the high resistance region A1 based on the input information from the temperature and humidity determination unit 92.
In a case where the charge elimination controller 94 determines that the charge eliminating unit 581 is arranged at the charge elimination position, the charge elimination controller 94 arranges the charge eliminating unit 581 at the charge elimination position by the actuator 582 being driven when the sheet P transported while electrostatically adsorbed on the transport belt 53 is at a position able to come in contact with the charge eliminating unit 581. Meanwhile, in a case where the charge elimination controller 94 determines that the charge eliminating unit 581 is arranged at the retreated position, the charge elimination controller 94 arranges the charge eliminating unit 581 at the retreated position by the actuator 582 being driven. At this point, in the printing apparatus 11 of the embodiment, an example of the “charge elimination control device” that controls the position of the charge eliminating unit 581 is configured by the charge elimination controller 94. When the position control of the charge eliminating unit 581 is completed in this way, the charge elimination controller 94 outputs that the start of printing on the sheet P is allowed to the transport controller 95 and the print controller 96.
When it is input from the charge elimination controller 94 that the start of printing is allowed, the transport controller 95 controls the transport device 29 so that the sheet P is transported in a state based on the input information from the input information processor 91.
The print controller 96 controls the form of ink discharged from the print head 141 based on the printing data. At this time, it is possible for the print controller 96 to form the image at an appropriate position on the printing surface Pb of the sheet P by cooperating with the transport controller 95.
Next, the processing procedure when executing printing on the sheet P will be described with reference to the flowchart shown in
As shown in
In the step S13, the sheet type determination process is executed. The sheet type determination process is executed by the sheet determination unit 93. That is, whether the sheet P that becomes the printing target is a sheet with a high resistance value is determined based on the information pertaining to the type of sheet P input to the sheet determination unit 93. Based on the information, whether the sheet P that is the printing target is a sheet in which curling easily occurs due to the attachment of ink is determined. When the sheet type determination process is finished, the process transitions to the next step S14.
In the step S14, it is determined whether execution of the charge elimination process that eliminates the charge from the printing surface Pb of the sheet P is necessary for the current printing. The determination is executed by the charge elimination controller 94. In a case where execution of the charge elimination process is determined to be necessary, it is determined to arrange the charge eliminating unit 581 at the charge elimination position. Meanwhile, in a case where execution of the charge elimination process is determined to be unnecessary, it is determined to arrange the charge eliminating unit 581 at the retreated position.
In a case where it is determined that execution of the charge elimination process is necessary (step S14: YES), the charge eliminating unit 581 is arranged at the charge elimination position (step S15), and the process transitions to the step S17, described later. Meanwhile, in a case where it is determined that execution of the charge elimination process is unnecessary (step S14: NO), the charge eliminating unit 581 is arranged at the retreated position (step S16), and the process transitions to the next step S17.
In the step S17, when the position control of the charge eliminating unit 581 is completed, the transport controller 95 and the print controller 96 are instructed to start printing. Thus, the transport device 29 and the printing unit 14 are driven, the sheet P is transported, and ink is discharged from the print head 141 to the printing surface Pb of the sheet P electrostatically adsorbed on the transport belt 53.
In the step S18, it is determined whether printing on the sheet P is completed. In a case where the printing is not yet completed (step S18: NO), printing on the sheet P is continued. Meanwhile, in a case where the printing is completed (step S18: YES), the sheet P is discharged toward the mounting stand 60 by the transport device 29, and the present process is completed.
Above, according to the printing apparatus 11 of the embodiment, it is possible to obtain the following effects.
(1) In the printing apparatus 11 of the embodiment, arranging the charge eliminating unit 581 at the charge elimination position or at the retreated position is possible. Therefore, it is possible for the charge eliminating unit 581 to be caused to come in contact with sheet P electrostatically adsorbed on the transport belt 53, and for the charge eliminating unit 581 to not be allowed to come in contact with sheet P. Therefore, it is possible for the chance of the charge eliminating unit 581 being made to come in contact with sheet P or the transport belt 53 when printing to be reduced, compared to a case where the charge eliminating unit 581 is constantly arranged at the charge elimination position. As a result, deterioration of the charge eliminating unit 581 is delayed and it is possible to suppress lowering of the elimination efficiency of the electric charge from the sheet P by the charge eliminating unit 581.
(2) For example, whether the charge eliminating unit 581 is arranged at the charge elimination position or arranged at the retreated position is determined according to the type of sheet P that is the printing target, and the position of the charge eliminating unit 581 is controlled based on the determination results. In so doing, it is possible for contact between the sheet P and the charge eliminating unit 581 to be avoided when it is possible to determine that the electrostatic adsorption force of the sheet P may not increase due to the transport belt 53. Therefore, the charge eliminating unit 581 does not easily deteriorate compared to a case where the charge eliminating unit 581 is constantly arranged at the charge elimination position by the amount that is it possible to arrange the charge eliminating unit 581 at the retreated position during printing according to the type of sheet P that is the printing target. As a result, it is possible for lowering of the elimination efficiency of the electric charge from the sheet P by the charge eliminating unit 581 to be suppressed.
(3) It is determined whether the resistance value of the sheet P is increased based on the temperature TMP and humidity HMD of the installation environment of the printing apparatus 11, and the charge eliminating unit 581 is caused to come in contact with sheet P transported by the transport belt 53 when it is possible to determine that the resistance value is increased. Conversely, the charge eliminating unit 581 is not brought into contact with sheet P transported by the transport belt 53 when it is possible to determine that the resistance value of the sheet P is decreased. That is, because the electrostatic adsorption force of the sheet P due to the transport belt 53 is comparatively large when it is possible to predict that the electric charge of the printing surface Pb is easily naturally neutralized even if the electric charge is not eliminated from the printing surface Pb of the sheet P by the charge eliminating unit 581, the charge eliminating unit 581 does not come in contact with the sheet P. Therefore, it is possible for the chance of the charge eliminating unit 581 being caused to come in contact with sheet P or the transport belt 53 to be reduced, compared to a case where the charge eliminating unit 581 is constantly arranged at the charge elimination position regardless of the temperature and humidity of the installation environment of the printing apparatus 11. Accordingly, it is possible to delay deterioration of the charge eliminating unit 581, and it is possible to suppress lowering of the elimination efficiency of the electric charge from the sheet P due to the charge eliminating unit 581.
(4) It is possible to reduce the exchange frequency of the charge eliminating unit 581 by lowering of the elimination efficiency of the electric charge from the sheet P due to the charge eliminating unit 581 in this way being suppressed.
(5) The sheet P fed to the electrostatic transport unit 50 is pressed to the transport belt 53 by the support roller 57. In this way, it is possible for the adhesiveness between the sheet P and the transport belt 53 to be increased, and the sheet P is easily polarized. As a result, it is possible to increase the electrostatic adsorption force of the sheet P due to the transport belt 53.
(6) The metal backup plate 55 comes in contact with the inner surface that is the surface on the opposite side to the outer surface that the sheet P comes in contact with the transport belt 53. Because the backup plate 55 is grounded, it is possible to eliminate the electric charge charged to the inner surface side of the transport belt 53 by the backup plate 55. Therefore, it is possible for the electrostatic adsorption force of the sheet P due to the transport belt 53 to be increased by the amount it is possible to suppress the reduction in the amount of electric charge charged to the outer surface side of the transport belt 53.
Next, a second embodiment in which the printing apparatus 11 is exemplified will be described according to
Ink is not yet attached to the sheet P during printing on the first surface of the sheet P when performing duplex printing. Meanwhile, the ink is already attached to the first surface during printing on the second surface of the sheet P, and there is concern of curling of the sheet P according to the attachment form of the ink to the first surface.
In this way, when transported to directly below the print head 141 in a state in which the sheet P is curled, there is concern of the part of the sheet P that is curled contacting the print head 141 or the like.
Here, in the printing apparatus 11 of the embodiment, it is determined whether there is potential for the sheet P to curl based on the form of printing on the first surface, and, when it is determined that there is potential of curling, the charge eliminating unit 581 is arranged at the charge elimination position when performing printing on the second surface. In so doing, when the sheet P for which printing on the second surface is to be performed is transported by the transport belt 53, the charge eliminating unit 581 comes in contact with the second surface of the sheet P and the electric charge is eliminated from the second surface. As a result, because it is possible to increase the electrostatic adsorption force of the sheet P due to the transport belt 53, curling of the sheet P can be suppressed on the transport belt 53.
On the other hand, when it is determined that the sheet P does not curl even when printing is performed on the first surface, the charge eliminating unit 581 is arranged at the retreated position when performing printing on the second surface. In so doing, it is difficult for deterioration of the charge eliminating unit 581 to progress compared to cases where the charge eliminating unit 581 is constantly arranged at the charge elimination position when performing duplex printing.
In the printing apparatus 11 of the embodiment, during printing on the first surface when performing duplex printing and during printing on one side only, the charge eliminating unit 581 is arranged at the retreated position. Also on this point, it is possible for the progress of the deterioration of the charge eliminating unit 581 to be delayed.
Next, the processing procedure when executing duplex printing will be described with reference to the flowchart shown in
As shown in
In the next step S32, the charge eliminating unit 581 is arranged at the retreated position before the start of printing on the first surface of the sheet P. The printing process with respect to the first surface is started in this state (step S33). Therefore, during printing on the first surface, the charge eliminating unit 581 does not come in contact with the sheet P transported by the transport belt 53.
Next, in the step S34, it is determined whether the printing process with respect to the first surface is finished. In a case where the printing process with respect to the first surface is not yet finished (step S34: NO), the printing process is continued. Meanwhile, in a case where the printing process with respect to the first surface (step S34: YES), the process transitions to the next step S35.
In the step S35, the reversal process that again guides the sheet P reversed front to back on the transport belt 53 is executed by the third medium supply unit 23 being operated. When the sheet P is again guided to the transport belt 53 by the reversal process being executed, the second surface becomes the printing surface Pb and the first surface becomes the contact surface Pa. In so doing, printing on the second surface is possible.
In the next step S36, it is determined whether execution of the charge elimination process that eliminates the electric charge from the second surface with the charge eliminating unit 581 is necessary during printing on the second surface. That is, it is determined that execution of the charge elimination process is necessary when it is possible to determine that there is potential for the sheet P to curl due to the attachment of ink to the first surface, based on the execution results of the curl determination process in step S31. Meanwhile, it is determined that execution of the charge elimination process is unnecessary when it is possible to determine that the sheet P is not curled even when ink is attached to the first surface. Whereas it is determined to arrange the charge eliminating unit 581 at the charge elimination position when it is determined that execution of the charge elimination process is necessary, it is determined to arrange the charge eliminating unit 581 at the retreated position when it is determined that execution of the charge elimination process is unnecessary.
Therefore, in a case where it is determined that execution of the charge elimination process is unnecessary (step S36: NO), the position of the charge eliminating unit 581 is not caused to move, that is, the charge eliminating unit 581 maintains the state of being arranged at the retreated position, and the process transitions to the step S38, described later. Meanwhile, in a case where it is determined that execution of the charge elimination process is necessary (step S36: YES), the charge eliminating unit 581 is moved to the charge elimination position (step S37). The process transitions to the next step S38. Displacement of such a charge eliminating unit 581 is performed while the third medium supply unit 23 is feeding the sheet P onto the transport belt 53.
In step S38, the printing process with respect to the second surface is started. Next, in the step S39, it is determined whether the printing process with respect to the second surface is finished. In a case where the printing process with respect to the second surface is not yet finished (step S39: NO), the printing process is continued. Meanwhile, in a case where the printing process with respect to the second surface is finished (step S39: YES), the sheet P is discharged toward the mounting stand 60 by the transport device 29 (steps S40). Thereafter, the present process is finished.
Next, an example of the curl determination process (step S31) in
As shown in
Here, an example of a method of setting the division regions R1 to R9 will be described with reference to
In the example shown in
Returning to
Next, in the step S64, the maximum discharge amount Xmax of ink is calculated for each determination region HR1 to HR4. The maximum discharge amount Xmax is a value corresponding to the amount of ink discharged from the print head 141 in a case where it is assumed that so-called solid printing that discharges ink evenly over the entire determination region is performed. At this time, in a case where the areas of all of the determination regions HR1 to HR4 are the same, the four maximum discharge amounts Xmax all have the same value. However, in a case where regions with a wide area and regions with a narrow area are mixed in each of the determination regions HR1 to HR4, the maximum discharge amount Xmax for the determination region with a wide area becomes greater than the maximum discharge amount Xmax for the determination region with a narrow area.
In the step S65, actual ink discharge amount Xr that is the amount of ink discharged to the determination region in actual use is calculated for each determination region HR1 to HR4. For example, when forming an image on the first surface based on the printing data acquired in the step S61, the shape and size of the image formed on the determination region is ascertained for each determination region HR1 to HR4. The amount of ink necessary when forming the image on the determination region is calculated for each determination region HR1 to HR4. The value calculated in this way is the actual ink discharge amount Xr of each determination region HR1 to HR4.
Next, in the step S66, the discharge ratio JR of each determination region HR1 to HR4 is calculated. That is, the quotient (=Xr/Xmax) in which the actual ink discharge amount Xr is divided by the maximum discharge amount Xmax is the discharge ratio JR. In the next step S67, whether determination regions in which the discharge ratio JR is the determination ratio JRTh or more are present in each determination region HR1 to HR4 is determined.
Here, the sheet P more easily curls as more ink is attached to the periphery of the corners PK1 to PK4. Here, it is possible to predict whether there is potential for the sheet P to curl due to printing on the first surface by predicting the attachment amount of ink on the determination regions HR1 to HR4 that are the division regions that include the corners PK1 to PK4. That is, the determination ratio JRTh is the determination value for determining whether there is potential for the sheet P to curl in light of the discharge ratio.
In a case where the discharge ratio JR is less than the determination ratio JRTh in all of the determination regions HR1 to HR4 (steps S67: NO), it is determined that the sheet P is not curled even when printing is performed on the first surface (step S68), and the curl determination process (step S31) in
Meanwhile, in a case where the discharge ratio JR is the determination ratio JRTh or more in at least one of the determination regions of each determination region HR1 to HR4 (step S67: YES), it is determined that there is potential for the sheet P to curl due to printing on the first surface (step S69), and the curl determination process (step S31) in
Above, according to the printing apparatus 11 of the embodiment, it is possible to further obtain the effects shown below in addition to the same effects as effects (1) and (4) to (6) in the first embodiment.
(7) When performing duplex printing on the sheet P, curling easily occurs in the sheet P when performing printing on the second surface in a situation where ink is attached due to printing on the first surface. Here, in the embodiment, when performing printing on the second surface of the sheet P, it is determined whether the charge eliminating unit 581 is arranged at the charge elimination position or at the retreated position. When it is determined to arrange the charge eliminating unit 581 at the charge elimination position, the charge eliminating unit 581 is made to come in contact with the second surface of the sheet P transported by the transport belt 53, and the electric charge is eliminated from the second surface. In so doing, the electrostatic adsorption force of the sheet P due to the transport belt 53 increases and the sheet P becomes less prone to curling on the transport belt 53. As a result, it is possible for the occurrence of printing defects to be suppressed by the amount that it becomes difficult for a phenomenon in which the sheet P comes in contact with the print head 141 or the like to occur.
(8) In the embodiment, in a case where it is determined that there is potential for the sheet P to curl when printing is performed on the first surface, the charge eliminating unit 581 is arranged at the charge elimination position when performing printing on the second surface. Therefore, because the electric charge is eliminated from the second surface by the charge eliminating unit 581 contacting the second surface during printing on the second surface, it is possible for the electrostatic adsorption force of the sheet P to be increased due to the transport belt 53. As a result, the sheet P does not easily curl on the transport belt 53. Accordingly, it is possible for the occurrence of printing defects to be suppressed by the amount that it becomes difficult for a phenomenon in which the sheet P comes in contact with the print head 141 or the like to occur. On the other hand, in a case where it is determined that the sheet does not curl even when printing is performed on the first surface, the charge eliminating unit 581 is arranged at the retreated position when performing printing on the second surface. Therefore, during printing on the second surface, the charge eliminating unit 581 does not come in contact with the sheet P. Therefore, regardless of form of printing on the first surface, it is possible for deterioration of the charge eliminating unit 581 to be delayed by the amount that the charge eliminating unit 581 becomes less prone to deterioration compared to a case where the charge eliminating unit 581 is constantly arranged at the charge elimination position during printing on the second surface.
(9) As described above, the sheet P more easily curls as the attachment amount of ink on periphery of the corners PK1 to PK4 of the sheet P increases. Here, in the embodiment, the determination regions HR1 to HR4 that include the corners PK1 to PK4 of the sheet P are set, and, when it is possible to determine that the attachment amount of ink to the determination regions HR1 to HR4 is large, it is determined that there is potential for the sheet P to curl due to printing on the first surface. When it is possible to predict that the sheet P does not curl by determining the position of the charge eliminating unit 581 based on the determination results, the charge eliminating unit 581 does not come in contact with the sheet P during printing on the second surface. Accordingly, it is possible for deterioration of the charge eliminating unit 581 to be delayed by the amount that the charge eliminating unit 581 becomes less prone to deterioration compared to a case where the charge eliminating unit 581 is constantly arranged at the charge elimination position during printing on the second surface.
(10) Meanwhile, because ink is not yet attached to the sheet P, when printing on the first surface is different to when printing on the second surface, the potential for curling of the sheet P is low. Here, in the embodiment, the charge eliminating unit 581 is arranged at the retreated position during printing on the first surface and the charge eliminating unit 581 is not brought into contact with the sheet P. In so doing, it is possible for lowering of the elimination efficiency of the electric charge from the sheet P by the charge eliminating unit 581 to be suppressed by the amount that the charge eliminating unit 581 becomes less prone to deterioration compared to a case where the charge eliminating unit 581 is arranged at the charge elimination position during printing on the first surface.
Next, a third embodiment in which the printing apparatus 11 is exemplified will be described. In the third embodiment, when printing on the second surface during duplex printing, the feature of causing the pressing force of the charge eliminating unit 581 with respect to the sheet P to change based on the discharge ratio on the first surface is different to the first embodiment. Accordingly, in the following description, the parts different from the first embodiment are mainly described, the same members and configurations as the first embodiment are given the same reference numbers, and overlapping description thereof will not be provided.
In the embodiment, it is possible for the actuator 582 in
In the embodiment, in the step S37 in
Specifically, in the step S69 in
The other processing procedure when executing the duplex printing in the embodiment is the same as the processing procedure described using the flowchart in
Each embodiment may be modified as outlined below.
The discharge ratio JR is calculated for each determination region HR1 to HR4 set in this way, and in a case where a determination region for which the discharge ratio JR is the determination ratio JRTh or more, it may be determined that there is potential for the sheet P to curl due to printing on the first surface.
As long as the charge eliminating unit 581 is arranged at the charge elimination position during printing on the first surface, during printing on the second surface, it may be determined that the charge eliminating unit 581 is arranged at the charge elimination position regardless of the determination results of the curl determination process or without performing the curl determination process.
The entire discovery of Japanese Patent Application No.: 2015-035394, filed Feb. 25, 2015 and No.: 2016-004161, filed Jan. 13, 2016 are expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2015-035394 | Feb 2015 | JP | national |
2016-004161 | Jan 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4526357 | Kuehnle | Jul 1985 | A |
5003325 | Bibl | Mar 1991 | A |
5219154 | Fukube | Jun 1993 | A |
5420743 | Domes | May 1995 | A |
5794110 | Kasai | Aug 1998 | A |
5930556 | Imamiya | Jul 1999 | A |
6092800 | Compera | Jul 2000 | A |
6267225 | Compera | Jul 2001 | B1 |
6511172 | Tanno | Jan 2003 | B2 |
6716286 | Louks | Apr 2004 | B2 |
7036921 | Kanome | May 2006 | B2 |
7576509 | Komatsu | Aug 2009 | B2 |
8752955 | Kobayashi | Jun 2014 | B2 |
8870183 | Takano | Oct 2014 | B2 |
9132671 | Hannig | Sep 2015 | B2 |
20060261298 | Matsumoto | Nov 2006 | A1 |
20070120936 | Kawabata | May 2007 | A1 |
20090136279 | Kawabata | May 2009 | A1 |
20110261130 | Hirai | Oct 2011 | A1 |
20130113869 | Kobayashi | May 2013 | A1 |
20160246244 | Mori | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2004-149280 | May 2004 | JP |
2008110843 | May 2008 | JP |
2009-007119 | Jan 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20160243854 A1 | Aug 2016 | US |